首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The onset of storage lipid biosynthesis during seed development in the oilseed crop Brassica napus (rape seed) coincides with a drastic qualitative and quantitative change in fatty acid composition. During this phase of storage lipid biosynthesis, the enzyme activities of the individual components of the fatty acid synthase system increase rapidly. We describe a rapid and simple purification procedure for the plastidlocalized NADH-dependent enoyl-acyl carrier protein reductase from developing B. napus seed, based on its affinity towards the acyl carrier protein (ACP). The purified protein was N-terminally sequenced and used to raise a potent antibody preparation. Immuno-screening of a seed-specific gt11 cDNA expression library resulted in the isolation of enoyl-ACP reductase cDNA clones. DNA sequence analysis of an apparently full-length cDNA clone revealed that the enoyl-ACP reductase mRNA is translated into a precursor protein with a putative 73 amino acid leader sequence which is removed during the translocation of the protein through the plastid membrane. Expression studies in Escherichia coli demonstrated that the full-length cDNA clone encodes the authentic B. napus NADH-dependent enoyl-ACP reductase. Characterization of the enoyl-ACP reductase genes by Southern blotting shows that the allo-tetraploid B. napus contains two pairs of related enoyl-ACP reductase genes derived from the two distinct genes found in both its ancestors, Brassica oleracea and B. campestris. Northern blot analysis of enoyl-ACP reductase mRNA steady-state levels during seed development suggests that the increase in enzyme activity during the phase of storage lipid accumulation is regulated at the level of gene expression.  相似文献   

2.
Acyl-ACP thioesterases are involved in regulating chain termination of fatty acid biosynthesis in plant systems. Previously, acyl-ACP thioesterase purified from Brassica napus seed tissue has been shown to have a high preference for hydrolysing oleoyl-ACP. Here, oligonucleotides derived from B. napus oleoyl-ACP thioesterase protein sequence data have been used to isolate two acyl-ACP thioesterase clones from a B. napus embryo cDNA library. The two clones, pNL2 and pNL3, contain 1642 bp and 1523 bp respectively and differ in the length of their 3 non-coding regions. Both cDNAs contain open reading frames of 366 amino acids which encode for 42 kDa polypeptides. Mature rape thioesterase has an apparent molecular weight of 38 kDa on SDS-PAGE and these cDNAs therefore encode for precursor forms of the enzyme. This latter finding is consistent with the expected plastidial location of fatty acid synthase enzymes. Northern blot analysis shows thioesterase mRNA size to be ca. 1.6 kb and for the thioesterase genes to be highly expressed in seed tissue coincident with the most active phase of storage lipid synthesis. There is some sequence heterogeneity between the two cDNA clones, but overall they are highly homologous sharing 95.7% identity at the DNA level and 98.4% identity at the amino acid level. Some sequence heterogeneity was also observed between the deduced and directly determined thioesterase protein sequences. Consistent with the observed sequence heterogeneity was Southern blot data showing B. napus thioesterase to be encoded by a small multi-gene family.  相似文献   

3.
Summary Genetically transformed plants of Brassica napus L. (oilseed rape) were obtained from hypocotyl expiants using Agrobacterium tumefaciens vectors. Hypocotyl explants were inoculated with disarmed or oncogenic A. tumefaciens strains, EHA101 and A281, and then cultured on media containing kanamycin. The A. tumefaciens strains harbored a binary vector, which contained a neomycin phosphotransferase II (NPTII) gene driven by the 35S promoter of cauliflower mosaic virus and an engineered napin (seed storage protein) gene with its own promoter (300 nucleotides 5 to the start of translation). Transformation of B. napus plants was confirmed by detection of NPT II enzyme activity, Southern blot analysis and inheritance of the kanamycin-resistance trait (NPT II gene) in the progeny. Expression of the engineered napin gene in embryos but not in leaves of transgenic plants was observed by Northern analysis. These data demonstrate that morphologically normal, fertile transgenic B. napus plants can be obtained using Agrobacterium as a gene vector and that developmentally regulated expression of reintroduced genes can be achieved.  相似文献   

4.
Myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1.) is in Brassicaceae species such as Brassica napus and Sinapis alba encoded by two differentially expressed gene families, MA and MB, consisting of about 4 and 10 genes, respectively. Southern blot analysis showed that Arabidopsis thaliana contains three myrosinase genes. These genes were isolated from a genomic library and two of them, TGG1 and TGG2, were sequenced. They were found to be located in an inverted mode with their 3 ends 4.4 kb apart. Their organization was highly conserved with 12 exons and 11 short introns. Comparison of nucleotide sequences of TGG1 and TGG2 exons revealed an overall 75% similarity. In contrast, the overall nucleotide sequence similarity in introns was only 42%. In intron 1 the unusual 5 splice border GC was used. Phylogenetic analyses using both distance matrix and parsimony programs suggested that the Arabidopsis genes could not be grouped with either MA or MB genes. Consequently, these two gene families arose only after Arabidopsis had diverged from the other Brassicaceae species. In situ hybridization experiments showed that TGG1 and TGG2 expressing cells are present in leaf, sepal, petal, and gynoecium. In developing seeds, a few cells reacting with the TGG1 probe, but not with the TGG2 probe, were found indicating a partly different expression of these genes.  相似文献   

5.
In this paper we describe the isolation and characterization of a genomic clone (Bp4) from Brassica napus which contains three members of a pollen-specific multigene family. This family is composed of 10 to 15 closely related genes which are expressed in early stages of microspore development. The complete nucleotide sequence of the clone Bp4 and of three homologous cDNA clones is reported. One of the genes (Bp4B) contained in the genomic clone is believed to be non-functional because of sequence rearrangements in its 5 region and intron splicing sites. The remaining genes (Bp4A and Bp4C), as well as the cDNA clones, appear to code for small proteins of unique structure. Three different types of proteins can be predicted as a result of the deletion of carboxy or amino terminal portions of a conserved core protein. These proteins all share a common alternation of hydrophobic and hydrophilic domains. A fragment of the genomic clone containing the gene Bp4A, as well as the non-functional gene Bp4B, was introduced into tobacco plants via Agrobacterium-mediated transformation. The functional gene Bp4A is expressed in transgenic tobacco plants and shows spatial and temporal regulation consistent with the expression patterns seen in Brassica napus.  相似文献   

6.
In order to investigate the role of cell division in plant development, we isolated several plant genes which encode homologues of animal and yeast cell cycle regulators known as cyclins.Through the use of degenerate primers and the polymerase chain reaction (PCR) we isolated a Brassica sequence which showed homology to the cyclin box functional domain found within cyclin proteins. Southern blot analysis indicated that Brassica napus has a large number of genes containing cyclin box-related sequences. This was further supported by the isolation of cyclin box sequences from six different genomic clones. In addition, we have isolated two different cyclin cDNA clones, BnCYC1 and BnCYC2, from a Brassica napus shoot apical cDNA library. Both of the cDNA clones contain a destruction box regulatory domain similar to animal mitotic cyclins.Northern blot analysis using BnCYC2 shows mRNA levels which correlate well with the level of cell division in various tissues. Messenger RNA abundance was highest in 1–3 mm leaves, root tips and shoot apices. The mRNA detected using BnCYC1 was restricted to young leaves and the shoot apex, suggesting divergent, organ-specific roles for cyclin family members. The results demonstrate that the plant cyclin gene family is more extensive than previously demonstrated and consists of genes expressed in all dividing tissues as well as a subset of developmentally specific members.  相似文献   

7.
The levels of certain essential amino acids, in particular cysteine, lysine and methionine, in the seed storage protein of a commercial spring variety of rape, Brassica napus, have been increased by the introduction of an antisense gene for cruciferin, which is the most abundant storage protein in rapeseed. The antisense construct contained part of the cruA gene in an inverted orientation, and the gene was driven by the 5 flanking region of the gene for napin such that antisense RNA was expressed in a seed-specific manner. The construct was introduced by Agrobacterium-mediated gene transfer. In self-pollinated seeds (T1 seeds) of transgenic plants there was a reduction in the levels of the 11 and 2/32/3 subunits of cruciferin, whereas the level of the 44 subunit was unchanged. The total protein and lipid contents of transgenic seeds did not differ significantly from that of normal seeds. Seeds with reduced amounts of cruciferin accumulated higher amounts of napin than non-transformed seeds, but the level of oleosin was unaffected. Amino-acid analysis of the seed storage protein revealed that T1 seeds with reduced amounts of cruciferin contained higher relative levels of three essential amino acids, namely, lysine, methionine and cysteine, with increases of 10%, 8% and 32% over the respective levels in non-transgenic seeds (B. napus cv Westar).  相似文献   

8.
The wild crucifer Moricandia arvensis is a potential source of alien genes for the genetic improvement of related Brassica crops. In particular M. arvensis has a C3-C4 intermediate photosynthetic mechanism which results in enhanced recapture of photorespired CO2 and may increase plant water-use efficiency. In order to transfer this trait into Brassica napus, somatic hybridisations were made between leaf mesophyll protoplasts from cultured M. arvensis shoot tips and hypocotyl protoplasts from three Brassica napus cultivars, Ariana, Cobra and Westar. A total of 23 plants were recovered from fusion experiments and established in the greenhouse. A wide range of chromosome numbers were observed among the regenerated plants, including some apparent mixoploids. Thirteen of the regenerated plants were identified as nuclear hybrids between B. napus and M. arvensis on the basis of isozyme analysis. The phenotypes of these hybrids were typically rather B. napus-like, but much variability was observed, including variation in flower colour, leaf shape and colour, leaf waxiness, fertility and plant vigour. CO2 compensation point measurements on the regenerated plants demonstrated that 3 of the hybrids express the M. arvensis C3-C4 intermediate character at the physiological level. Semi-thin sections through leaf tissues of these 3 plants revealed the presence of a Kranz-like leaf anatomy characteristic of M. arvensis but not found in B. napus. This is the first report of the expression of this potentially important agronomic trait, transferred from Moricandia, in M. arvensis x B. napus hybrids.  相似文献   

9.
In order to identify genes involved in cold acclimation, we have constructed a cDNA library from Brassica napus (cv. Samouraï) cold-acclimated etiolated seedlings. By differential screening, a cDNA clone named pBnC24 (Brassica napus Cold), corresponding to a new cold-inducible plant gene, was isolated. Northern blot hybridizations using total RNA from acclimated and unacclimated seedlings confirmed that BnC24 represents a cold-regulated gene. In contrast with a number of cold-inducible plant genes, BnC24 does not seem to be responsive to abscisic acid (ABA). In addition, further screening of the cold-acclimated cDNA library using pBnC24 cDNA as a probe, allowed the isolation of a second type of homologous cDNA. Sequence analysis showed that the two BnC24 genes encode basic 24 kDa proteins, which are highly hydrophilic and rich in alanine, lysine and arginine. The nucleotide and deduced amino acid sequences of these clones do not show any homology with other previously described cold-induced plants genes. However they have strong homology with a recently discovered human tumour gene, bbc1 (breast basic conserved), which seems to be highly conserved in eukaryotes.  相似文献   

10.
Oilseed rape (Brassica napus) is an important oilseed crop worldwide. Cultivars have been developed for many growing regions, however little is known about genetic diversity inB. napus germ plasm. The purpose of the research presented here was to study the genetic diversity and relationships ofB. napus accessions using restriction fragment length polymorphisms (RFLPs). Eighty threeB. napus accessions were screened using 43 genomic DNA clones which revealed 161 polymorphic fragments. Each accession was uniquely identified by the markers with the exception of the near-isogenic cvs Triton and Tower. The RFLP data were analyzed by cluster analysis of similarity coefficients and by principal component analysis. Overall, there were three major groups of cultivars. The first group included only spring accessions, the second mostly winter accessions and the third, rutabagas and oilseed rape accessions from China and Japan. These results indicate that withinB. napus, winter and spring cultivars represent genetically distinct groups. The grouping of accessions by cluster analysis was generally consistent with known pedigrees. This consistency included the grouping of lines derived both by backcrossing or self-pollination with their parents.  相似文献   

11.
An S-receptor kinase (SRK) gene associated with self-incompatibility in a Brassica napus subsp. oleifera line has been characterized. The SRK-A14 cDNA shows the highest levels of homology in the 5 end to the SLG-A14 cDNA present at the same locus. RNA blot analysis shows that the SRK-A14 gene is expressed predominantly in the pistil, and at lower levels in the anthers. The predicted amino acid sequences from the extracellular domain of the SRK-A14 gene and three other SRK genes were compared. The different SRK extracellular domains were for the most part very similar, with the exception of two variable regions containing a high level of amino acid alterations. These extracellular domains also contain a region of similarity to the immunoglobulin domains present in members of the immunoglobulin superfamily. These findings may define regions of the SRK protein that are necessary for interactions between SRK and other proteins.  相似文献   

12.
Summary Agrobacterium-mediated transformation of thin cell layer explants (Klimaszewska and Keller 1985) yielded large numbers of transgenic plants of a major Canadian rapeseed cultivar Brassica napus ssp. oleifera cv Westar. The morphology and fertility of these plants were indistinguishable from controls. The Ti plasmid vector, pGV3850 (Zambryski et al. 1983) was used as a cis vector and as a helper plasmid for the binary vector pBin19 (Bevan 1984). Selectable marker genes that conferred resistance to high levels of kanamycin (Km) on Nicotiana tabacum were less efficient in the selection of transgenic B. napus. At low levels of Km (15 g/ml) large numbers of transgenic plants (50%) were identified among the regenerants by nopaline synthase activity and several of these were confirmed by Southern blot analyses. Only a small number were resistant to higher levels of Km (80 g/ml). Preliminary analyses indicated that resistance to Km was transmitted to the selfed progeny. Chimeric chloramphenicol acetyl transferase genes were ineffective biochemical markers in transgenic B. napus.Contribution No. 1092 Plant Research Centre, Ontario, Canada  相似文献   

13.
Antibodies raised against purified rapeseed 19 kDa oleosin protein were used to screen an embryo-derived gt11 expression library from Brassica napus. A near full-length cDNA clone, BnV, was isolated. The 781 bp cDNA contained an open reading frame of 549 bp followed by an untranslated region of 222 pb and a poly(A) region of 10 bp. Comparisons between this cDNA and a different oleosin cDNA previously isolated from the same library showed high degrees of sequence similarity in the central domain region and in the 3 untranslated region. Sequence similarities between the derived protein sequence of this cDNA and all other known oleosin protein sequences are discussed.  相似文献   

14.
Two DNA fragments, AP-1 and AP-2, encoding amino acid sequences closely related to Ser/Thr protein phosphatases were amplified from Arabidopsis thaliana genomic DNA. Fragment AP-1 was used to screen. A. thaliana cDNA libraries and several positive clones were isolated. Clones EP8a and EP14a were sequenced and found to encode almost identical proteins (97% identity). Both proteins are 306 amino acids in length and are very similar (79–80% identity) to the mammalian isotypes of the catalytic subunit of protein phosphatase 2A. Therefore, they have been designated PP2A-1 and PP2A-2. A third cDNA clone, EP7, was isolated and sequenced. The polypeptide encoded (308 amino acids, lacking the initial Met codon) is 80% identical with human phosphatases 2A and was named PP2A-3. The PP2A-3 protein is extremely similar (95% identity) to the predicted protein from a cDNA clone previously found in Brassica napus. Southern blot analysis of genomic DNA using AP-1 and AP-2 probes, as well as probes derived from clones EP7, EP8a and EP14a strongly indicates that at least 6 genes closely related to type 2A phosphatases are present in the genome of A. thaliana. Northern blot analysis using the same set of probes demonstrates that, at the seedling stage, the mRNA levels for PP2A-1, PP2A-3 and the gene containing the AP-1 sequence are much higher than those of PP2A-2 and AP-2. These results demonstrate that a multiplicity of type 2A phosphatases might be differentially expressed in higher plants.  相似文献   

15.
The oviposition behaviour of the brassica pod midge, Dasineura brassicae Winn. (Diptera: Cecidomyiidae), on a preferred host, Brassica napus L. (summer oilseed rape) was compared to that on a nonpreferred, less suitable host for larval growth, Brassica juncea (L.) Coss & Czern (brown mustard). The experiments were done under field conditions with wild females.The number of landing females was significantly higher on B. napus than on B. juncea, indicating host differences in olfactory and/or visual stimuli. After landing, the behaviour differed in that females stayed longer and laid more egg batches on B. napus than on B. juncea plants. The probability that oviposition would occur after landing and the potentially adjustable egg batch size were similar on the high- and the low-quality host.A larger egg load on B. napus than on B. juncea can thus be attributed mainly to a higher landing rate and more repeated ovipositions occurring on B. napus.
Comportement de ponte de Dasineura brassicae sur des Brassica de qualites élevée et basse
Résumé La comparaison porte sur le comportement de ponte de D. brassicae Winn. (Dept. Cecidomyiidae) sur Brassica napus L., hôte préféré, et sur B. juncea L., hôte non-préféré, qui convient moins au développement larvaire. Les expériences réalisées en champ ont porté sur des femelles sauvages.Le nombre de femelles qui atterrissent sur B. napus est significativement plus élevé que sur B. juncea, ce qui indique des différences entre les stimuli olfactif et visuel des plantes-hôtes. Aprés atterrisage, le comportement diffère en ce que les femelles restent plus longtemps et déposent plus de pontes sur B. napus que sur B. juncea. La probabilité pour que la ponte suive l'atterrissage et les tailles des ooplaques potentiellement ajustables sont semblables sur les hôtes de qualité élevée ou basse.Une charge supérieure en oeufs sur B. napus que sur B. juncea peut ainsi être principalement attribuée à un taux d'atterrissage plus élevé et à une plus grande fréquence de ponte sur B. napus.
  相似文献   

16.
Cyanobacterial genes for enzymes that desaturate fatty acids at the 12 position, designated desA, were isolated from Synechocystis PCC6714, Synechococcus PCC7002 and Anabaena variabilis by crosshybridization with a DNA probe derived from the desA gene of Synechocystis PCC6803. The genes of Synechocystis PCC6714, Synechococcus PCC7002 and A. variabilis encode proteins of 349, 347 and 350 amino acid residues, respectively. The transformation of Synechococcus PCC7942 with the desA genes from Synechocystis PCC6714, Synechococcus PCC7002 and A. variabilis was associated with the ability to introduce a second double bond at the 12 position of fatty acids. The amino acid sequence of the products of the desA genes revealed the presence of four conserved domains. Since one of the conserved domains was also found in the amino acid sequences of 3 desaturases of Brassica napus and mung bean, this domain may play an essential role in the introduction of a double bond into fatty acids bound to membrane lipids.Abbreviations X:Y(Z) fatty acid containing X carbon atoms with Y double bonds in the cis configuration at position Z counted from the carboxyl terminus  相似文献   

17.
Summary Fusion of leaf protoplasts from an inbred line of Brassica oleracea ssp. botrytis (cauliflower, n=9) carrying the Ogura (R1) male sterile cytoplasm with hypocotyl protoplasts of B. campestris ssp. oleifera (cv Candle, n=10) carrying an atrazine-resistant (ATR) cytoplasm resulted in the production of synthetic B. napus (n=19). Thirty-four somatic hybrids were produced; they were characterized for morphology, phosphoglucose isomerase isoenzymes, ribosomal DNA hybridization patterns, chromosome numbers, and organelle composition. All somatic hybrids carried atrazine-resistant chloroplasts derived from B. campestris. The mitochondrial genomes in 19 hybrids were examined by restriction endonuclease and Southern blot analyses. Twelve of the 19 hybrids contained mitochondria showing novel DNA restriction patterns; of these 12 hybrids, 5 were male sterile and 7 were male fertile. The remaining hybrids contained mitochondrial DNA that was identical to that of the ATR parent and all were male fertile.  相似文献   

18.
The genetic control of adult-plant blackleg (Leptosphaeria maculans) resistance in a Brassica napus line (579NO48-109-DG-1589), designated R13 possessing Brassica juncea-like resistance (JR), was elucidated by the analysis of segregation ratios in F2 and F3 populations from a cross between R13 and the highly blackleg-susceptible B. napus cultivar Tower. The F2 segregration ratios were bimodal, demonstrating that blackleg resistance in R13 was controlled by major genes. Analysis of the segregation ratios for 13 F3 families indicated that blackleg resistance in these families was controlled by three nuclear genes, which exhibited a complex interaction. Randomly sampled plants of F3 progeny all had the normal diploid somatic chromosome number for B. napus. The similarities between the action of the three genes found in this study with those controlling blackleg resistance in B. juncea is discussed.  相似文献   

19.
Summary The most abundant protein in seeds of Brassica napus (L.) is cruciferin, a legumin-like 12S storage protein. By in vitro translation of embryo RNA, and pulse-chase labelling of cultured embryos with 14C-leucine, we have shown that the 30 kd polypeptides and 20 kd polypeptides of cruciferin are synthesized as a family of 50 kd precursors which are cleaved post-translationally. One member of the cruciferin family was cloned from embryo cDNA and sequenced. The nucleotide sequence of the cruciferin cDNA clone, pC1, contains one long open reading frame, which originates in a hydrophobic signal peptide region. Therefore, the complete sequence of the cruciferin mRNA was obtained by primer extension of the cDNA. The predicted precursor polypeptide is 488 amino acids long, including the 22 amino acids of the putative signal sequence. The amino acid composition of cruciferin protein is very similar to the predicted composition of the precursor. Comparison with an amino acid sequence of legumin from peas, deduced from the nucleotide sequence of a genomic clone, shows that the polypeptide precedes the polypeptide on the precursor. Cruciferin and legumin share 40% homology in the regions which can be aligned. However, cruciferin contains a 38 amino acid region high in glutamine and glycine in the middle of the subunit, which is absent in legumin. Legumin has a highly charged region, 57 amino acids long, at the carboxyl-end of the subunit, which is not found in cruciferin. Both of these regions appear to have originated by reiteration of sequences. re]19850513 ac]19850715  相似文献   

20.
Pis 30, a gene highly expressed in Brassica napus pistils and encoding a novel proline-rich protein was isolated and characterized. Sequences homologous to the Brassica Pis 30 gene were found only in Arabidopsis thaliana. The Pis 30 gene encodes a mature protein of 8.4 kDa with no previously characterized protein domains and whose function remains unknown. PIS 30 contains especially high levels of Pro (33%), but also of Leu (14%), Phe (10%) and Ser (6%). Although it is a proline-rich protein, PIS 30 shows only limited similarity to previously characterized plant proline-rich proteins. When compared to the stigma-specific activity of the B. napus SLR1 gene promoter in pistils of transgenic Arabidopsis, an 808 bp Pis 30 promoter fragment directed -glucuronidase expression primarily in the ovary, as well as in the stigma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号