首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bosch R  García-Valdés E  Moore ER 《Gene》2000,245(1):65-74
Pseudomonas stutzeri strain AN10 is a naphthalene-degrading strain whose dissimilatory genes are chromosomally encoded. We sequenced the entire naphthalene-degradation lower pathway of P. stutzeri AN10, this being, together with the upper-pathway reported previously (Bosch R. et al., 1999a. Gene 236, 149-157) the first complete DNA sequence for an entire naphthalene-catabolic pathway. Eleven open reading frames were identified. The nahGTHINLOMKJ genes encode enzymes for the metabolism of salicylate to pyruvate and acetyl-CoA, and nahR encodes the NahR regulatory protein. Our findings suggest that catabolic modules were recruited through transposition events and recombination among tnpA-like genes, and subsequent rearrangements and deletions of non-essential DNA fragments allowed the formation of the actual catabolic pathway. Our results also suggest that the genes encoding the xylene/toluene-degradation enzymes of P. putida mt-2 (pWW0) have coexisted with the nah genes of the P. stutzeri AN10 ancestral genome. This could allow the selection, via recombination events among homologous genes, for a combination of genes enabling the metabolism of a given aromatic compound in the ancestral host strain. Such events accelerate the evolution of modern catabolic pathways and provide new genetic material to the environment, ultimately resulting in improved, natural, bioremediation potential.  相似文献   

2.
The nucleotide sequences of the 27,939-bp-long upstream and 9,448-bp-long downstream regions of the carAaAaBaBbCAc(ORF7)Ad genes of carbazole-degrading Pseudomonas sp. strain CA10 were determined. Thirty-two open reading frames (ORFs) were identified, and the car gene cluster was consequently revealed to consist of 10 genes (carAaAaBaBbCAcAdDFE) encoding the enzymes for the three-step conversion of carbazole to anthranilate and the degradation of 2-hydroxypenta-2,4-dienoate. The high identities (68 to 83%) with the enzymes involved in 3-(3-hydroxyphenyl)propionic acid degradation were observed only for CarFE. This observation, together with the fact that two ORFs are inserted between carD and carFE, makes it quite likely that the carFE genes were recruited from another locus. In the 21-kb region upstream from carAa, aromatic-ring-hydroxylating dioxygenase genes (ORF26, ORF27, and ORF28) were found. Inductive expression in carbazole-grown cells and the results of homology searching indicate that these genes encode the anthranilate 1,2-dioxygenase involved in carbazole degradation. Therefore, these ORFs were designated antABC. Four homologous insertion sequences, IS5car1 to IS5car4, were identified in the neighboring regions of car and ant genes. IS5car2 and IS5car3 constituted the putative composite transposon containing antABC. One-ended transposition of IS5car2 together with the 5' portion of antA into the region immediately upstream of carAa had resulted in the formation of IS5car1 and ORF9. In addition to the insertion sequence-dependent recombination, gene duplications and presumed gene fusion were observed. In conclusion, through the above gene rearrangement, the novel genetic structure of the car gene cluster has been constructed. In addition, it was also revealed that the car and ant gene clusters are located on the megaplasmid pCAR1.  相似文献   

3.
ISPst9 is an ISL3-like insertion sequence (IS) that was recently described in the naphthalene-degrading organism Pseudomonas stutzeri strain AN10. In this paper we describe a novel strong IS regulation stimulus; transposition of ISPst9 is induced in all P. stutzeri AN10 cells after conjugative interaction with Escherichia coli. Thus, we observed that in all P. stutzeri AN10 cells that received genetic material by conjugation the ISPst9 genomic dose and/or distribution was changed. Furthermore, ISPst9 transposition was also observed when P. stutzeri AN10 cells were put in contact with the plasmidless conjugative strain E. coli S17-1λpir, but not when they were put in contact with E. coli DH5α (a nonconjugative strain). The mechanism of ISPst9 transposition was analyzed, and transposition was shown to proceed by excision from the donor DNA using a conservative mechanism, which generated 3- to 10-bp deletions of the flanking DNA. Our results indicate that ISPst9 transposes, forming double-stranded DNA circular intermediates consisting of the IS and a 5-bp intervening DNA sequence probably derived from the ISPst9 flanking regions. The kinetics of IS circle formation are also described.  相似文献   

4.
Oxaloacetate decarboxylase (OXAD), the enzyme that catalyzes the decarboxylation of oxaloacetate to pyruvic acid and carbon dioxide, was purified 245-fold to homogeneity from Pseudomonas stutzeri. The three-step purification procedure comprised anion-exchange chromatography, metal-chelate affinity chromatography, and biomimetic-dye affinity chromatography. Estimates of molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and native high-performance gel-filtration liquid chromatography were, respectively, 63 and 64 kDa, suggesting a monomeric protein. OXAD required for maximum activity divalent metal cations such as Mn2+ and Mg2+ but not monovalent cations. The enzyme is not inhibited by avidin, but is competitively inhibited by adenosine 5'-diphosphate, acetic acid, phosphoenolpyruvate, malic acid, and oxalic acid. Initial velocity, product inhibition, and dead-end inhibition studies suggested a rapid-equilibrium ordered kinetic mechanism with Mn2+ being added to the enzyme first followed by oxaloacetate, and carbon dioxide is released first followed by pyruvate. Inhibition data as well as pH-dependence profiles and kinetic parameters are reported and discussed in terms of the mechanism operating for oxaloacetate decarboxylation.  相似文献   

5.
In this study, the chromosomally encoded disulphide oxidoreductase dsbA from Salmonella typhimurium was cloned and characterized. A survey of a number of serovars of Salmonella subspecies I showed that dsbA is highly conserved in most, but not all members of this subclass of Salmonella species. Using motility, beta-galactosidase, and alkaline phosphatase assays as indirect indicators of disulphide oxidoreductase activity, we demonstrated that DsbA from S. typhimurium LT2 can only partially complement an Escherichia coli dsbA-null strain. This is surprising considering the high degree of conservation between these two DsbA proteins (87% amino acid identity). To determine the contribution of DsbA to the proper folding and assembly of proteins of S. typhimurium, deletion mutants were created in the avirulent strain LT2 and in the virulent strain SL1344. These null alleles were constructed by partial deletion of the dsbA-coding region and then insertion of an antibiotic resistance marker in the gene. Mutants no longer expressing a functional disulphide oxidoreductase exhibit pleitropic effects, including an increase in colony mucoidy, a dramatic decrease in motility, and an increased susceptibility to the cationic peptide protamine sulphate. The disruption of disulphide bond formation was also shown to specifically affect the stability of several proteins secreted into the extracellular environment.  相似文献   

6.
Strains of all 18 species of the family Rhodospirillaceae (nonsulfur photosynthetic bacteria) were studied for their comparative nitrogen-fixing abilities. All species, with the exception of Rhodocyclus purpureus, were capable of growth with N2 as the sole nitrogen source under photosynthetic (anaerobic) conditions. Most rapid growth on N2 was observed in strains of Rhodopseudomonas capsulata. Within the genus Rhodopseudomonas, the species R. capsulata, R. sphaeroides, R. viridis, R. gelatinosa, and R. blastica consistently showed the highest in vivo nitrogenase rates (with the acetylene reduction technique); nitrogenase rates in other species of Rhodopseudomonas and in most species of Rhodospirillum were notably lower. Chemotrophic (dark microaerobic) nitrogen fixation occurred in all species with the exception of one strain of Rhodospirillum fulvum; oxygen requirements for dark N2 fixation varied considerably among species and even within strains of the same species. We conclude that the capacity to fix molecular nitrogen is virtually universal among members of the Rhodospirillaceae but that the efficacy of the process varies considerably among species.  相似文献   

7.
8.
The ptxD gene from Pseudomonas stutzeri WM88 encoding the novel phosphorus oxidizing enzyme NAD:phosphite oxidoreductase (trivial name phosphite dehydrogenase, PtxD) was cloned into an expression vector and overproduced in Escherichia coli. The heterologously produced enzyme is indistinguishable from the native enzyme based on mass spectrometry, amino-terminal sequencing, and specific activity analyses. Recombinant PtxD was purified to homogeneity via a two-step affinity protocol and characterized. The enzyme stoichiometrically produces NADH and phosphate from NAD and phosphite. The reverse reaction was not observed. Gel filtration analysis of the purified protein is consistent with PtxD acting as a homodimer. PtxD has a high affinity for its substrates with Km values of 53.1 +/- 6.7 microm and 54.6 +/- 6.7 microm, for phosphite and NAD, respectively. Vmax and kcat were determined to be 12.2 +/- 0.3 micromol x min(-1) x mg(-1) and 440 min(-1). NADP can substitute poorly for NAD; however, none of the numerous compounds examined were able to substitute for phosphite. Initial rate studies in the absence or presence of products and in the presence of the dead end inhibitor sulfite are most consistent with a sequential ordered mechanism for the PtxD reaction, with NAD binding first and NADH being released last. Amino acid sequence comparisons place PtxD as a new member of the d-2-hydroxyacid NAD-dependent dehydrogenases, the only one to have an inorganic substrate. To our knowledge, this is the first detailed biochemical study on an enzyme capable of direct oxidation of a reduced phosphorus compound.  相似文献   

9.
10.
A total of 48 strains representing the seven Pseudomonas stutzeri genomovars (DNA/DNA homology groups) were studied for cellular fatty acid composition, physiological characteristics and protein profiles. All strains were found to be homogeneous with respect to their fatty acid patterns. Numerical analysis of physiological properties demonstrated a considerable phenotypic heterogeneity within the genomovars. Characterization of the individual genomic groups on the basis of biochemical tests was not possible. In a numerical study of cellular protein patterns, two main clusters were obtained, one representing genomovars 1, 6 and 7 characterized by a high G + C content (mean value > 64 mol%), the other representing genomovars 2, 3, 4 and 5 with a low G + G content (< 64 mol%). The standardized cellular protein patterns have potential for differentiation of the genomic groupings within the species Ps. stutzeri as currently circumscribed.  相似文献   

11.
The cephalosporinase gene, cpa, which codes for an inducible class I chromosomal beta-lactamase in Enterobacter cloacae was cloned on a fragment of 6.05 kilobase pairs inserted into plasmid pACYC184 and transferred into Escherichia coli HB101 recipient cells. The constructed hybrid plasmid, designated pGGQ101, carried a genomic fragment which retained its parental inducibility characteristics, although its expression level in transformed E. coli cells fell to 40-65% of its initial level in E. cloacae. The localization of the cpa gene on pGGQ101 plasmid was determined by Bal31 exonuclease deletion mapping and further confirmed by subcloning HindIII-AvaI restriction fragment on pMB9 plasmid vector. Labeling with [35S]methionine of pGGQ101 specified proteins in a minicell system showed that six or seven proteins are encoded by the insert. Two proteins with apparent molecular mass of 42 000 and 39 500 daltons, respectively, most probably represent the premature and mature cephalosporinase forms.  相似文献   

12.
The physiological role of NahW, the second salicylate hydroxylase of Pseudomonas stutzeri AN10, has been analysed by gene mutation and further complementation. When grown on naphthalene as a unique carbon and energy source, the nahW mutant showed a strong decrease in salicylate hydroxylase activity when compared with the wild-type strain, exhibited lower specific growth rates and accumulated salicylate in culture supernatants. Similarly, lower specific growth rates and salicylate accumulation were observed for the nahW mutant when growth on naphthalene supplemented with succinate or pyruvate. When P. stutzeri AN10 was grown in Luria–Bertani medium in the presence of salicylate, or was cultivated on minimal medium supplemented with salicylate as a unique carbon and energy source, an increase in the lag phase and a decrease in the specific growth rate were observed on increasing the salicylate concentrations, suggesting a plausible toxic effect. This toxic effect of salicylate was much more evident for the nahW mutant than for the wild-type strain. Complementation of the nahW mutant restored all growth parameters. These results indicate that NahW may have two functions in P. stutzeri AN10: (1) to improve its capacity to degrade naphthalene and (2) effectively convert the salicylate produced during naphthalene degradation to tricarboxylic acid cycle intermediates, preventing its toxic effect.  相似文献   

13.
Pseudomonas stutzeri AN10 (CCUG 29243) can be considered a model strain for aerobic naphthalene degradation. We report the complete genome sequence of this bacterium. Its 4.71-Mb chromosome provides insights into other biodegradative capabilities of strain AN10 (i.e., benzoate catabolism) and suggests a high number of horizontal gene transfer events.  相似文献   

14.
15.
《Anaerobe》2009,15(4):108-115
Bacterial strain QZ1 was isolated from sludge of anoxic sulfide-oxidizing (ASO) reactor. Based on 16S rDNA sequence analysis and morphological characteristics, the isolate was identified as Pseudomonas stutzeri. The isolate was found to be a facultative chemolithotroph, using sulfide as electron donor and nitrite as electron acceptor. The strain QZ1 produced sulfate as the major product of sulfide oxidation, depending on the initial sulfide and nitrite concentrations. The isolate was capable of growth under strictly autotrophic conditions. The growth and substrate removal of Pseudomonas stutzeri QZ1 were optimal at an initial pH of 7.5–8.0 at 30 °C. The specific growth rate (μ) was found as 0.035 h−1 with a doubling time of 21.5 h. For isolate QZ1, the EC50 values both for sulfide and nitrite were found to be 335.95 mg S L−1 and 512.38 mg N L−1, respectively, showing that the sulfide oxidation into sulfate by Pseudomonas stutzeri QZ1 was badly affected beyond these substrate concentrations.  相似文献   

16.
A novel insertion sequence (IS), ISPst9, from Pseudomonas stutzeri AN10 was cloned and characterized. ISPst9 is a typical bacterial IS, consisting of a 2472-bp element flanked by 24-bp perfect inverted repeats that generates 8-bp AT-rich target duplications upon insertion. The sequence also contains a gene that encodes an active transposase (TnpA) with significant amino acid identity to members of the ISL3 family. Southern blot analysis of digested genomic DNA of strain AN10 and its 4-chlorosalicylate-degrading derivative strain AN142 demonstrated that native ISPst9 transposes in multiple copies, with one of them responsible for the nahH insertional inactivation observed in strain AN142. Precise excision of ISPst9 yielded NahH+ revertants of AN142 at high frequencies (up to 10-6). In vivo transposition, mainly in multiple copies, of an ISPst9 derivative containing a KmR cassette cloned into a suicide vector was also demonstrated. Hybridization experiments carried out with different strains of P. stutzeri and with 292 phylogenetically distinct environmental isolates suggested that the presence of an ISPst9-like IS occurs in diverse bacteria together with the presence of aromatic hydrocarbon-degrading determinants.  相似文献   

17.
Luminescent strains of Pseudomonas fluorescens 10586 were constructed in which luciferase production was constitutive by introduction of Vibrio fischeri luxABE genes on the chromosome and on a multicopy plasmid. Light production in liquid batch culture was directly proportional to biomass concentration during exponential growth and enabled detection by luminometry of 1.7 × 103 and 8.9 × 104 cells/ml for the plasmid and chromosomally marked strains, respectively. Luminescent colonies of both strains were detectable by eye, enabling viable cell enumeration on solid media against a background of non-luminescent strains. Following inoculation into sterile and non-sterile soil lower levels of detection were increased but detection of 8.1–59 × 103and 2.2–30 × 103 cells per g of soil was possible for plasmid and chromosomally marked strains. Maximum specific growth rate in liquid culture was unaffected by introduction of lux marker genes on the chromosome, but was reduced in the plasmid marked strain. The chromosomally encoded marker was stable in both liquid culture and in soil, but the plasmid was unstable during continuous subculturing in liquid medium and during growth in soil. The chromosomally encoded luminescence-marker system therefore provides a convenient, non-extractive technique for quantification of genetically modified soil microbial inocula.  相似文献   

18.
2-haloacid dehalogenases are enzymes that are capable of degrading 2-haloacid compounds. These enzymes are produced by bacteria, but so far they have only been purified and characterized from terrestrial bacteria. The present study describes the purification and characterization of 2-haloacid dehalogenase from the marine bacterium Pseudomonas stutzeri DEH130. P. Stutzeri DEH130 contained two kinds of 2-haloacid dehalogenase (designated as Dehalogenase I and Dehalogenase II) as detected in the crude cell extract after ammonium sulfate fractionation. Both enzymes appeared to exhibit stereo-specificity with respect to substrate. Dehalogenase I was a 109.9-kDa enzyme that preferentially utilized D-2-chloropropropionate and had optimum activity at pH 7.5. Dehalogenase II, which preferentially utilized L-2-chloropropionate, was further purified by ion-exchange chromatography and gel filtration. Purified Dehalogenase II appeared to be a dimeric enzyme with a subunit of 26.0-kDa. It had maximum activity at pH 10.0 and a temperature of 40 °C. Its activity was not inhibited by DTT and EDTA, but strongly inhibited by Cu2+, Zn2+, and Co2+. The K m and V max for L-2-chloropropionate were 0.3 mM and 23.8 μmol/min/mg, respectively. Its substrate specificity was limited to short chain mono-substituted 2-halocarboxylic acids, with no activity detected toward fluoropropionate and monoiodoacetate. This is the first report on the purification and characterization of 2-haloacid dehalogenase from a marine bacterium.  相似文献   

19.
A silver-resistant strain of Pseudomonas stutzeri was isolated from a silver mine. It harbored three plasmids, the largest of which (pKK1; molecular weight, 49.4 X 10(6)) specified silver resistance. Plasmid pKK1 was apparently nonconjugative but could be transferred to Pseudomonas putida by mobilization with plasmid R68.45.  相似文献   

20.
An l-asparaginase produced by Pseudomonas stutzeri MB-405 was isolated and characterized. After initial ammonium sulfate fractionation, the enzyme was purified by consecutive column chromatography on Sephadex G-100, Ca-hydroxylapatite, and DEAE-Sephadex A-50. The 665.5-fold purified enzyme thus obtained has the specific activity of 732.3 units mg protein-1 with an overall recovery of 27.2%. The apparent M r of the enzyme under nondenaturing and denaturing conditions was 34 kDa and 33 kDa respectively, and the isoelectric point was 6.38±0.02. It displayed optimum activity at pH 9.0 and 37°C. The enzyme was very specific for l-asparagine and did not hydrolyze L-glutaminate. The K m of the l-asparaginase was found to be 1.45×10-4 m towards l-asparagine and was competitively inhibited by 5-diazo-4-oxo-l-norvaline (DONV) with a K i of 0.03mm. Metal ions such as Mn2+, Zn2+, Hg2+, Fe3+, Ni2+, and Cd2+ potentially inhibited the enzyme activity. The activity was enhanced in the presence of thiol-protecting reagents such as DTT, 2-ME, and glutathione (reduced), but inhibited by PCMB and iodoacetamide. The tumor inhibition study with Dalton's lymphoma tumor cells in vivo indicated that this enzyme possesses antitumor properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号