首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Post-embryonic shoot development in plants can be divided into a juvenile vegetative, an adult vegetative, and a reproductive phase, which are expressed in different domains on the shoot axis. The number and position of the phytomers in each phase are determined by the time at which a plant begins and ceases making phytomers of a particular phase and the rate at which phytomers are made during that phase. The viviparous8 (vp8) mutation of maize increases the number of juvenile vegetative phytomers and decreases the number of adult vegetative phytomers by affecting both of these processes. vp8 increases the number of juvenile vegetative phytomers by increasing the rate of leaf initiation early in shoot development and delaying the juvenile-to-adult transition (vegetative maturation). It reduces the number of adult phytomers because the delay in vegetative maturation is not matched by a corresponding delay in flowering time; vp8 plants produce a tassel at the same time as wild-type plants. Thus, Vp8 normally controls the production of a factor that functions both to repress the rate of growth early in shoot development and to promote vegetative maturation, but which has no major role in floral induction. vp8 dramatically enhances the phenotypes of the dwarf and Teopod mutants and requires a functional Glossy15 gene to prolong the expression of juvenile epidermal traits. Evidence suggesting that vp8 does not affect phase change by reducing the level of abscisic acid is discussed.  相似文献   

3.
In plants, specialized epidermal cells are arranged in semiordered patterns. In grasses such as maize, stomata and other specialized cell types differentiate in linear patterns within the leaf epidermis. A variety of mechanisms have been proposed to direct patterns of epidermal cell differentiation. One class of models proposes that patterns of cellular differentiation depend on the lineage relationships among epidermal cells. Another class of models proposes that epidermal patterning depends on positional information rather than lineage relationships. In the dicot epidermis, cell lineage is an important factor in the patterning of stomata, but not trichomes. In this study, the role of cell lineage in the linear patterning of stomata and bulliform cells in the maize leaf epidermis is investigated. Clones of epidermal cells in juvenile leaves were marked by excision of dSpm from gl15-m and in adult leaves by excision of Ds2 from bz2-m. These clones were analyzed in relation to patterns of stomata and bulliform cells, testing specific predictions of clonal origin hypotheses for the patterning of these cell types. We found that the great majority of clones analyzed failed to satisfy these predictions. Our results clearly show that lineage does not account for the linear patterning of stomata and bulliform cells, implying that positional information must direct the differentiation patterns of these cell types in maize.  相似文献   

4.
Postembryonic shoot development in maize (Zea mays L.) is divided into a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase that differ in the expression of many morphological traits. A reduction in the endogenous levels of bioactive gibberellins (GAs) conditioned by any one of the dwarf1, dwarf3, dwarf5, or another ear1 mutations in maize delays the transition from juvenile vegetative to adult vegetative development and from adult vegetative to reproductive development. Mutant plants cease producing juvenile traits (e.g. epicuticular wax) and begin producing adult traits (e.g. epidermal hairs) later than wild-type plants. They also cease producing leaves and begin producing reproductive structures later than wild-type plants. These mutations greatly enhance most aspects of the phenotype of Teopod1 and Teopod2, suggesting that GAs suppress part but not all of the Teopod phenotype. Application of GA3 to Teopod2 mutants and Teopod1, dwarf3 double mutants confirms this result. We conclude that GAs act in conjunction with several other factors to promote both vegetative and reproductive maturation but affect different developmental phases unequally. Furthermore, the GAs that regulate vegetative and reproductive maturation, like those responsible for stem elongation, are downstream of GA20 in the GA biosynthetic pathway.  相似文献   

5.
Plants undergo a series of developmental transitions during their life cycle. After seed germination, plants pass through two distinct phases: the vegetative phase in which leaves are produced and the reproductive phase in which flowering occurs. Based on the reproductive competence and morphological changes, the vegetative phase can be further divided into juvenile and adult phases. Here, we demonstrate that the difference between juvenile and adult phase of Nicotiana tabacum is characterized by the changes in leaf size, leaf shape as well as the number of leaf epidermal hairs(trichomes). We further show that miR156, an age-regulated microR NA, regulates juvenile-to-adult phase transition in N. tabacum. Overexpression of miR156 results in delayed juvenile-to-adult transition and flowering. Together, our results support an evolutionarily conserved role of miR156 in plant developmental transitions.  相似文献   

6.
miRNA control of vegetative phase change in trees   总被引:3,自引:0,他引:3  
After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays), vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima), as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.  相似文献   

7.
Recessive mutations of the early phase change (epc) gene in maize affect several aspects of plant development. These mutations were identified initially because of their striking effect on vegetative phase change. In certain genetic backgrounds, epc mutations reduce the duration of the juvenile vegetative phase of development and cause early flowering, but they have little or no effect on the number of adult leaves. Except for a transient delay in leaf production during germination, mutant plants initiate leaves at a normal rate both during and after embryogenesis. Thus, the early flowering phenotype of epc mutations is explained completely by their effect on the expression of the juvenile phase. The observation that epc mutations block the rejuvenation of leaf primordia in excised shoot apices supports the conclusion that epc is required for the expression of juvenile traits. This phenotype suggests that epc functions normally to promote the expression of the juvenile phase of shoot development and to suppress the expression of the adult phase and that floral induction is initiated by the transition to the adult phase. epc mutations are epistatic to the gibberellin-deficient mutation dwarf1 and interact additively with the dominant gain-of-function mutations Teopod1, Teopod2, and Teopod3. Genetic backgrounds that enhance the mutant phenotype of epc demonstrate that, in addition to its role in phase change, epc is required for the maintenance of the shoot apical meristem, leaf initiation, and root initiation.  相似文献   

8.
The juvenile-to-adult transition is a complex and poorly understood process in plant development required to reach reproductive competence. For woody plants, knowledge of this transition is even scantier and no genes have been definitively identified as involved in this transition. To search for genes involved in the juvenile-to-adult transition in olive, we constructed juvenile and adult subtractive cDNA gene libraries and identified genes that were differentially expressed in the juvenile and adult phases. In the analysis of theses libraries, we found 13 differentially expressed genes. One of these genes designated as juvenile to adult transition (JAT) was of special interest because it was highly expressed at the mRNA level in the early developmental phases but repressed in the adult phase. The analysis of mutant trees altered in the juvenile-to-adult transition, as well as a segregating progeny of 31 trees from a “Picual” x “Jabaluna” cross, support the contention that its activity might be required for a non-delayed transition. The study of an Arabidopsis thaliana JAT mutant strain confirmed this hypothesis as it showed a delayed flowering phenotype. JAT is expressed in different parts of the plant, showing an unexpectedly high level of mRNA in the roots. However, the JAT expression level is not determined by the distance to the roots, but rather depends on the developmental stage of the branch meristems. JAT is a widely represented gene in plants that appears to be involved in the control of the juvenile-to-adult transition in olive.  相似文献   

9.
10.
11.
12.
Progression through the plant life cycle involves change in many essential features, most notably in the capacity to reproduce. The transition from a juvenile vegetative and non-reproductive to an adult reproductive phase is gradual and can take many years; in the conifer Norway spruce, Picea abies, typically 20-25 years. We present a detailed analysis of the activities of three regulatory genes with potential roles in this transition in Norway spruce: DAL1, a MADS-box gene related to the AGL6 group of genes from angiosperms, and the two LEAFY-related genes PaLFY and PaNLY. DAL1 activity is initiated in the shoots of juvenile trees at an age of 3-5 years, and then increases with age, whereas both LFY genes are active throughout the juvenile phase. The activity of DAL1 further shows a spatial pattern along the stem of the tree that parallels a similar gradient in physiological and morphological features associated with maturation to the adult phase. Constitutive expression of DAL1 in transgenic Arabidopsis plants caused a dramatic attenuation of both juvenile and adult growth phases; flowers forming immediately after the embryonic phase of development in severely affected plants. Taken together, our results support the notion that DAL1 may have a regulatory role in the juvenile-to-adult transition in Norway spruce.  相似文献   

13.
Vegetative phase change is the developmental transition from the juvenile phase to the adult phase in which a plant becomes competent for sexual reproduction. The gain of ability to flower is often accompanied by changes in patterns of differentiation in newly forming vegetative organs. In maize, juvenile leaves differ from adult leaves in morphology, anatomy and cell wall composition. Whereas the normal sequence of juvenile followed by adult is repeated with every sexual generation, this sequence can be altered in maize by the isolation and culture of the shoot apex from an adult phase plant: an 'adult' meristem so treated reverts to forming juvenile vegetative organs. To begin to unravel the as-yet poorly understood molecular mechanisms underlying phase change in maize, we compared gene expression in two juvenile sample types, leaf 4 and culture-derived leaves 3 or 4, with an adult sample type (leaf 9) using cDNA microarrays. All samples were leaf primordia at plastochron 6. A gene was scored as 'phase induced' if it was up- or downregulated in both juvenile sample types, compared with the adult sample type, with at least a twofold change in gene expression at a P-value of < or =0.005. Some 221 expressed sequence tags (ESTs) were upregulated in juveniles, and 28 ESTs were upregulated in adults. The largest class of juvenile-induced genes was comprised of those involved in photosynthesis, suggesting that maize plants are primed for energy production early in vegetative growth by the developmental induction of photosynthetic genes.  相似文献   

14.
Tree peony has a long juvenile stage, which has limited breeding efforts. To date, very little information is available regarding the juvenile stage of tree peony. In the present study, Paeonia delavayi plants of varying ages were used to investigate the juvenile phase, juvenile-to-adult phase transition, and adult phase via morphological, physiological, and molecular genetic analysis. Micro-observation of buds of different ages and flower induction experiments suggested that the juvenile-to-adult phase transition of P. delavayi occurred at around 2-years of age. Plant height, crown width, leaf length, and the soluble sugar and starch content were positively correlated with plant age. The juvenile gene PdSPL9 contained miR156 targeted sites and a typical SBP domain was cloned from P. delavayi. Expression analysis showed that the expression levels of PdSPL9, PdmiR172d, and PdLFY increased with plant age, while the inverse pattern was observed for PdmiR156a. Function of PdSPL9 was further characterized in Arabidopsis plant. According to function characterization of PdSPL9 in Arabidopsis and expression patterns of PdSPL9 in P. delavayi, it was suggested that PdSPL9 plays a role in controlling juvenile-to-adult phase transition by promoting miR172d, and PdLFY expression in P. delavayi plants, while the expression of PdSPL9 is repressed by miR156a.  相似文献   

15.
16.
The cuticle covering the aerial organs of land plants plays a protective role against several biotic and abiotic stresses and, in addition, participates in a variety of plant-insect interactions. Here, we describe the molecular cloning and characterization of the maize (Zea mays) GLOSSY1 (GL1) gene, a component of the pathway leading to cuticular wax biosynthesis in seedling leaves. The genomic and cDNA sequences we isolated differ significantly in length and in most of the coding region from those previously identified. The predicted GL1 protein includes three histidine-rich domains, the landmark of a family of membrane-bound desaturases/hydroxylases, including fatty acid-modifying enzymes. GL1 expression is not restricted to the juvenile developmental stage of the maize plant, pointing to a broader function of the gene product than anticipated on the basis of the mutant phenotype. Indeed, in addition to affecting cuticular wax biosynthesis, gl1 mutations have a pleiotropic effect on epidermis development, altering trichome size and impairing cutin structure. Of the many wax biosynthetic genes identified so far, only a few from Arabidopsis (Arabidopsis thaliana) were found to be essential for normal cutin formation. Among these is WAX2, which shares 62% identity with GL1 at the protein level. In wax2-defective plants, cutin alterations induce postgenital organ fusion. This trait is not displayed by gl1 mutants, suggesting a different role of the maize and Arabidopsis cuticle in plant development.  相似文献   

17.
通过配制4个隐性无腺体品系(gl2gl2gl3gl3)作母本与5个显性无腺体品系(GL2^eGl2^3eGl3Gl3)杂交产生的20个组合的F2、F3,利用二倍体种子遗传模型,研究了棉花种子的含油量、蛋白质含量、油分指数、蛋白质指数等5个种子性状的遗传变异。结果表明所有研究的性状主要由加性遗传效应所控制,其中含油量主要由母体加性遗传效应所控。按群体平均数计算。这些性状F2的中亲优势仅为-1.99%-1.11%,这揭示出F2、F3近交衰退很少。有75%的F2和60%的F3天然授粉异交组合棉酚含量低于0.4g/kg,因此有可能筛选出棉酚含量低于规定标准、而种子品质不降低、可综合利用的F2高产杂交种。  相似文献   

18.
M. Dudley  R. S. Poethig 《Genetics》1993,133(2):389-399
Teopod1 and Teopod2 are dominant, unlinked mutations in maize that cause dramatic morphological abnormalities, including inappropriate expression of juvenile traits in adult vegetative phytomers and the transformation of reproductive structures into vegetative ones. These phenotypes are consistent with the constitutive expression of a juvenile phase of development throughout shoot growth. To investigate the basis of the Tp1 and Tp2 phenotypes we have analyzed their cell-autonomy in mosaic Teopod:wild-type plants. Mosaic plants were generated by three different mechanisms. Tp1 has previously been shown to be non-cell-autonomous; to verify and extend these results, large wild-type sectors were generated on Tp1 plants by the spontaneous loss of a B-A translocation chromosome containing the Tp1 gene. Analysis of Tp2 cell-autonomy was complicated by a lack of useful markers on chromosome 10L proximal to Tp2. To circumvent this problem two strategies were used. A reciprocal translocation was used to link Tp2 the the wild-type allele of lw2. Sectors were induced in plants of this type by irradiation of imbibed seeds. Also, a chromosome-breaking Ds element located proximal to Tp2 was used to generate somatic sectors that uncovered w2, an albino mutation distal to Tp2. Our results demonstrate conclusively that both Tp1 and Tp2 are non-cell-autonomous. The general use of these techniques for clonal analysis in plants and the potential role of a diffusible factor in regulating the juvenile phase of development in maize are discussed.  相似文献   

19.
A position-dependent pattern of epidermal cell types is produced during root development in Arabidopsis thaliana. This pattern is reflected in the expression pattern of GLABRA2 (GL2), a homeobox gene that regulates cell differentiation in the root epidermis. GL2 promoter::GUS fusions were used to show that the TTG gene, a regulator of root epidermis development, is necessary for maximal GL2 activity but is not required for the pattern of GL2 expression. Furthermore, GL2-promoter activity is influenced by expression of the myc-like maize R gene (35S::R) in Arabidopsis but is not affected by gl2 mutations. A position-dependent pattern of cell differentiation and GL2-promoter activity was also discovered in the hypocotyl epidermis that was analogous to the pattern in the root. Non-GL2-expressing cell files in the hypocotyl epidermis located outside anticlinal cortical cell walls exhibit reduced cell length and form stomata. Like the root, the hypocotyl GL2 activity was shown to be influenced by ttg and 35S::R but not by gl2. The parallel pattern of cell differentiation in the root and hypocotyl indicates that TTG and GL2 participate in a common position-dependent mechanism to control cell-type patterning throughout the apical-basal axis of the Arabidopsis seedling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号