首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的构建人Hesl-shRNA和Hes5-shRNA慢病毒表达载体,为Notch—Hes信号通路的相关研究奠定基础。方法根据人Hes1,Hes5基因mRNA序列分别设计、合成多对互补的DNA单链寡核苷酸,退火后克隆至pENTR/U6入门载体。通过入门载体瞬时转染神经胶质瘤U251细胞筛选有效干扰序列。将含有效干扰序列的入门载体与pLenti6/BLOCK—iT—DEST载体进行LR重组构建Hesl—shRNA和Hes5-shRNA慢病毒表达载体,经脂质体介导入293FT细胞,包装成慢病毒。用该慢病毒感染U251细胞,Western印迹法分别检测Hes1,Hes5蛋白的表达。结果分别构建了针对Hes1和Hes5基因的特异性shRNA慢病毒表达载体,其包装获得慢病毒可有效感染U251细胞并分别对HeM,Hes5蛋白的表达有显著抑制作用。结论成功构建了Hesl—shRNA和Hes5-shRNA慢病毒表达载体。  相似文献   

2.
目的:构建CEP55慢病毒表达载体,建立稳定表达CEP55的人脑胶质瘤U251细胞株。方法:使用PCR扩增方法将CEP55基因序列进行扩增,转入质粒中,并整合到载体上,构建重组质粒GV358-CEP55载体。与p Helper 1.0和p Helper 2.0质粒共转染293T细胞使其产生慢病毒,以GV358空载体包装的慢病毒作为对照。显微镜观察绿色荧光蛋白GFP表达强度,确定慢病毒的感染效率。采用病毒梯度稀释法测定病毒滴度。慢病毒感染人胶质瘤细胞株U251后,经嘌呤霉素筛选出稳定表达CEP55基因的细胞株U251-CEP55。q RT-PCR和Western blot两种方法分别检测CEP55 m RNA及蛋白的表达。结果:测序证实慢病毒表达载体GV358-CEP55构建成功;转染293T细胞获得高滴度的病毒。病毒感染U251细胞后,使用嘌呤霉素筛选得到稳定转染细胞株U251-CEP55;q RT-PCR和Western blot方法分别检测后发现,U251-CEP55细胞株中CEP55 m RNA和蛋白水平的表达明显高于对照组。结论:成功构建CEP55慢病毒表达载体,获得稳定表达CEP55的人胶质瘤U251细胞株,为CEP55基因功能的探究给予了一定的实验基础。  相似文献   

3.
pIRES2-EGFP-IL-1ra-Fcε真核表达载体的构建及鉴定   总被引:2,自引:0,他引:2  
采用RT-PCR方法从哮喘大鼠脾细胞中克隆IgE恒定区cDNA,同时从载体pBV220-IL-1ra中克隆IL-1ra基因.利用重叠延伸PCR技术构建IL-1ra-Fcε融合基因.将其克隆入真核表达载体pIRES2-EGFP,以脂质体法转染293T细胞,同时采用气管滴注方式滴注大鼠肺部.经Westernblot、RT-PCR及荧光显微镜观察此融合基因在293T细胞及大鼠肺组织中实现了表达,为过敏性哮喘基因治疗奠定了基础.  相似文献   

4.
目的:构建大鼠过氧化物酶体增生因子激活受体γ(peroxisomeproliferator-activatedreceptorgamma)基因慢病毒表达载体,获得可供转染的滴度,为进一步研究该基因在肝星状细胞活化(Hepaticstellatecells,HSC)及肝纤维化中的作用机制提供物质基础。方法:大鼠PPAR-γ基因序列进行PCR扩增,与经AgeI酶切后的pGC-FU-3FLAG载体连接产生慢病毒载体表达质粒pGC-fu-3flag-PPARG,转化DH5α,PCR筛选阳性克隆,测序并转入293T细胞Western blot鉴定,而后将pGC-fu-3flag-PPARG,pHelper 1.0,pHelper 2.0三质粒共转染293T细胞,包装成慢病毒,收集上清浓缩病毒测定病毒滴度。结果:DNA测序及Westernblot鉴定证实构建的大鼠PPAR-γ基因慢病毒表达载体pGC-fu-3flag-PPARG正确,浓缩慢病毒悬液的滴度为2×108TU/ml。结论:成功构建携带大鼠PPAR-γ基因的重组慢病毒表达载体。  相似文献   

5.
目的克隆微小RNArno—miR-一16,构建其慢病毒表达载体pLV—miR-16并包装成慢病毒颗粒,为进一步研究miR一16的功能奠定了实验基础。方法从大鼠细胞基因组中用PCR的方法扩增miR-16的前体,构建了miR-16的重组表达载体pLV—miR-16,脂质体法将重组慢病毒载体和包装质粒混合物(pPACK—GAG、pPACK—REV和pVSV)共转染包装细胞293TN细胞,包装产生慢病毒,以293TN细胞绿色荧光蛋白(green fluorescent protein,GFP)的表达水平测定病毒滴度。结果经PCR扩增检测阳性菌落和测序证实,成功构建携带大鼠miR-16基因重组慢病毒载体。倒置荧光显微镜下观察可见包装细胞293TN呈绿色荧光,并测得10^8〉ifu/ml。结论成功构建大鼠慢病毒载体pLV—miR-16,为深入研究rno—miR-16的生物学功能奠定了基础。  相似文献   

6.
目的:构建含Nr4a2基因的绿色荧光慢病毒载体,并检测其体外表达目的基因的水平。方法:设计Nr4a2基因的引物,采用聚合酶链反应(PCR)扩增,插入经AgeⅠ/AgeⅠ酶切的GV287慢病毒载体构建GV287-Nr4a2慢病毒质粒。PCR鉴定、测序验证后,将其与pHelper1.0载体、pHelper2.0载体共同转染293T细胞(人胚肾细胞),48小时后收集含慢病毒颗粒的细胞上清液,经浓缩并测定滴度后感染293T细胞,72h后观察增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)的表达。结果:酶切及测序鉴定证实成功构建了重组慢病毒载体GV287-Nr4a2;荧光显微镜下可见绿色荧光高度表达;Nr4a2蛋白能在293T细胞中有效表达;包装过表达慢病毒并测其浓缩滴度为2.0×108TU/ML。结论:成功构建Nr4a2慢病毒载体且在293T细胞中良好表达,为进一步转染大鼠骨髓间充质干细胞,基因治疗帕金森病奠定基础。  相似文献   

7.
目的:克隆Nox4基因入pLenti6.3慢病毒表达载体,为探索Nox4基因在ROS产生中的作用提供实验基础。方法:根据NCBI人Nox4 mRNA序列设计引物,再利用酶切连接反应将Nox4插入到入门载体pENTR3C中,成功构建pENTR3C-Nox4后,通过LR反应,将Nox4和EGFP tag插入到慢病毒表达载体pLenti6.3中,经酶切和测序验证正确后,将重组表达质粒转染入人Hela细胞,通过Western-Blot验证Nox4的表达情况,免疫荧光验证Nox4在细胞内的定位情况。结果:入门载体及表达质粒测序比对完全正确,转染Hela细胞后可见明显的表达条带,并且主要定位于细胞器内质网中。结论:成功构建了带有EGFP tag的Nox4基因慢病毒重组表达载体,转染Hela细胞后,其能正确表达并定位于内质网中,为研究Nox4在调节ROS产生中的作用奠定了基础。  相似文献   

8.
提取大鼠脑组织总RNA,通过逆转录巢式PCR,扩增μ型阿片受体全长cDNA,克隆至pMD20-T载体中,测序鉴定,纠正点突变后,经酶切连接克隆入pIRES2-EGFP中,测序及酶切结果表明μ基因正确,μ-pIRES2-EGFP质粒构建成功.用脂质体法将μ-pIRES2-EGFP转染入HEK293细胞中,在荧光显微镜下,转染细胞可以观察到绿色荧光,应用免疫组化荧光可以观察到μ基因的高强度表达.  相似文献   

9.
目的构建重组表达小鼠MIP-1α和B7-1基因的慢病毒载体,为淋巴瘤基因治疗的实验研究奠定基础。方法设计引物扩增获得目的基因小鼠MIP-1α和B7-1基因的全长编码序列cDNA,将目的基因与经酶切线性化的慢病毒载体进行定向连接,其产物转化感受态细胞,对长出的阳性克隆进行PCR鉴定和直接测序序列分析。MIP-1α和B7-1目的基因质粒转染293T细胞,观察绿色荧光蛋白(GFP)表达,采用Western Blot法检测其蛋白表达,实时荧光定量PCR,检测慢病毒浓缩液的滴度。结果成功构建了重组表达小鼠MIP-1α和B7-1基因的慢病毒载体,实时荧光定量PCR证实MIP-1α、B7-1基因重组慢病毒载体的滴度均达2.00E+8 TU/mL。结论本研究成功构建并包装出高滴度的小鼠MIP-1α和B7-1基因重组慢病毒载体,为淋巴瘤基因治疗的实验研究奠定了基础。  相似文献   

10.
目的:克隆人表达FHL1C基因以及建立真核表达载体和慢病毒载体。方法:从人的骨骼肌细胞来源的cDNA中扩增并克隆人FHL1C基因的编码区,连接至pMD-18T载体酶切鉴定后测序。序列测定确认后,双酶切pMD18T-FHL1C回收片段,插入真核表达载体,构建真核表达载体pCMV-Myc-FHL1C酶切鉴定正确后,转染Hela细胞及Cos7细胞,用Western Blot检测其在转染细胞中的表达,用双荧光素报告基因系统检测其对Notch信号作用。构建FHL1C-IRES-GFP表达单元,建立慢病毒表达载体plen-ti6/V5-FHL1C-IRES-GFP,包装慢病毒后感染培养的细胞,用免疫荧光显微镜、Western Blot检测分析其在被感染的细胞中的表达。结果:通过PCR方法成功扩增了人FHL1C基因的编码区。通过转染Hela及Cos7细胞,使用Western Blot检测其蛋白水平表达,双荧光报告基因系统分析均能够下调激活的Notch信号。成功构建了FHL1C慢病毒表达载体pLenti6/V5-FHL1C-IRES-GFP,包装慢病毒,把获取的慢病毒感染细胞后通过荧光显微镜证实被感染的细胞绿色荧光蛋白正确表达,Western Blot检测证实其表达。结论:成功建立起FHL1C真核表达载体及慢病毒表达系统,为研究急性T淋巴细胞白血病与Notch信号转导通路之间的关系奠定了基础。  相似文献   

11.
12.
13.
14.
15.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

16.
17.
Evolution of living organisms is closely connected with evolution of structure of the system of regulations and its mechanisms. The functional ground of regulations is chemical signalization. As early as in unicellular organisms there is a set of signal mechanisms providing their life activity and orientation in space and time. Subsequent evolution of ways of chemical signalization followed the way of development of delivery pathways of chemical signal and development of mechanisms of its regulation. The mechanism of chemical regulation of the signal interaction is discussed by the example of the specialized system of transduction of signal from neuron to neuron, of effect of hormone on the epithelial cell and modulation of this effect. These mechanisms are considered as the most important ways of the fine and precise adaptation of chemical signalization underlying functioning of physiological systems and organs of the living organism  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号