首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TRPV5 and TRPV6 are members of the superfamily of transient receptor potential (TRP) channels and facilitate Ca(2+) influx in a variety of epithelial cells. The activity of these Ca(2+) channels is tightly controlled by the intracellular Ca(2+) concentration in close vicinity to the channel mouth. The molecular mechanism underlying the Ca(2+)-dependent activity of TRPV5/TRPV6 is, however, still unknown. Here, the putative role of calmodulin (CaM) as the Ca(2+) sensor mediating the regulation of channel activity was investigated. Overexpression of Ca(2+)-insensitive CaM mutants (CaM(1234) and CaM(34)) significantly reduced the Ca(2+) as well as the Na(+) current of TRPV6- but not that of TRPV5-expressing HEK293 cells. By combining pull-down assays and co-immunoprecipitations, we demonstrated that CaM binds to both TRPV5 and TRPV6 in a Ca(2+)-dependent fashion. The binding of CaM to TRPV6 was localized to the transmembrane domain (TRPV6(327-577)) and consensus CaM-binding motifs located in the N (1-5-10 motif, TRPV6(88-97)) and C termini (1-8-14 motif, TRPV6(643-656)), suggesting a mechanism of regulation involving multiple interaction sites. Subsequently, chimeric TRPV6/TRPV5 proteins, in which the N and/or C termini of TRPV6 were substituted by that of TRPV5, were co-expressed with CaM(34) in HEK293 cells. Exchanging, the N and/or the C termini of TRPV6 by that of TRPV5 did not affect the CaM(34)-induced reduction of the Ca(2+) and Na(+) currents. These results suggest that CaM positively affects TRPV6 activity upon Ca(2+) binding to EF-hands 3 and 4, located in the high Ca(2+) affinity CaM C terminus, which involves the N and C termini and the transmembrane domain of TRPV6.  相似文献   

2.
In Drosophila photoreceptors the transient receptor potential-like (TRPL), but not the TRP channels undergo light-dependent translocation between the rhabdomere and cell body. Here we studied which of the TRPL channel segments are essential for translocation and why the TRP channels are required for inducing TRPL translocation. We generated transgenic flies expressing chimeric TRP and TRPL proteins that formed functional light-activated channels. Translocation was induced only in chimera containing both the N- and C-terminal segments of TRPL. Using an inactive trp mutation and overexpressing the Na(+)/Ca(2+) exchanger revealed that the essential function of the TRP channels in TRPL translocation is to enhance Ca(2+)-influx. These results indicate that motifs present at both the N and C termini as well as sustained Ca(2+) entry are required for proper channel translocation.  相似文献   

3.
Small conductance Ca(2+)-activated K+ channels (SK channels) couple the membrane potential to fluctuations in intracellular Ca2+ concentration in many types of cells. SK channels are gated by Ca2+ ions via calmodulin that is constitutively bound to the intracellular C terminus of the channels and serves as the Ca2+ sensor. Here we show that, in addition, the cytoplasmic N and C termini of the channel protein form a polyprotein complex with the catalytic and regulatory subunits of protein kinase CK2 and protein phosphatase 2A. Within this complex, CK2 phosphorylates calmodulin at threonine 80, reducing by 5-fold the apparent Ca2+ sensitivity and accelerating channel deactivation. The results show that native SK channels are polyprotein complexes and demonstrate that the balance between kinase and phosphatase activities within the protein complex shapes the hyperpolarizing response mediated by SK channels.  相似文献   

4.
The voltage gated proton channel exists as a dimer, although each protomer has a separate conduction pathway, and when forced to exist as a monomer, most major functions are retained. However, the proton channel protomers appear to interact during gating. Proton channel dimerization is thought to result mainly from coiled-coil interaction of the intracellular C termini. Several types of evidence are discussed that suggest that the dimer conformation may not be static, but is dynamic and can sample different orientations. Zn2+ appears to link the protomers in an orientation from which the channel(s) cannot open. A tandem WT-WT dimer exhibits signs of cooperative gating, indicating that despite the abnormal linkage, the correct orientation for opening can occur. We propose that C terminal interaction functions mainly to tether the protomers together. Comparison of the properties of monomeric and dimeric proton channels speaks against the hypothesis that enhanced gating reflects monomer-dimer interconversion.  相似文献   

5.
Epithelial sodium channels (ENaC) are regulated by various intracellular and extracellular factors including divalent cations. We studied the inhibitory effect and mechanism of external Ni(2+) on cloned mouse alpha-beta-gamma ENaC expressed in Xenopus oocytes. Ni(2+) reduced amiloride-sensitive Na(+) currents of the wild type mouse ENaC in a dose-dependent manner. The Ni(2+) block was fast and partially reversible at low concentrations and irreversible at high concentrations. ENaC inhibition by Ni(2+) was accompanied by moderate inward rectification at concentrations higher than 0.1 mm. ENaC currents were also blocked by the histidine-reactive reagent diethyl pyrocarbonate. Pretreatment of the oocytes with the reagent reduced Ni(2+) inhibition of the remaining current. Mutations at alphaHis(282) and gammaHis(239) located within the extracellular loops significantly decreased Ni(2+) inhibition of ENaC currents. The mutation alphaH282D or double mutations alphaH282R/gammaH239R eliminated Ni(2+) block. All mutations at gammaHis(239) eliminated Ni(2+)-induced inward current rectification. Ni(2+) block was significantly enhanced by introduction of a histidine at alphaArg(280). Lowering extracellular pH to 5.5 and 4.4 decreased or eliminated Ni(2+) block. Although alphaH282C-beta-gamma channels were partially inhibited by the sulfhydryl-reactive reagent [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET), alpha-beta-gamma H239C channels were insensitive to MTSET. From patch clamp studies, Ni(2+) did not affect unitary current but decreased open probability when perfused into the recording pipette. Our results suggest that external Ni(2+) reduces ENaC open probability by binding to a site consisting of alphaHis(282) and gammaHis(239) and that these histidine residues may participate in ENaC gating.  相似文献   

6.
Neuronal voltage-dependent Ca(2+) channels of the N (alpha(1B)) and P/Q (alpha(1A)) type are inhibited by neurotransmitters that activate G(i/o) G proteins; a major part of the inhibition is voltage-dependent, relieved by depolarization, and results from a direct binding of Gbetagamma subunit of G proteins to the channel. Since cardiac and neuronal L-type (alpha(1C)) voltage-dependent Ca(2+) channels are not modulated in this way, they are presumed to lack interaction with Gbetagamma. However, here we demonstrate that both Gbetagamma and calmodulin directly bind to cytosolic N and C termini of the alpha(1C) subunit. Coexpression of Gbetagamma reduces the current via the L-type channels. The inhibition depends on the presence of calmodulin, occurs at basal cellular levels of Ca(2+), and is eliminated by EGTA. The N and C termini of alpha(1C) appear to serve as partially independent but interacting inhibitory gates. Deletion of the N terminus or of the distal half of the C terminus eliminates the inhibitory effect of Gbetagamma. Deletion of the N terminus profoundly impairs the Ca(2+)/calmodulin-dependent inactivation. We propose that Gbetagamma and calmodulin regulate the L-type Ca(2+) channel in a concerted manner via a molecular inhibitory scaffold formed by N and C termini of alpha(1C).  相似文献   

7.
To test the hypothesis that interactions among several putative domains of the ryanodine receptor (RyR) are involved in the regulation of its Ca(2+) release channel, we synthesized several peptides corresponding to selected NH(2)-terminal regions of the RyR. We then examined their effects on ryanodine binding and Ca(2+) release activities of the sarcoplasmic reticulum isolated from skeletal and cardiac muscle. Peptides 1-2s, 1-2c, and 1 enhanced ryanodine binding to cardiac RyR and induced a rapid Ca(2+) release from cardiac SR in a dose-dependent manner. The order of the potency for the activation of the Ca(2+) release channel was 1-2c > 1 > 1-2s. Interestingly, these peptides produced significant activation of the cardiac RyR at near zero or subactivating [Ca(2+)], indicating that the peptides enhanced the Ca(2+) sensitivity of the channel. Peptides 1-2c, 1-2s, and 1 had virtually no effect on skeletal RyR, although occasional and variable extents of activation were observed in ryanodine binding assays performed at 36 degrees C. Peptide 3 affected neither cardiac nor skeletal RyR. We propose that domains 1 and 1-2 of the RyR, to which these activating peptides correspond, would interact with one or more other domains within the RyR (including presumably the Ca(2+)-binding domain) to regulate the Ca(2+) channel.  相似文献   

8.
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry site for active Ca(2+) reabsorption in the kidney. The TRPV5 channel is a member of the TRP family of cation channels, which are composed of four subunits together forming a central pore. Regulation of channel activity is tightly controlled by the intracellular N and C termini. The TRPV5 C terminus regulates channel activity by various mechanisms, but knowledge regarding the role of the N terminus remains scarce. To study the role of the N terminus in TRPV5 regulation, we generated different N-terminal deletion constructs. We found that deletion of the first 32 residues did not affect TRPV5-mediated (45)Ca(2+) uptake, whereas deletion up to residue 34 and 75 abolished channel function. Immunocytochemistry demonstrated that these mutant channels were retained in the endoplasmic reticulum and in contrast to wild-type TRPV5 did not reach the Golgi apparatus, explaining the lack of complex glycosylation of the mutants. A limited amount of mutant channels escaped the endoplasmic reticulum and reached the plasma membrane, as shown by cell surface biotinylation. These channels did not internalize, explaining the reduced but significant amount of these mutant channels at the plasma membrane. Wild-type TRPV5 channels, despite significant plasma membrane internalization, showed higher plasma membrane levels compared with the mutant channels. The assembly into tetramers was not affected by the N-terminal deletions. Thus, the N-terminal residues 34-75 are critical in the formation of a functional TRPV5 channel because the deletion mutants were present at the plasma membrane as tetramers, but lacked channel activity.  相似文献   

9.
Ba(2+) current through the L-type Ca(2+) channel inactivates essentially by voltage-dependent mechanisms with fast and slow kinetics. Here we found that slow inactivation is mediated by an annular determinant composed of hydrophobic amino acids located near the cytoplasmic ends of transmembrane segments S6 of each repeat of the alpha(1C) subunit. We have determined the molecular requirements that completely obstruct slow inactivation. Critical interventions include simultaneous substitution of A752T in IIS6, V1165T in IIIS6, and I1475T in IVS6, each preventing in additive manner a considerable fraction of Ba(2+) current from inactivation. In addition, it requires the S405I mutation in segment IS6. The fractional inhibition of slow inactivation in tested mutants caused an acceleration of fast inactivation, suggesting that fast and slow inactivation mechanisms are linked. The channel lacking slow inactivation showed approximately 45% of the sustained Ba(2+) or Ca(2+) current with no indication of decay. The remaining fraction of the current was inactivated with a single-exponential decay (pi(f) approximately 10 ms), completely recovered from inactivation within 100 ms and did not exhibit Ca(2+)-dependent inactivation properties. No voltage-dependent characteristics were significantly changed, consistent with the C-type inactivation model suggesting constriction of the pore as the main mechanism possibly targeted by Ca(2+) sensors of inactivation.  相似文献   

10.
Calcium channel blockers inhibit galvanotaxis in human keratinocytes   总被引:1,自引:0,他引:1  
Directed migration of keratinocytes is essential for wound healing. The migration of human keratinocytes in vitro is strongly influenced by the presence of a physiological electric field and these cells migrate towards the negative pole of such a field (galvanotaxis). We have previously shown that the depletion of extracellular calcium blocks the directional migration of cultured human keratinocytes in an electric field (Fang et al., 1998; J Invest Dermatol 111:751-756). Here we further investigate the role of calcium influx on the directionality and migration speed of keratinocytes during electric field exposure with the use of Ca(2+) channel blockers. A constant, physiological electric field strength of 100 mV/mm was imposed on the cultured cells for 1 h. To determine the role of calcium influx during galvanotaxis we tested the effects of the voltage-dependent cation channel blockers, verapamil and amiloride, as well as the inorganic Ca(2+) channel blockers, Ni(2+) and Gd(3+) and the Ca(2+) substitute, Sr(2+), on the speed and directionality of keratinocyte migration during galvanotaxis. Neither amiloride (10 microM) nor verapamil (10 microM) had any effect on the galvanotaxis response. Therefore, calcium influx through amiloride-sensitive channels is not required for galvanotaxis, and membrane depolarization via K(+) channel activity is also not required. In contrast, Sr(2+) (5 mM), Ni(2+) (1-5 mM), and Gd(3+) (100 microM) all significantly inhibit the directional migratory response to some degree. While Sr(2+) strongly inhibits directed migration, the cells exhibit nearly normal migration speeds. These findings suggest that calcium influx through Ca(2+) channels is required for directed migration of keratinocytes during galvanotaxis and that directional migration and migration speed are probably controlled by separate mechanisms.  相似文献   

11.
The dihydropyridine (DHP)-binding site has been identified within L-type Ca(2+) channel alpha(1C) subunit. However, the molecular mechanism underlying modulation of Ca(2+) channel gating by DHPs has not been clarified. To search for novel determinants of high affinity DHP binding, we introduced point mutations in the rat brain Ca(2+) channel alpha(1C) subunit (rbCII or Ca(v)1.2c) based on the comparison of amino acid sequences between rbCII and the ascidian L-type Ca(2+) channel alpha(1) subunit, which is insensitive to DHPs. The alpha(1C) mutants (S1115A, S1146A, and A1420S) and rbCII were transiently expressed in BHK6 cells with beta(1a) and alpha(2)/delta subunits. The mutation did not affect the electrophysiological properties of the Ca(2+) channel, or the voltage- and concentration-dependent block of Ca(2+) channel currents produced by diltiazem and verapamil. However, the S1115A channel was significantly less sensitive to DHP antagonists. Interestingly, in the S1115A channel, DHP agonists failed to enhance whole-cell Ca(2+) channel currents and the prolongation of mean open time, as well as the increment of NP(o). Responsiveness to the non-DHP agonist FPL-64176 was also markedly reduced in the S1115A channel. When S1115 was replaced by other amino acids (S1115D, S1115T, or S1115V), only S1115T was slightly sensitive to S-(-)-Bay K 8644. These results indicate that the hydroxyl group of Ser(1115) in IIIS5-S6 linker of the L-type Ca(2+) channel alpha(1C) subunit plays a critical role in DHP binding and in the action of DHP Ca(2+) channel agonists.  相似文献   

12.
Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Our previous work using the specific HCN channel blocker ZD7288 provided evidence for an intracellular activation gate for these channels because it appears that ZD7288, applied from the intracellular side, can enter and leave HCN channels only at voltages where the activation gate is opened (Shin, K.S., B.S. Rothberg, and G. Yellen. 2001. J. Gen. Physiol. 117:91-101). However, the ZD7288 molecule is larger than the Na(+) or K(+) ions that flow through the open channel. In the present study, we sought to resolve whether the voltage gate at the intracellular entrance to the pore for ZD7288 also can be a gate for permeant ions in HCN channels. Single residues in the putative pore-lining S6 region of an HCN channel (cloned from sea urchin; spHCN) were substituted with cysteines, and the mutants were probed with Cd(2+) applied to the intracellular side of the channel. One mutant, T464C, displayed rapid irreversible block when Cd(2+) was applied to opened channels, with an apparent blocking rate of approximately 3 x 10(5) M(-1)s(-1). The blocking rate was decreased for channels held at more depolarized voltages that close the channels, which is consistent with the Cd(2+) access to this residue being gated from the intracellular side of the channel. 464C channels could be recovered from Cd(2+) inhibition in the presence of a dithiol applied to the intracellular side. The rate of this recovery also was reduced when channels were held at depolarized voltages. Finally, Cd(2+) could be trapped inside channels that were composed of WT/464C tandem-linked subunits, which could otherwise recover spontaneously from Cd(2+) inhibition. Thus, Cd(2+) escape is also gated at the intracellular side of the channel. Together, these results are consistent with a voltage-controlled structure at the intracellular side of the spHCN channel that can gate the flow of cations through the pore.  相似文献   

13.
We report the first X-ray diffraction on gramicidin in its membrane-active form by using uniformly aligned multilayer samples of membranes containing gramicidin and ions (T1+, K+, Ba2+, Mg2+ or without ions). From the difference electron density profiles, we found a pair of symmetrically located ion-binding sites for T1- at 9.6 (+/- 0.3) A and for Ba2+ at 13.0 (+/- 0.2) A from the midpoint of the gramicidin channel. The location of Ba(2+)-binding sites is near the ends of the channel, consistent with the experimental observation that divalent cations do not permeate but block the channel. The location of T1(+)-binding sites is somewhat of a surprise. It was generally thought that monovalent cations bind to the first turn of the helix from the mouth of the channel. (It is now generally accepted that the gramicidin channel is a cylindrical pore formed by two monomers, each a single-stranded beta 6.3 helix and hydrogen-bonded head-to-head at their N termini.) But our experiment shows that the T1(+)-binding site is either near the bottom of or below the first helix turn.  相似文献   

14.
The full-length human Ca(v)3.3 (alpha(1I)) T-type channel was cloned, and found to be longer than previously reported. Comparison of the cDNA sequence to the human genomic sequence indicates the presence of an additional 4-kb exon that adds 214 amino acids to the carboxyl terminus and encodes the 3' untranslated region. The electrophysiological properties of the full-length channel were studied after transient transfection into 293 human embryonic kidney cells using 5 mM Ca(2+) as charge carrier. From a holding potential of -100 mV, step depolarizations elicited inward currents with an apparent threshold of -70 mV, a peak of -30 mV, and reversed at +40 mV. The kinetics of channel activation, inactivation, deactivation, and recovery from inactivation were very similar to those reported previously for rat Ca(v)3.3. Similar voltage-dependent gating and kinetics were found for truncated versions of human Ca(v)3.3, which lack either 118 or 288 of the 490 amino acids that compose the carboxyl terminus. A major difference between these constructs was that the full-length isoform generated twofold more current. These results suggest that sequences in the distal portion of Ca(v)3.3 play a role in channel expression. Studies on the voltage-dependence of activation revealed that a fraction of channels did not gate as low voltage-activated channels, requiring stronger depolarizations to open. A strong depolarizing prepulse (+100 mV, 200 ms) increased the fraction of channels that gated at low voltages. In contrast, human Ca(v)3.3 isoforms with shorter carboxyl termini were less affected by a prepulse. Therefore, Ca(v)3.3 is similar to high voltage-activated Ca(2+) channels in that depolarizing prepulses can regulate their activity, and their carboxy termini play a role in modulating channel activity.  相似文献   

15.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

16.
Molecular determinants in TRPV5 channel assembly   总被引:8,自引:0,他引:8  
The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional characteristics regarding Ca(2+)-dependent inactivation, ion selectivity, and pharmacological block. Glutathione S-transferase pull-downs and co-immunoprecipitations demonstrated an essential role of the intracellular N- and C-tails in TRPV5 channel assembly by physical interactions between N-N tails, C-C tails, and N-C-tails. Patch clamp analysis in human embryonic kidney (HEK293) cells and (45)Ca(2+) uptake experiments in Xenopus laevis oocytes co-expressing TRPV5 wild-type and truncated proteins indicated that TRPV5 Delta N (deleted N-tail) and TRPV5 Delta C (deleted C-tail) decreased channel activity of wild-type TRPV5 in a dominant-negative manner, whereas TRPV5 Delta N Delta C (deleted N-tail/C-tail) did not affect TRPV5 activity. Oocytes co-expressing wild-type TRPV5 and TRPV5 Delta N or TRPV5 Delta C showed virtually no wild-type TRPV5 expression on the plasma membrane, whereas co-expression of wild-type TRPV5 and TRPV5 Delta N Delta C displayed normal channel surface expression. This indicates that TRPV5 trafficking toward the plasma membrane was disturbed by assembly with TRPV5 Delta N or TRPV5 Delta C but not with TRPV5 Delta N Delta C. TRPV5 channel assembly signals were refined between amino acid positions 64-77 and 596-601 in the N-tail and C-tail, respectively. Pull-down assays and co-immunoprecipitations demonstrated that N- or C-tail mutants lacking these critical assembly domains were unable to interact with tails of TRPV5. In conclusion, two domains in the N-tail (residues 64-77) and C-tail (residues 596-601) of TRPV5 are important for channel subunit assembly, subsequent trafficking of the TRPV5 channel complex to the plasma membrane, and channel activity.  相似文献   

17.
Using the whole-cell patch-clamp technique, we have studied the properties of alpha(1E) Ca(2+) channel transfected in cardiac myocytes. We have also investigated the effect of foreign gene expression on the intrinsic L-type current (I(Ca,L)). Expression of green fluorescent protein significantly decreased the I(Ca,L). By contrast, expression of alpha(1E) with beta(2b) and alpha(2)/delta significantly increased the total Ca(2+) current, and in these cells a Ca(2+) antagonist, PN-200-110 (PN), only partially blocked the current. The remaining PN-resistant current was abolished by the application of a low concentration of Ni(2+) and was little affected by changing the charge carrier from Ca(2+) to Ba(2+) or by beta-adrenergic stimulation. On the basis of its voltage range for activation, this channel was classified as a high-voltage activated channel. Thus the expression of alpha(1E) did not generate T-like current in cardiac myocytes. On the other hand, expression of alpha(1E) decreased I(Ca,L) and slowed the I(Ca,L) inactivation. This inactivation slowing was attenuated by the beta(2b) coexpression, suggesting that the alpha(1E) may slow the inactivation of I(Ca,L) by scrambling with alpha(1C) for intrinsic auxiliary beta.  相似文献   

18.
The epithelial sodium channel ENaC is physiologically important in the kidney for the regulation of the extracellular fluid volume, and in the lungs for the maintenance of the appropriate airway surface liquid volume that lines the pulmonary epithelium. Besides the regulation of ENaC by hormones, intracellular factors such as Na(+) ions, pH, or Ca(2+) are responsible for fast adaptive responses of ENaC activity to changes in the intracellular milieu. In this study, we show that ENaC is rapidly and reversibly inhibited by internal sulfhydryl-reactive molecules such as methanethiosulfonate derivatives of different sizes, the metal cations Cd(2+) and Zn(2+), or copper(II) phenanthroline, a mild oxidizing agent that promotes the formation of disulfide bonds. At the single channel level, these agents applied intracellularly induce the appearance of long channel closures, suggesting an effect on ENaC gating. The intracellular reducing agent dithiothreitol fully reverses the rundown of ENaC activity in inside-out patches. Our observations suggest that changes in intracellular redox potential modulate ENaC activity and may regulate ENaC-mediated Na(+) transport in epithelia. Finally, substitution experiments reveal that multiple cysteine residues in the amino and carboxyl termini of ENaC subunits are responsible for this thiol-mediated inhibition of ENaC.  相似文献   

19.
Mutations in the gene MCOLN1 coding for the TRP (transient receptor potential) family ion channel TRP-ML1 lead to the lipid storage disorder mucolipidosis type IV (MLIV). The function and role of TRP-ML1 are not well understood. We report here that TRP-ML1 is a lysosomal monovalent cation channel. Both native and recombinant TRP-ML1 are cleaved resulting in two products. Recombinant TRP-ML1 is detected as the full-length form and as short N- and C-terminal forms, whereas in native cells mainly the cleaved N and C termini are detected. The N- and C-terminal fragments of TRP-ML1 were co-immunoprecipitated from cell lysates and co-eluted from a Ni2+ column. TRP-ML1 undergoes proteolytic cleavage that is inhibited by inhibitors of cathepsin B (CatB) and is altered when TRP-ML1 is expressed in CatB-/- cells. N-terminal sequencing of purified C-terminal fragment of TRP-ML1 expressed in Sf9 cells indicates a cleavage site at Arg200 downward arrow Pro201. Consequently, the conserved R200H mutation changed the cleavage pattern of TRP-ML1. The cleavage inhibited TRP-ML1 channel activity. This work provides the first example of inactivation by cleavage of a TRP channel. The significance of the cleavage to the function of TRP-ML1 is under investigation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号