首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
A mutant of Bacillus licheniformis (BLU166) sensitive to its own antibiotic bacitracin was isolated and the mutation bcr-l was mapped close to the bacitracin synthetase genes. The sensitivity was shown to be specific for bacitracin. Two further bacitracin-sensitive strains were constructed, one (BLU171) with normal ability to synthesize bacitracin, and one (BLU170) a bacitracin non-producer. In addition to an increased sensitivity of growing cells to bacitracin, sporulation of the mutant strain BLU171 was self-inhibited by bacitracin. It is concluded that (1) there might exist at least two levels of resistance to bacitracin; (2) mutation bcr-1 affects a 'structural' component, which may protect the sensitive reaction of cell-wall biosynthesis; (3) sporulation is affected to a greater extent by bacitracin than vegetative growth; and (4) synthesis of bacitracin is independent of the presence of this resistance mechanism since the sensitive mutant produces similar amounts of the antibiotic to the wild-type strain.  相似文献   

2.
A A Lukin  A N Rozov 《Genetika》1983,19(3):509-511
The synthesis of the antibiotic bacitracin in lysogenic and nonlysogenic strains of Bacillus licheniformis 1001 and ATCC10716 has been studied. The antibiotic activity was shown to be about 20% less in lysogens, as compared to nonlysogens. However, the level of bacitracin production was completely restored when temperate bacteriophages BL20 and LP52 were reintroduced into the nonlysogenic strains by virtue of genetic transformation with DNA from lysogenic strains or by transduction with LP52. This may indicate that both phages take part in control of the synthesis of bacitracin. For the time being, the mechanism of regulation is not known. It is likely to be either direct (provided that prophage DNA contains "bacitracin" genes), or indirect.  相似文献   

3.
The effect of the culture medium composition on the bacitracin synthesis and sporulation in Bacillus licheniformis 28 KA was being studied. During the producer's growth on a medium with tripton a biphasic pattern of the process was observed, i.e. a rapid growth of the bacterial biomass was accompanied by the production of insignificant amounts of the antibiotic. The maximum efficiency of the antibiotic synthesis coincides with the end of the exponential growth phase and the onset of sporification. The efficiency of sporification amounts up to 95% when the above mentioned medium is used. The substitution of glutamate for trypton results in a dramatic deceleration of the bacterial growth and biomass accumulation, and the process of the antibiotic biosynthesis ceases to be biphasic, i. e. the antibiotic is synthesized during the trophophase. Under the conditions when the antibiotic production drops to zero by the middle of the exponential growth phase, sporulation is virtually suppressed.  相似文献   

4.
Cultures of Bacillus subtilis were treated during sporulation with antibiotics (bacitracin and vancomycin) that affect peptidoglycan synthesis. The cells were resistant to the effects of the antibiotics only when the drugs were added about 2 h after the beginning of sporulation. This was about 1 h later than the escape time of a temperature-sensitive sporulation mutant that is unable to complete prespore septation. Similar experiments were done with a mutant temperature sensitive for peptidoglycan synthesis. This showed an escape curve similar to that shown by the antibiotics. When sporulating cells were treated with antibiotics, they produced alkaline phosphatase earlier than normal. Enzyme production was unaffected by inhibition of deoxyribonucleic acid synthesis but was inhibited by chloramphenicol. Sporulation mutants that are unable to make alkaline phosphatase under normal conditions were able to make it in the presence of bacitracin. The alkaline phosphatase made under these conditions was under "sporulation-type" control since its synthesis was repressible by casein hydrolysate and unaffected by inorganic phosphate. When cells were treated with bacitracin in the growth medium as well as in the sporulation medium, alkaline phosphatase synthesis was at the same level as in an untreated control. A number of other antibiotics and surfactants were tested for the ability to cause premature production of the phosphatase of those tested, only taurodeoxycholate whowed this behavior. Moreover, incubation of cells with taurodeoxycholate in the growth medium as well as in the sporulation medium prevented premature enzyme production.  相似文献   

5.
During the sporulation process of Saccharomyces cerevisiae, meiotic progression is accompanied by de novo formation of the prospore membrane inside the cell. However, it remains to be determined whether certain species of lipids are required for spore formation in yeast. In this study, we analyzed the requirement of the synthesis of phosphatidylethanolamine (PE), phosphatidylcholine (PC), and ergosterol for spore formation using strains in which the synthesis of these lipids can be controlled. When synthesis of PE and PC was repressed, sporulation efficiency decreased. This suggests that synthesis of these phospholipids is vital to proper sporulation. In addition, sporulation was also impaired in cells with a lowered sterol content, raising the possibility that sterol content is also important for spore formation.  相似文献   

6.
During the sporulation process of Saccharomyces cerevisiae, meiotic progression is accompanied by de novo formation of the prospore membrane inside the cell. However, it remains to be determined whether certain species of lipids are required for spore formation in yeast. In this study, we analyzed the requirement of the synthesis of phosphatidylethanolamine (PE), phosphatidylcholine (PC), and ergosterol for spore formation using strains in which the synthesis of these lipids can be controlled. When synthesis of PE and PC was repressed, sporulation efficiency decreased. This suggests that synthesis of these phospholipids is vital to proper sporulation. In addition, sporulation was also impaired in cells with a lowered sterol content, raising the possibility that sterol content is also important for spore formation.  相似文献   

7.
A A Lukin  V I Korolev 《Antibiotiki》1979,24(3):182-185
Sporulation and antibiotic production, as well as the effect of exogenic antibacterial substances on bacterial sporogenesis were studied in various strains of Bac. pumilus and Bac. pumilus and Bac. subtilis. The bacteria were grown on a solid sporulation medium with and without the antibiotics. After 5-day incubation the presence of refractyl spores was determined with a phase-contrast method. It was found that in the strains of Bac. pumilus producing antibacterial substances the sporulation was normal. The loss of the capacity for synthesizing such substances resulted in asporegenicity or oligosporogenicity. This allowed a conclusion on existence of phenomenological connection between sporulation and antibiotic production. The study of the antibiotic effect on bacterial sporogenesis showed negative results which are discussed in the paper along two directions: (1) the antibiotics did not probably participate in regulation of the bacteria cell differentiation, (2) the antibiotics regulated the bacterial sporogenesis though their effect was not as yet detected because of methodical difficulties. Therefore, the problem of the antibiotic participation in regulation of sporulation in Bac. pumilus and Bac. subtilis remains open.  相似文献   

8.
Bacillus subtilis Marburg was found to produce an appreciable amount of an antibiotic in a synthetic medium. Antibiotic activity was produced in parallel with cell growth, and production stopped at the end of exponential growth. When the synthetic medium was supplemented with a small amount of Casamino acids, however, antibiotic was made only at the end of growth and in lesser amounts. The ability of cells to produce the antibiotic increased when stringent (rel+ = wild-type) cells underwent a partial stringent response. These conditions also initiated extensive sporulation. An isogenic relaxed (rel) strain produced little antibiotic activity, which decreased under partial amino acid deprivation. In rel+ cells, the addition of a low concentration of chloramphenicol, which reduces ppGpp synthesis, also reduced antibiotic synthesis in both normal and amino acid-starved bacteria, without appreciably affecting their growth rate. Guanosine starvation of a gua mutant initiated sporulation, but decreased antibiotic production. The results show that the stringent response initiates both sporulation (differentiation) and antibiotic production (secondary metabolism), but by different mechanisms. It appears that sporulation results from a decrease of GTP, whereas antibiotic synthesis results from a different effect of the stringent response.  相似文献   

9.
Bacitracin is a peptide antibiotic produced by several Bacillus licheniformis strains that is most active against other Gram-positive microorganisms, but not against the producer strain itself. Recently, heterologous expression of the bacitracin resistance mediating BcrABC transporter in Bacillus subtilis and Escherichia coli was described. In this study we could determine that the transporter encoding bcrABC genes are localized about 3 kb downstream of the 44-kb bacitracin biosynthetic operon bacABC. Between the bac operon and the bcrABC genes two orfs, designated bacR and bacS, were identified. They code for proteins with high homology to regulator and sensor proteins of two-component systems. A disruption mutant of the bacRS genes was constructed. While the mutant displayed no effects on the bacitracin production it exhibited highly increased bacitracin sensitivity compared to the wild-type strain. Western blot analysis of the expression of BcrA, the ATP-binding cassette of the transporter, showed in the wild-type a moderate BcrA induction in late stationary cells that accumulate bacitracin, whereas in the bacRS mutant cells the BcrA expression was constitutive. A comparison of bacitracin stressed and nonstressed wild-type cells in Western blot analysis revealed increasing amounts of BcrA and a decrease in BacR in the stressed cells. From these findings we infer that BacR acts as a negative regulator for controlling the expression of the bcrABC transporter genes.  相似文献   

10.
Bacillomycin L is produced by Bacillus subtilis NCIB 8872 in the stationary phase; it is excreted into the culture medium, without prior accumulation in the bacterial cells. The production of bacillomycin L is largely dependent on the composition of the culture medium. The action of specific inhibitors of sporulation, netropsin and diethyl malonate, on antibiotic synthesis is dependent on the composition of the culture medium. Although they occurred at the same time, there appears to be no direct correlation between sporulation and antibiotic synthesis.  相似文献   

11.
Production of bacitracin by Bac. licheniformis 1001 and its spontaneous autolysin resistant variants was studied. It was found that the antibiotic activity of some variants was 1.5--2 times higher than that of the initial strain. No differences in the activity of serine exoprotease in the initial strain and resistant variants were observed. The latter variants lost their resistance to autolysis in 2--3 subcultures on solid and liquid nutrient media. their antibiotic activity in these cases decreased to the control level. The study indicates that there is a phenomenologic relation between the autolytic and antibiotic activities of Bac. licheniformis. The nature of the relation is not known yet. Possibly, it is due to changes in the specific metabolic steps connected with regulation of bacitracin synthesis.  相似文献   

12.
Four representative species from three genera of gram-negative bacteria that secrete exopolysaccharides acquired resistance to the antibiotic bacitracin by stopping synthesis of the exopolysaccharide. Xanthomonas campestris, Sphingomonas strains S-88 and NW11, and Escherichia coli K-12 secrete xanthan gum, sphingans S-88 and NW11, and colanic acid, respectively. The gumD gene in X. campestris is required to attach glucose-P to C55-isoprenyl phosphate, the first step in the assembly of xanthan. A recombinant plasmid carrying the gumD gene of X. campestris restored polysaccharide synthesis to bacitracin-resistant exopolysaccharide-negative mutants of X. campestris and Sphingomonas strains. Similarly, a newly cloned gene (spsB) from strain S-88 restored xanthan synthesis to the same X. campestris mutants. However, the intergeneric complementation did not extend to mutants of E. coli that were both resistant to bacitracin and nonproducers of colanic acid. The genetic results also suggest mechanisms for assembling the sphingans which have commercial potential as gelling and viscosifying agents.  相似文献   

13.
The action of a sporulation-specific seryl protease on antibiotic-free extracts of Bacillus licheniformis cells yields a peptide that is identified as bacitracin by its biological activity, its spectral properties, and its comigration with genuine bacitracin in both paper and thin-layer chromatography. During proteolysis, a chemical structure is generated with the spectral properties of a delta-2 thiazoline ring. The yield in vitro, 4 microgram of bacitracin per mg of protein, is less than the maximal yield from sporulating cells, 75 microgram of bacitracin per mg of cell protein, but is a linear function of the amount of protein in the reaction system. Approximately 30% of the protein yielding the antibiotic is ribosomal associated, and only 25% of that amount can be removed by washing with 1 M NH4Cl. The substrate protein is a constant fraction of the cell protein throughout exponential growth and very early sporulation stages of culture development.  相似文献   

14.
The induction and localization of tyrocidine-synthesizing enzymes is shown to be parallel, during growth of Bacillus brevis (ATCC 8185, American Type Culture Collection, Rockville, Md.), with the induction of uptake of constitutive amino acids and of components of pantetheine, a coenzyme of tyrocidine synthesis. Antibiotic synthesis appears at the end of logarithmic growth when the first soluble enzymes may be obtained from homogenates. During this period, binding proteins for metabolite uptake were isolated by intensive sonication which, when studied by chromatography, were identified by the appearance of low molecular weight fractions binding the radioactively marked metabolites; their induction was prevented by addition of rifampicin. The major purpose of this study was a comparison of antibiotic production and sporulation, the progress of which was followed by electron microscopy. The onset of tyrocidine synthesis and metabolite uptake coincided with the appearance of septum formation indicating that sporulation had progressed to stage II. With the progress of spore encapsulation, the tyrocidine production migrated from the soluble fraction into the forespore, terminating with the separation of forespores from the sporangium membrane. The resulting concentration of antibiotic in the forespore may indicate its function in sporulation, the nature of which, however, was not explored.  相似文献   

15.
Streptomyces coelicolor produces four known antibiotics. To define genetic elements that regulate antibiotic synthesis, we screened for mutations that visibly blocked synthesis of the two pigmented antibiotics and found that the mutant strains which we recovered were of two classes--double mutants and mutants in which all four antibiotics were blocked. The mutations in these multiply blocked strains define a new locus of S. coelicolor which we have named absA. The genetic location of absA, at 10 o'clock, is distinct from the locations of the antibiotic gene clusters and from other known mutations that affect antibiotic synthesis. The phenotype of the absA mutants suggests that all S. coelicolor antibiotic synthesis genes are subject to a common global regulation that is at least in part distinct from sporulation and that absA is a genetic component of the regulatory mechanism.  相似文献   

16.
Bacitracin is an antibiotic used in rabbit husbandry to control microbial digestive pathologies. Collateral effects on absorption and mucosal development have been reported and these may impact on protein metabolism. This study aims to analyse the effect of the antibiotic on protein synthesis in lactating does because mammary gland metabolism and milk output should provide a sensitive index of any undesirable action of bacitracin. Rates of protein synthesis were measured in mammary gland, liver, intestinal mucosa and muscle of lactating rabbits does by injecting a flooding dose of [(2)H(5)]phenylalanine into the auricular artery of two groups (each n = 8) of New Zealand White does fed different experimental diets. The control group (C) received the basal diet and the bacitracin group (B) ingested the same diet but supplemented with bacitracin (100 mg/kg). Animals received the experimental diet from day 28 of pregnancy until day 26 of lactation when they were slaughtered. Just after birth, litter size was adjusted by cross-fostering either to five or nine pups (four does per dietary treatment). The relative weight of the liver tended to be greater in those females receiving the B diet (27 v. 22.5 g/kg BW; P < 0.07), while diet did not affect mammary gland weight (255.7 ± 10.59 g). Fractional protein synthesis rate (FSR) was higher for intestinal mucosa (duodenum; 51.7% ± 2.09%/day) followed by mammary gland and liver (38.29 ± 2.62%/day and 40.2 ± 1.98%/day, respectively), and the lowest value was observed in muscle (2.92 ± 0.26%/day; P < 0.0001). Bacitracin treatment lowered FSR in the mammary gland by 23% (P = 0.024) and this was independent of litter size. Conversely, FSR in the duodenum was not affected by antibiotic treatment but reduced by 15% (P = 0.021) for the larger litter size.  相似文献   

17.
A fermentor system with an external filtration loop has been developed to control the growth and sporulation of yeast in a single vessel. Excess growth medium, instead of being removed by centrifugation, is removed by filtration and replaced with acetate sporulation medium. The technique did give 80% sporulation after 20 hr, greatly improving the rate and degree of synchrony of sporulation and it also eliminated the contamination hazard of the conventional harvest technique, centrifugation, and resuspension of vegetative cells in sporulation medium. Furthermore it permits proper control of the environmental conditions throughout the growth, exchange, and sporulation phase. In this technique 100% recycle of biomass is achieved without any packing of the cells on the filter. This technique has wide application in the study of industrial fermentation that involves microbial differentiation such as the production of ergot alkaloids, bacitracin, and cephalosporin.  相似文献   

18.
Protoplast regeneration of Amycolatopsis orientalis subsp. eremomycini producing eremomycin leads to the change of cultural and morphological properties as well as synthesis of secondary metabolites. Formation of plus-variants with enchanced antibiotic production was promoted by UV-irradiation of protoplasts. These plus-variants can be successfully used for repeating protoplasting--UV-irradiation of protoplasts with further increasing of the strain productivity. Finally activity of the initial A. orientalis culture was increased 7-8 times. Proposed method is recommended for the improvement of actinomycetes strains producing antibiotics especially in the case of cultures with poor sporulation.  相似文献   

19.
A collection of thermophilic strains of the genus Bacillus was made. The strains were screened for antimicrobial activity. Strains VK2 and VK21 isolated from thermal springs of the Kamchatka Peninsula, and antagonistic to several gram-positive bacterial species were chosen for further investigation of antibiotics produced by them. Restriction analysis of DNA coding for 16S rRNA showed that both strains can be assigned to Bacillus licheniformis. It was shown that the lytic activity of strains VK2 and VK21 was not related to the synthesis of hydrolytic enzymes. The maximum level of antimicrobial activity in the growth medium was found to correspond to the beginning of the stationary growth phase. Addition of manganese sulfate induced sporulation and altered significantly the time course of antibiotic production in both strains. Active metabolites were extracted with n-butanol. They survived boiling for 30 min and were resistant to trypsin and chymotrypsin but were partly hydrolyzed by pronase. They were stable at a pH range of 2.0-9.0.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号