首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Fishery‐independent sampling was used to determine growth patterns, life span, mortality rates and timing of maturation and sex change in 12 common parrotfishes (Labridae: tribe Scarinae) from five genera (Calotomus, Cetoscarus, Chlorurus, Hipposcarus and Scarus) in Micronesia. Interspecific variation in life‐history traits was explored using multivariate analysis. All species displayed strong sex‐specific patterns of length‐at‐age among which males reached larger asymptotic lengths. There was a high level of correlation among life‐history traits across species. Relationships between length‐based and age‐based variables were weakest, with a tenuous link between maximum body size and life span. Cluster analysis based on similarities among life‐history traits demonstrated that species were significantly grouped at two major levels. The first grouping was driven by length‐based variables (lengths at maturity and sex change and maximum length) and separated the small‐ and large‐bodied species. Within these, species were grouped by age‐based variables (age at maturity, mortality and life span). Groupings based on demographic and life‐history features were independent of phylogenetic relationships at the given taxonomic level. The results reiterate that body size is an important characteristic differentiating species, but interspecific variation in age‐based traits complicates its use as a life‐history proxy. Detailed life‐history metrics should facilitate future quantitative assessments of vulnerability to overexploitation in multispecies fisheries.  相似文献   

3.
Life span (the age of death for individuals that survived the establishment phase) is a key trait in plant life history. Despite its importance for understanding plant–environment relationships, there are still numerous substantial knowledge gaps about variation in plant maximum life spans and the ecological processes underlying these patterns.Based on plant age data obtained by means of herbochronology, we analysed patterns of intraspecific plant maximum life span variation in three perennial species (Campanula scheuchzeri, Helianthemun nummularium and Lotus corniculatus) along environmental gradients of mean annual temperature, soil depth and soil nutrients. This variation was compared with predictions from the ‘death-by-starvation hypothesis’ proposed by Hans Molisch in 1938, an unjustly forgotten ‘extrinsic’ theory on plant life span variation.Our study suggests that plant age variation within populations responds sensitively to growing conditions. The most important finding is that mean annual temperature or environmental conditions related to it seems to be a driving factor for intraspecific variation in plant maximum life span in all species studied. Despite large within-population variation, individuals of C. scheuchzeri, L. corniculatus and H. nummularium generally had a longer life span under colder climates (uplands in our case). In addition, soil depth (as a proxy for habitat susceptibility to drought) was found to have a significant positive effect on the age values in the case of C. scheuchzeri.These findings, therefore, are in line with Molisch’s “death-by-starvation hypothesis”: extended maximum life span results from reduced production of sink tissues and slow vegetative growth. We conclude that the analysis of plant life span adjustments along gradients of environmental factors can considerably contribute to our understanding of how plants may cope with changing environmental conditions, e.g., due to global change.  相似文献   

4.
Knowledge of the influence of both spatial and temporal environmental gradients on life history traits and population demographics is a critical requirement in the management of exploited fish populations. This study examined variation in the demographics of Arripis trutta, an economically-important pelagic fish species with a broad latitudinal distribution in the waters of coastal south-eastern (SE) Australia, a region dominated by the influence of the East Australian Current (EAC). A validated ageing protocol was first developed using sectioned sagittal otoliths, which in turn permitted examination of latitudinal variation in A. trutta growth, size compositions and age compositions. The von Bertalanffy growth function parameters for A. trutta in SE Australia were estimated to be L ?=?63.20?±?0.37 cm fork length (FL), k?=?0.26?±?0.01 yr?1 and t o?=??0.14?±?0.03 yr, with a maximum estimated age of 12.7 years. Growth was shown to be faster with decreasing latitude likely due to a simple relationship with the latitudinal gradient in water temperature; fastest growth occurring in northern NSW and slowest growth occurring in Tasmania. Latitudinal patterns in growth were remarkably similar to those previously reported for this species, despite age being estimated using scale readings some 40 years ago. This consistency in latitudinal growth patterns of a temperate fish can be attributed to the life history-related movements undertaken by A. trutta in this region. This temporally-consistent movement pattern is supported by the spatial gradient in the size and age composition of A. trutta sampled from different latitudes in both the current and historical research, whereby numbers of large and old fish increase progressively from Tasmania to northern NSW. These results highlight the need to consider the potential for spatial size- or age-structuring in the development of sampling designs and interpretation of results for any study examining spatial or temporal variation in demographic parameters of exploited fish populations.  相似文献   

5.
用RAPD技术对罗非鱼遗传变异的研究及应用(英文)   总被引:2,自引:0,他引:2  
应用随机扩增多态性DNA(RAPD)技术检测了一个奥利亚罗非鱼(au)和湘湖(nx)、美国(nm)、沙市(np)三个尼罗罗非鱼养殖群体(Table1)。在20个引物(Table 2)中筛选到12个引物,它们的扩增产物显示了罗非鱼和尼罗罗非鱼二者在群体内或群体间存在遗传差异。其中(Fig.1), OPZ06、 OPZ16、 OPZ12和 OPZ19四个引物分别有一个扩增片段具有种的特异性。它们的大小分别是900、1500、1700和730bp。可以作为鉴别罗非鱼和尼罗罗非鱼二者的分子遗传标记。湘湖(nx)、美国(nm)和沙市(np)三个尼罗罗非鱼群体内遗传变异相似性指数S分别为 0.798、 0.795和0.824(Table 3)。表明:这三个尼罗罗非鱼群体都保留了较高水平的遗传变异。而奥利亚罗非鱼(au)的群体内遗传变异最小。奥利亚罗非鱼(au)与湘湖(nx)、美国(um)、沙市(up)三个尼罗罗非鱼群体之间的遗传距离分别是0.285、0.262和0.344(Table 3),说明奥利亚罗非鱼(au)和沙市尼罗罗非鱼(np)杂交将可能产生较强的杂种优势。  相似文献   

6.
We analyzed variation in phenotypic plasticity of life history traits between two Cardamine flexuosa populations based on differences in plasticity of age and size at maturity. C. flexuosa (Cruciferae) is a facultative, vernalization-sensitive, long-day annual, and its phenology and the phenotypic expressions of many life history traits are largely controlled by photoperiod and vernalization in natural populations. We used plants from two populations which differed in their responses to chilling and photoperiod treatments. The timing of developmental processes was changed by controlling temperature and photoperiod regimes in growth chambers. Plasticity in size at maturity was analyzed as changes in a growth trajectory using two parameters, age at maturity (Δt) and growth rate (k). Both traits showed plasticity, but differences between the populations were found mostly for Δt. Distinctive differences in size at maturity of individuals in the two populations were mainly due to different amounts of plasticity in Δt. Variations in plasticity of nine other life history traits and their associations to age and size at maturity were also analyzed. Variation for eight of the traits can be described, at least in part, as a function of age and size at maturity for both populations, and most of the variation in the total number of seeds was explained by age and size at maturity. Only age at maturity had any effect on changes in resource allocation. The nine life history traits were integrated through associated character expressions with age and size at maturity. Changes in the association between a trait and age and/or size at maturity were rather conservative compared to changes in the plasticity of a trait between the two populations. Associations with age and size at maturity are mostly explicable in terms of inherent relationships in the developmental processes, and they may limit the ecological range expansion and the adaptive evolution of plasticity in C. flexuosa. The negative correlation between reproductive allocation and age at maturity can be a cost of delaying maturation in C. flexuosa.  相似文献   

7.
Nile tilapia occurs naturally in East Africa where it’s an economically important species. Many of the natural populations of Nile tilapia have been affected by anthropogenic activities including translocations, associated with programmes aimed at enhancing capture fisheries and aquaculture productivity. Using geometric morphometric analyses, we tested the hypothesis that such anthropogenic activities have augmented admixture among natural populations of Nile tilapia and influenced the geographical distribution of morphological variation within the species. Our expectation was that Nile tilapia shape divergent might be consistent with reportedly anthropogenic activities in nonnative environments. To test this hypothesis, we analyzed the shapes of 490 individuals from thirteen populations; three farms, six natives and four nonnative natural populations. Our analysis revealed that the most pronounced shape diversification was observed in seven populations; three nonnatives (Victoria, Kyoga and Sindi farm) and four natives (Albert, River Nile, George and Turkana). The features responsible for the observed morphotypes were mainly related to the orientation of the anterior region of the fish and may be due to diversifying selection in response to new environmental pressures (for nonnative populations), admixture or drift. Shape change in the nonnative high-altitude populations was unexpectedly conserved, suggesting recent introductions which may have not resulted in admixture or there was strong selection against change in the traits measured. On the other hand, the recorded morphotypic clusters explained the possible genetic link to their putative ancestral home. Our results were partially consistent with our prediction that the nonnative populations exhibited divergent morphotypes. We recommend further investigations with molecular genetics for follow-up of these findings.  相似文献   

8.
Reproductive and life span traits were measured for two obligately parthenogenetic (Artemia parthenogenetica) and three sexual (two A. franciscana and one A. sinica) brine shrimp populations. For each population, clonal lineages or single mating pairs were followed through one life cycle. The relative contributions of environmental and genetic components to total phenotypic variation for 10 life-history traits in response to environmental stress (0, 10, 25 ppb Cu) were estimated. Within treatment variation (CVW) was 39% higher for sexual populations than parthenogenetic populations, with significant (p<0.05) differences in total number of offspring and number of nauplii. CVA (the change in variance due to rearing in different environments), when averaged for all traits and all populations, increased variability by 9.9%. CVA was 44.2% higher for sexual than parthenogenetic populations, with significant differences in number of broods, total number of offspring, and number of nauplii. The average genetic component of variation for the 10 traits was 23.44%, ranging from 5.26% for number of cysts to 44.87% for number of nauplii. For all traits, the environmental component of variance is greater than the genetic component measured, but every trait has a genetic component, which can potentially be acted upon by selection.  相似文献   

9.
Life history theory has long been a major campaign in evolutionary ecology, but has typically focused only on animals and plants. Life history research on single-celled eukaryotic protists such as malaria parasites (Plasmodium) will offer new insights into the theory’s general utility as well as the parasite’s basic biology. For example, parasitologists have described the Plasmodium life cycle and cell types in exquisite detail, with little discussion of evolutionary issues such as developmental links between traits. We measured 10 life history traits of replicate single-genotype experimental Plasmodium mexicanum infections in its natural lizard host to identify groups of linked traits. These 10 traits formed 4 trait groups: “Rate/Peak” merges measures of growth rate and maximum parasitemia of infections; “Timing” combines time to patency and maximum parasitemia; “Growth Shape” describes the fit to an exponential growth curve; and “Sex Ratio” includes only the gametocyte sex ratio. Parasite genotype (clone) showed no effect on the life history trait groups, with the exception of gametocyte sex ratio. Therefore, variation in most life history traits among infections appears to be driven by environmental (individual host) effects. The findings support the model that life history traits are often linked by developmental constraints. Understanding why life history traits of Plasmodium are linked in this way would offer a new window into the evolution of the parasites, and also should inform public health efforts to control infection prevalence.  相似文献   

10.
Life span and aging are substantially modified by natural selection. Across species, higher extrinsic (environmentally related) mortality (and hence shorter life expectancy) selects for the evolution of more rapid aging. However, among populations within species, high extrinsic mortality can lead to extended life span and slower aging as a consequence of condition‐dependent survival. Using within‐species contrasts of eight natural populations of Nothobranchius fishes in common garden experiments, we demonstrate that populations originating from dry regions (with short life expectancy) had shorter intrinsic life spans and a greater increase in mortality with age, more pronounced cellular and physiological deterioration (oxidative damage, tumor load), and a faster decline in fertility than populations from wetter regions. This parallel intraspecific divergence in life span and aging was not associated with divergence in early life history (rapid growth, maturation) or pace‐of‐life syndrome (high metabolic rates, active behavior). Variability across four study species suggests that a combination of different aging and life‐history traits conformed with or contradicted the predictions for each species. These findings demonstrate that variation in life span and functional decline among natural populations are linked, genetically underpinned, and can evolve relatively rapidly.  相似文献   

11.
Age and growth of Nile tilapia (Oreochromis niloticus) from Lake Nabugabo and Lake Wamala, Uganda, were determined using cross-sectioned sagittal otoliths. Marginal-increment and edge analyses of Nile tilapia otoliths from Lake Nabugabo indicated formation of two annuli per 12-month period. Opaque zones associated with faster growth were observed between April and June and between September and December, coincident with the two rainy seasons of the year. Within both lakes, males were larger at age than females. Nile tilapia from Lake Nabugabo, however, had faster growth rates than Nile tilapia from Lake Wamala, and fish >3 years old from Lake Nabugabo were larger at age than those from Lake Wamala. Ages ranged from 0 to 8.0 years for Nile tilapia from Lake Nabugabo, and from 0.5 to 6.5 years for tilapia from Lake Wamala. Differences in the patterns of growth in Nile tilapia between lakes may reflect, at least in part, the relatively energy-rich omnivorous diet of Nile tilapia in Lake Nabugabo versus a phytoplanktivorous diet in Lake Wamala. Diet differences of Nile tilapia between the two lakes are ascribed to trophic changes in the lakes due to the introduction of Nile perch (Lates niloticus) into Lake Nabugabo but not Lake Wamala. Alternatively, the greater exploitation of Nile tilapia in Lake Nabugabo may have resulted in increased growth rates, whereas Nile tilapia in Lake Wamala may be subject to slower, density-dependent growth. Handling editor: J. Cambray  相似文献   

12.
Average age and maximum life span of breeding adult three-spined sticklebacks (Gasterosteus aculeatus) were determined in eight Fennoscandian localities with the aid of skeletochronology. The average age varied from 1.8 to 3.6 years, and maximum life span from three to six years depending on the locality. On average, fish from marine populations were significantly older than those from freshwater populations, but variation within habitat types was large. We also found significant differences in mean body size among different habitat types and populations, but only the population differences remained significant after accounting for variation due to age effects. These results show that generation length and longevity in three-spined sticklebacks can vary significantly from one locality to another, and that population differences in mean body size cannot be explained as a simple consequence of differences in population age structure. We also describe a nanistic population from northern Finland exhibiting long life span and small body size.  相似文献   

13.
Y Luo  A Widmer  S Karrenberg 《Heredity》2015,114(2):220-228
Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana.  相似文献   

14.
A comparative study of life history traits of two clones (CDMr01 and CDMr02) of a triploid thelytokous apomictic population of the eutardigrade Macrobiotus richtersi has been carried out. Both clones were reared under the same lab conditions: temperature of 14 °C, photoperiod of 12 h/12 h (L/D), and nematodes ad libitum as food. Statistical analysis of the life history traits considered has indicated interclonal variability. The two clones were significantly different in the number of eggs per clutch (fertility), number of eggs laid per female per life span (fecundity), hatching percentage of eggs and hatching time. Similarities between clones have been observed with regard to life span, total number of ovipositions per life span, and age at first oviposition. In addition, significant differences in hatching time, with eggs hatched over a long period, were found within each clone. Interclonal variability in life history traits indicated the effects of genetic factors, whereas intraclonal variability reflected the effects of environmental factors. The evolutionary and adaptive significance of the life history phenotypic variations is discussed.  相似文献   

15.
Effects of angling exploitation on brown trout populations were assessed by comparing fished sections with close ones unfished for at least 20 years, in mountain streams of Asturias (Northern Spain). Both the fish size and age structure significantly differed among sections in the expected direction according to their exploitation status. The main effects were a significant decrease in age structure complexity (diversity), life span, and percent individuals above the legal limit size in the exploited stocks versus the unexploited ones. Trout above the minimum length limit for fishing (18 cm) averaged 19.47% of the fish caught in the unfished sections (sd = 4.01; n = 5), and 4.72% (sd = 3.46; n = 4) in those subjected to angling. Furthermore, fish older than 4 years represented 39.84% (sd = 8.53) and 1.19% (sd = 1.60) of the catch, respectively. Effects on recruitment (density of young fishes) and growth rates (length at age 1 + to 3 +) were not absolutely consistent, though maximum values were associated with fished sections.  相似文献   

16.
The population of Galaxias maculatus studied here, Arroyo Negro (54° S), is located at the southern extreme of the species distribution. This is the first work on growth and other life history traits of a Fueguian diadromous population based on otoliths study. This species is part of the native fish fauna of Patagonia. Furthermore, studies on the growth and reproduction of G. maculatus in South America mostly refer to freshwater populations of Andean-Patagonian lakes and rivers (about 41° S). Size cohorts were studied; age and growth parameters were estimated, the latter using the VBGM. Four size cohorts were established, and 3+ was determined as maximum age class. No differences were found in growth curves between males and females. The 1+ age class was by far not only the most numerous in the population but also the most represented in the reproductive population. The relation between mean TL and latitude was positive (r?=?0.62) for South American populations; however, further studies are needed to determine whether it is this population’s life strategy, the local adaptation of a peripheral population or countergradient growth. The results are interpreted in the context of the information available for other populations, and provide important information about the plasticity in life history traits of this species.  相似文献   

17.
Life history variability includes phenotypic variation in morphology, age, and size at key stage transitions and arises from genotypic, environmental, and genotype-by-environment effects. Life history variation contributes to population abundance, productivity, and resilience, and management units often reflect life history classes. Recent evidence suggests that past Chinook salmon (Oncorhynchus tshawytscha) classifications (e.g., ‘stream’ and ‘ocean’ types) are not distinct evolutionary lineages, do not capture the phenotypic variation present within or among populations, and are poorly aligned with underlying ecological and developmental processes. Here we review recently reported variation in juvenile Chinook salmon life history traits and provide a refined conceptual framework for understanding the causes and consequences of the observed variability. The review reveals a broad continuum of individual juvenile life history pathways, defined primarily by transitions among developmental stages and habitat types used during freshwater rearing and emigration. Life history types emerge from discontinuities in expressed pathways when viewed at the population scale. We synthesize recent research that examines how genetic, conditional, and environmental mechanisms likely influence Chinook salmon life history pathways. We suggest that threshold models hold promise for understanding how genetic and environmental factors influence juvenile salmon life history transitions. Operational life history classifications will likely differ regionally, but should benefit from an expanded lexicon that captures the temporally variable, multi-stage life history pathways that occur in many Chinook salmon populations. An increased mechanistic awareness of life history diversity, and how it affects population fitness and resilience, should improve management, conservation, and restoration of this iconic species.  相似文献   

18.
《Genomics》2022,114(3):110328
The origin of introduced Nile tilapia stocks in sub-Saharan Africa is largely unknown. In this study, the potential of monogeneans as a biological tag and magnifying glass is tested to reveal their hosts' stocking history. The monogenean gill community of different Nile tilapia populations in sub-Saharan Africa was explored, and a phylogeographic analysis was performed based on the mitogenomes of four dactylogyrid species (Cichlidogyrus halli, C. sclerosus, C. thurstonae, and Scutogyrus longicornis). Our results encourage the use of dactylogyrids as biological tags. The magnifying glass hypothesis is only confirmed for C. thurstonae, highlighting the importance of the absence of other potential hosts as prerequisites for a parasite to act as a magnifying glass. With the data generated here, we are the first to extract mitogenomes from individual monogeneans and to perform an upscaled survey of the comparative phylogeography of several monogenean species with unprecedented diagnostic resolution.  相似文献   

19.
Life-history theory predicts the occurrence of variation in the life-history traits of fish populations under different environmental conditions; however, most studies have focused on such variation between geographically separated populations. We compared breeding characteristics and life-history traits of the Japanese fluvial sculpin (Cottus pollux), a bottom-dwelling nest-holding fish, between two adjacent sites sub-divided by a weir along a stream course in central Japan. Males in the area with a lower abundance of nest sites reached sexual maturity at an earlier age and had a shorter life span than males in the area with sufficient nest abundance. Size-dependent male reproduction was found only in areas with a shortage of nest sites, supporting the assumption of competitive exclusion among males for nests. Females matured at the same age in both sites with no differences in age-specific growth rates and mortality. Our results provide evidence for life-history variation in age and size at maturity and age-specific mortality schedule of males in nest-holding fishes in a single stream population via different sexual selection regimes related to differences in nest abundance between sites.  相似文献   

20.
Aims To test the magnitude and direction of the effects of large‐scale environmental factors (latitude and habitat type: lotic or lentic) on the intraspecific variations in multiple life‐history traits, across multiple European freshwater fish species. To test the relevance of defining species traits by quantifying the magnitude of interspecific vs. intraspecific variability in traits. Location Europe. Methods We obtained estimates of 11 fish traits from published sources for 1089 populations of 25 European freshwater fish species. Traits were: longevity, maximal length, growth rate, asymptotic length, mortality rate, age and length at maturation, fecundity, egg size, gonadosomatic index, and length of breeding season. We described population habitats by latitude and habitat type (lotic or lentic), when available. For each species we tested the combined effect of latitude and habitat type on the intraspecific variation of each trait using analysis of covariance (ancova ). We compared the intraspecific variation in traits with the variation between species using an analysis of variance (anova ) for each trait, all species pooled. Results We found a consistent effect in direction of latitude on six traits, but we showed that this effect is not always significant across species. Higher‐latitude populations often grew more slowly, matured later, had a longer life span and a higher maximal and asymptotic length, and allocated more energy to reproduction than populations at lower latitudes. By contrast, we noted only a slight effect of habitat type on the intraspecific variation in traits, except for Salmo trutta. All traits varied significantly between species. However, traits such as growth rate, mortality rate and length of breeding season varied more between populations than between species, whereas fecundity and traits associated with body length varied more between species. Main conclusions Latitude, in contrast to habitat type, is an important factor influencing several traits of geographically widely dispersed populations of multiple European freshwater fish species. Species traits that vary more between species than between populations are attractive variables for understanding and predicting the responses of stream fish communities to their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号