首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is good evidence that the three main compartments of the brain, i.e. extracellular space, neurones and glial cells, change their volume during physiological and pathophysiological neuronal activity. However, there is strikingly little knowledge about the mechanisms underlying such alterations in cell volume. For this purpose, a better understanding of the electrophysiological behavior of the neurones and glial cells during volume changes is necessary. Examples are discussed for which changes in cell volume can be derived from the underlying changes in membrane permeabilities. Volume regulatory mechanisms in the brain have not been described under isotonic conditions. However, a rapid volume regulatory decrease is occurring in cultured glial cells during exposure to hypotonic solutions. In contrast, in these cells no volume regulatory increase was found during superfusion with hypertonic media. On the other hand, the entire brain is able to compensate chronic hypertonic perturbations within hours to days. Interestingly, not only ion fluxes induce cellular volume changes but, in turn, water movements can also influence ion fluxes in both neurones and glial cells. With respect to this it should be considered that volume regulatory membrane processes might not exclusively be activated by changes in transmembranal ion gradient, but also by changes of membrane surface shape. Future studies on cellular mechanisms of volume regulation in the brain should imply a combined use of recent techniques such as computerized video-imaging, radiotracer flux measurements and ion-sensitive microelectrodes in defined cell cultures. Optical monitoring and ion-sensitive microelectrodes should enable measurements of volume changes in identified cellular elements of intact nervous structures such as brain slices.  相似文献   

2.
In honeybees (Apis mellifera), the biogenic amine octopamine has been shown to play a role in associative and non-associative learning and in the division of labour in the hive. Immunohistochemical studies indicate that the ventral unpaired median (VUM) neurones in the suboesophageal ganglion (SOG) are putatively octopaminergic and therefore might be involved in the octopaminergic modulation of behaviour. In contrast to our knowledge about the behavioural effects of octopamine, only one neurone (VUMmx1) has been related to a behavioural effect (the reward function during olfactory learning). In this study, we have investigated suboesophageal VUM neurones with fluorescent dye-tracing techniques and intracellular recordings combined with intracellular staining. Ten different VUM neurones have been found including six VUM neurones innervating neuropile regions of the brain and the SOG exclusively (central VUM neurones) and four VUM neurones with axons in peripheral nerves (peripheral VUM neurones). The central VUM neurones innervate the antennal lobes, the protocerebral lobes (including the lateral horn) and the mushroom body calyces. Of these, a novel mandibular VUM neurone, VUMmd1, exhibits the same branching pattern in the brain as VUMmx1 and responds to sucrose and odours in a similar way. The peripheral VUM neurones innervate the antennal and the mandibular nerves. In addition, we describe one labial unpaired median neurone with a dorsal cell body, DUMlb1. The possible homology between the honeybee VUM neurones and the unpaired median neurones in other insects is discussed. This work was supported by the DFG ME 365/24-2.  相似文献   

3.
Neuronal loss has often been described at post-mortem in the brain neocortex of patients suffering from AIDS. Neuroinvasive strains of HIV infect macrophages, microglial cells and multinucleated giant cells, but not neurones. Processing of the virus by cells of the myelomonocytic lineage yields viral products that, in conjunction with potentially neurotoxic molecules generated by the host, might initiate a complex network of events which lead neurones to death. In particular, the HIV-1 coat glycoprotein, gp120, has been proposed as a likely aetiologic agent of the described neuronal loss because it causes death of neurones in culture. More recently, it has been shown that brain neocortical cell death is caused in rat by intracerebroventricular injection of a recombinant gp120 coat protein, and that this occurs via apoptosis. The latter observation broadens our knowledge in the pathophysiology of the reported neuronal cell loss and opens a new lane of experimental research for the development of novel therapeutic strategies to limit damage to the brain of patients suffering from HIV-associated dementia.  相似文献   

4.
Transient currents occur at rest in cortical neurones that reflect the quantal release of transmitters such as glutamate and gamma-aminobutyric acid (GABA). We found a bimodal amplitude distribution for spontaneously occurring inward currents recorded from mouse pyramidal neurones in situ, in acutely isolated brain slices superfused with picrotoxin. Larger events were blocked by glutamate receptor (AMPA, kainate) antagonists; smaller events were partially inhibited by P2X receptor antagonists suramin and PPADS. The decay of the larger events was selectively prolonged by cyclothiazide. Stimulation of single intracortical axons elicited quantal glutamate-mediated currents and also quantal currents with amplitudes corresponding to the smaller spontaneous inward currents. It is likely that the lower amplitude spontaneous events reflect packaged ATP release. This occurs with a lower probability than that of glutamate, and evokes unitary currents about half the amplitude of those mediated through AMPA receptors. Furthermore, the packets of ATP appear to be released from vesicle in a subset of glutamate-containing terminals.  相似文献   

5.
In situ hybridisation studies using a digoxigenin-labelled DNA probe encoding the Leu-callatostatin prohormone of the blowflies Calliphora vomitoria and Lucilia cuprina have revealed a variety of neurones in the brain and thoracico-abdominal ganglion, peripheral neurosecretory neurones, and endocrine cells of the midgut. With two exceptions, the hybridising cells are the same as those previously identified in immunocytochemical studies of sections and whole-mounts using Leu-callatostatin COOH-terminal-specific antisera. Within the brain and suboesophageal ganglion, there is a variety of neurones ranging from a single pair of large cells situated in the dorsal protocerebrum, to the several pairs of neurones in the tritocerebrum, some of which, in immunocytochemical preparations, can be seen to project via axons in the cervical connective to the thoracico-abdominal ganglion. In the medulla of the optic lobes, numerous small interneurones hybridise with the probe, as do clusters of similar-sized neurones close to the roots of the ocellar nerves. These results indicate that the Leu-callatostatin neuropeptides of the brain play a variety of roles in neurotransmission and neuromodulation. There are only three pairs of Leu-callatostatin-immunoreactive neurones in the thoracico-abdominal ganglion, at least two pairs of which project axons along the median abdominal nerve to provide extensive innervation of the hindgut. The Leu-callatostatin peripheral neurosecretory cells are located in close association with both nerve and muscle fibres in the thorax. In addition to neuronal Leu-callatostatin, the presence of the peptide and its mRNA has been demonstrated in endocrine cells in the posterior part of the midgut. These observations provide an example of a named brain/gut peptide in an insect.  相似文献   

6.
Single-nucleotide polymorphisms in the first intron of the ubiquitously expressed FTO gene are associated with obesity. Although the physiological functions of FTO remain unclear, food intake is often altered when Fto expression levels are manipulated. Furthermore, deletion of FTO from neurones alone has a similar effect on food intake to deletion of FTO in all tissues. These results indicate that FTO expression in the brain is particularly important. Considerable focus has been placed on the dynamic regulation of Fto mRNA expression in the hypothalamus after short-term (16-48 hour) fasting, but results have been controversial. There are no studies that quantify FTO protein levels across the brain, and assess its alteration following short-term fasting. Using immunohistochemistry, we found that FTO protein is widely expressed in mouse brain, and present in the majority of neurones. Using quantitative Western blotting and RT-qPCR we show that FTO protein and mRNA levels in the hypothalamus, cerebellum and rostral brain are relatively uniform, and levels in the brain are higher than in skeletal muscles of the lower limbs. Fasting for 18 hours does not alter the expression pattern, or levels, of FTO protein and mRNA. We further show that the majority of POMC neurones, which are critically involved in food intake regulation, also express FTO, but that the percentage of FTO-positive POMC neurones is not altered by fasting. In summary, we find no evidence that Fto/FTO expression is regulated by short-term (18-hour) fasting. Thus, it is unlikely that the hunger and increased post-fasting food intake caused by such food deprivation is driven by alterations in Fto/FTO expression. The widespread expression of FTO in neurones also suggests that physiological studies of this protein should not be limited to the hypothalamus.  相似文献   

7.
Astroglial cells were long considered to serve merely as the structural and metabolic supporting cast and scenery against which the shining neurones perform their illustrious duties. Relatively recent evidence, however, indicates that astrocytes are intimately involved in many of the brain's functions. Astrocytes possess a diverse assortment of ionotropic transmitter receptors, which enable these glial cells to respond to many of the same signals that act on neurones. Ionotropic receptors mediate neurone-driven signals to astroglial cells in various brain areas including neocortex, hippocampus and cerebellum. Activation of ionotropic receptors trigger rapid signalling events in astroglia; these events, represented by local Ca2+ or Na+ signals provide the mechanism for fast neuronal-glial signalling at the synaptic level. Since astrocytes can detect chemical transmitters that are released from neurones and can release their own extracellular signals, gliotransmitters, they are intricately involved in homocellular and heterocellular signalling mechanisms in the nervous system. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

8.
According to the astrocyte-neurone-lactate shuttle (ANLS) hypothesis, activated neurones use lactate released by astrocytes as their energy substrate. The hypothesis, based largely on in vitro experiments, postulates that lactate is derived from the uptake by astrocytes of synaptically released glutamate. The time course of changes in lactate, derived from in vivo experiments, is incompatible with the ANLS model. Neuronal activation leads to a delayed rise in lactate followed by a slow decay, which greatly outlasts the period of neuronal activation. The present review proposes that the uptake of stimulated glutamate release from astrocytes, rather than synaptically released glutamate, is the source of lactate released following neuronal activation. This rise in lactate occurs too late to provide energy for neuronal activity. Furthermore, there is no evidence that lactate undergoes local oxidative phosphorylation. In conclusion, under physiological conditions, there is no evidence that lactate is a significant source of energy for activated neurones.  相似文献   

9.
Two major neural cell types, glia, astrocytes in particular, and neurones can release chemical transmitters that act as soluble signalling compounds for intercellular communication. Exocytosis, a process which depends on an increase in cytosolic Ca2+ levels, represents a common denominator for release of neurotransmitters, stored in secretory vesicles, from these neural cells. While neurones rely predominately on the immediate entry of Ca2+ from the extracellular space to the cytosol in this process, astrocytes support their cytosolic Ca2+ increases by appropriating this ion from the intracellular endoplasmic reticulum store and extracellular space. Additionally, astrocytes can release neurotransmitters using a variety of non-vesicular pathways which are mediated by an assortment of plasmalemmal channels and transporters. Once a neuronal and/or astrocytic neurotransmitter is released into the extracellular space, it can activate plasma membrane neurotransmitter receptors on neural cells, causing autocrine and/or paracrine signalling. Moreover, chemical transmission is essential not only for homocellular, but also for heterocellular bi-directional communication in the brain. Further detailed understanding of chemical transmission will aid our comprehension of the brain (dys)function in heath and disease.  相似文献   

10.
Sex differences in the regulation of embryonic brain aromatase   总被引:2,自引:0,他引:2  
Oestrogen formed from androgen by aromatization plays a critical role in the sexual differentiation of the male brain and behaviour. A question which has still to be answered is what regulates the gender-specific changes in aromatase activity forming oestrogen during sensitive periods of brain growth. Using a primary cell culture technique and sexed embryos, we have shown that in the fetal mouse brain, oestrogen formation in the male is neuronal rather than glial and aromatase activity is regionally localized, being higher in the hypothalamus than in the cortex. The aromatase activity measured from cells in culture has the same enzyme binding affinity (apparent Km 40 nM) as intact brain samples. Neurones developing in the embryonic male brain (embryonic day (ED) 15) contain higher aromatase activity (Vmax, 895 fmol/h/mg protein) than the female (Vmax, 604). Although a sex difference exists at early stages of embryonic development (ED 13), the embryonic aromatase system is regulated by steroids later in fetal development. The developing aromatase-containing neuroblasts probably form processes which connect to other aromatase neurones. Immunoreactive staining with an aromatase polyclonal antibody identifies an increase in numbers of aromatase-immunoreactive hypothalamic neuronal cell bodies following testosterone treatment. Testosterone treatment also causes both stimulation of neurite growth and branching as well as functional maturation of aromatase neurones. In particular, there is an increase in aromatase activity per neurone as well as a dramatic increase in the number of neurones expressing the enzyme. Both the functional and morphological changes depend on androgen receptor stimulation for several days in vitro. This conclusion is supported by colocalization studies which reveal a high number of fetal hypothalamic aromatase neurones co-expressing androgen receptor. We conclude that testosterone influences the growth of male hypothalamic neurones containing aromatase at a sensitive period of brain development. Endogenous steroid inhibitors of aromatase, probably formed within the neuroglia, also play a role in the control of oestrogen production. An endogenous 5-reduced metabolite of testosterone, 5-androstanedione, is almost as potent in inhibiting neuronal hypothalamic aromatase activity (Ki = 23 nM) as the synthetic non-steroidal inhibitors such as the imidazole, fadrozole, and the triazoles, arimidex and letrozole. It is clear that the oestrogen-forming capacity of the male hypothalamus has the special characteristics and plasticity of regulation which could affect brain differentiation at specific steroid-sensitive stages in ontogeny.  相似文献   

11.
It is well known that the presence of albumin within the brain and the CSF is developmentally regulated. However, the physiological relevance of this phenomenon is not well established. We have previously shown that albumin specifically increases the flux of glucose and lactate through the pyruvate dehydrogenase reaction in astrocytes. Here we show that, in neurones, albumin also increases the oxidation of glucose and lactate through the pyruvate dehydrogenase-catalysed reaction, the final purpose of this being the synthesis of glutamate. Thus, in neurones, the presence of albumin strongly increased the synthesis and release of glutamate to the extracellular medium. Our results also suggest that glutamate release caused by albumin is designed to promote neuronal survival. Thus, under culture conditions in which neurones die by apoptosis, the presence of albumin promoted neuronal survival and maintained the differentiation programme of these cells, as judged by the expression of the axonal protein, GAP-43. The effect of albumin on neuronal survival was counteracted by the presence of DNQX, an antagonist of non-NMDA-glutamate receptors, suggesting that the glutamate synthesized and released due to the presence of albumin is responsible for neuronal survival. In addition, the effect of albumin seemed to depend on the activity of the NGF receptor, TrkA, suggesting that the glutamate synthesized and released due to the presence of albumin promotes neuronal survival through the activity of TrkA.  相似文献   

12.
Brain glycogen re-awakened   总被引:8,自引:0,他引:8  
The mammalian brain contains glycogen, which is located predominantly in astrocytes, but its function is unclear. A principal role for brain glycogen as an energy reserve, analogous to its role in the periphery, had been universally dismissed based on its relatively low concentration, an assumption apparently reinforced by the limited duration that the brain can function in the absence of glucose. However, during insulin-induced hypoglycaemia, where brain glucose availability is limited, glycogen content falls first in areas with the highest metabolic rate, suggesting that glycogen provides fuel to support brain function during pathological hypoglycaemia. General anaesthesia results in elevated brain glycogen suggesting quiescent neurones allow glycogen accumulation, and as long ago as the 1950s it was shown that brain glycogen accumulates during sleep, is mobilized upon waking, and that sleep deprivation results in region-specific decreases in brain glycogen, implying a supportive functional role for brain glycogen in the conscious, awake brain. Interest in brain glycogen has recently been re-awakened by the first continuous in vivo measurements using NMR spectroscopy, by the general acceptance of metabolic coupling between glia and neurones involving intercellular transfer of energy substrate, and by studies supporting a prominent physiological role for brain glycogen as a provider of supplemental energy substrate during periods of increased tissue energy demand, when ambient normoglycaemic glucose is unable to meet immediate energy requirements.  相似文献   

13.
1. The subcellular distributions of glutamate decarboxylase and aspartate transaminase were studied in rat and guinea-pig brain. 2. Glutamate decarboxylase is localized in the synaptosome fraction. The mean density of the particles containing the enzyme is slightly greater than those derived from cholinergic neurones, though overlap is substantial. 3. The enzyme is readily released from synaptosomes by hypo-osmotic treatment, but in the presence of Ca(2+), Na(+) and K(+) it sediments with particulate material. 4. The release and binding of the enzyme to membrane fractions by Ca(2+) were investigated. 5. Aspartate transaminase is present in brain as two isoenzymes with different kinetic properties. One isoenzyme is associated with the cytoplasm and the other with mitochondria.  相似文献   

14.
The anatomical and cellular distribution of non-haem iron, ferritin, transferrin, and the transferrin receptor have been studied in postmortem human brain and these studies, together with data on the uptake and transport of labeled iron, by the rat brain, have been used to elucidate the role of iron and other metal ions in certain neurological disorders. High levels of non-haem iron, mainly in the form of ferritin, are found in the extrapyramidal system, associated predominantly with glial cells. In contrast to non-haem iron, the density of transferrin receptors is highest in cortical and brainstem structures and appears to relate to the iron requirement of neurones for mitochondrial respiratory activity. Transferrin is synthesized within the brain by oligodendrocytes and the choroid plexus, and is present in neurones, consistent with receptor mediated uptake. The uptake of iron into the brain appears to be by a two-stage process involving initial deposition of iron in the brain capillary endothelium by serum transferrin, and subsequent transfer of iron to brain-derived transferrin and transport within the brain to sites with a high transferrin receptor density. A second, as yet unidentified mechanism, may be involved in the transfer of iron from neurones possessing transferrin receptors to sites of storage in glial cells in the extrapyramidal system. The distribution of iron and the transferrin receptor may be of relevance to iron-induced free radical formation and selective neuronal vulnerability in neurodegenerative disorders.  相似文献   

15.
In vivo studies, serotonine synthesis in the rat fetal brain was inhibited by p-chlorphenylalanine from the 11th to the 20th embryonic day. Serotonine depletion significantly decreased thyrosine hydroxylase content in the neurones of males and females on the 21st embryonic day and in males--on the 35th postnatal day. In vitro, a co-culture of arquate nucleus' and raphe nucleus' embryonic neurones resulted in a sex-specific increase of the thyrosine hydroxylase level in the former neurones. The raphe nucleus' neurones manifested an increased level of serotonine. The findings suggest an activating long-lasting effect of serotonine afferents on the thyrosine hydroxylase expression in differentiating neurones of the arquate nucleus in rats during prenatal ontogenesis.  相似文献   

16.
The neural ganglion of the ascidian Ciona intestinalis regenerates in its entirety within a few weeks of ablation. Here we investigate the role of gonadotropin-releasing hormone-like immunoreactive (GnRH-li) cells in regeneration. Immunocytochemical studies show that in addition to a previously described plexus of GnRH-like neurones located in association with the dorsal strand, the normal adult brain contains GnRH-li neurones. These are predominantly localized to the ventral cortical rind at the posterior of the ganglion. Following ablation, non-process bearing GnRH-li cells appear in the regenerating area within two days. By day 8 post-ablation, process bearing GnRH-li cells are detected close to the regenerating brain. The number of these cells increases at later stages. GnRH-li cells are first detected within the regenerating brain at 14 days post-ablation and their number subsequently increases. These cells are initially concentrated along the ventral surface of the regenerating brain near to the dorsal strand. Double labelling studies with bromodeoxyuridine show that none of the GnRH-li cells are labelled at any stage of regeneration. The data are consistent with a sub-population of the new neurones being derived from GnRH-li neuroblasts born prior to ablation, which migrate from the dorsal strand complex into the regenerating ganglion.  相似文献   

17.
Growth cone fractions isolated from neonatal [postnatal day 3 (P3)] rat forebrain contain GABAergic growth cones as demonstrated by immunofluorescence staining with monospecific antibodies to gamma-aminobutyric acid (GABA). HPLC analysis shows that GABAergic growth cones release this endogenous GABA when stimulated with high K+. Endogenous GABA release is Ca2(+)-independent and, in this respect, similar to that seen previously with [3H]GABA. Isolated growth cone fractions also exhibit a K(+)-stimulated, Ca2(+)-independent release of endogenous taurine. None of the other amino acids shown to be present in isolated growth cone fractions were released, including glutamate, aspartate, and glycine. A population of dissociated cerebral cortical neurones prepared from P1 rat forebrain were GABA-immunoreactive after 1 day in culture. The cell body, neurites, and growth cones of these neurones were all stained with GABA antibodies. At this time in culture, neurones did not stain with either of two antibodies to synaptic vesicle antigens, i.e., p65 and synaptophysin. Growth cones isolated from P3 rat forebrain were also not immunoreactive with these antibodies. After about 8 days in culture, when neurones had established extensive networks of long, varicose axons and elaborately branched dendrites, many neurones and their neurites were immunoreactive for GABA antibodies. At this time in culture, p65 and synaptophysin antibodies did stain neuronal cell bodies and particularly their varicose axons. Dendrites were not stained with synaptic vesicle antibodies. These results suggest that GABAergic neurones synthesize GABA during neurite outgrowth and that GABA is present in, and can be released from, the growth cones of these neurones. The presence of GABA in GABAergic growth cones is not associated with synaptic vesicles, which explains the Ca2+ independency of both endogenous and [3H]GABA release from these growth cones.  相似文献   

18.
The beta-amyloid protein (Abeta) is the major protein component of amyloid plaques found in the Alzheimer brain. Although there is a loss of acetylcholinesterase (AChE) from both cholinergic and non-cholinergic neurones in the brain of Alzheimer patients, the level of AChE is increased around amyloid plaques. Previous studies using P19 cells in culture and transgenic mice which overexpress human Abeta have suggested that this increase may be due to a direct action of Abeta on AChE expression in cells adjacent to amyloid plaques. The aim of the present study was to examine the mechanism by which Abeta increases levels of AChE in primary cortical neurones. Abeta1-42 was more potent than Abeta1-40 in its ability to increase AChE in primary cortical neurones. The increase in AChE was unrelated to the toxic effects of the Abeta peptides. The effect of Abeta1-42 on AChE was blocked by inhibitors of alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) as well as by inhibitors of L- or N-type voltage-dependent calcium channels (VDCCs), whereas agonists of alpha7 nAChRs (choline, nicotine) increased the level of AChE. The results demonstrate that the effect of Abeta1-42 on AChE is due to an agonist effect of Abeta1-42 on the alpha7 nAChR.  相似文献   

19.
A brain specific antiserum was prepared by immunizing rabbits with a crude membrane fraction from 8-day old rat cerebella. In immunofluorescence studies the antiserum labeled the perikarya and processes of cultured cerebellar neurones. In contrast, other cell types, encountered in cerebellar cultures including astrocytes, endothelial cells and fibroblasts, were consistently unstained. The antiserum when used in crossed immunoelectrophoresis with Triton X-100 solubilized brain extracts reacted predominantly with one antigen that could be identified as the D2 protein.This paper is dedicated to Dr. Derek Richter on his seventy-fifth birthday.  相似文献   

20.
γ-Aminobutyric Acid Uptake by Sympathetic Ganglia   总被引:20,自引:0,他引:20  
EXOGENOUS γ-aminobutyric acid (GABA) accumulates against a concentration gradient in isolated mammalian nervous tissue1–3 and mixes with GABA stored in the tissue4. Thus, neurones which use GABA as an inhibitory transmitter might be identified by locating sites of accumulation of radioactively-labelled GABA using autoradiography5–7, assuming that exogenous GABA is only taken up into neurones already containing GABA. A correlation between GABA uptake and endogenous content has been noted in slices from different parts of the brain3 and in different nerve-ending fractions8–10. These experiments, however, do not show whether GABA can be accumulated in nerve tissue totally devoid of “gabanergic” neurones. To test this, we have measured the uptake of GABA by isolated sympathetic ganglia. The principal transmitter in the ganglion is acetylcholine while the postganglionic neurones are mainly adrenergic. By analogy with the brain, the ganglion contains negligible amounts of GABA, glutamic decarboxylase or GABA-transaminase11,12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号