首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: A simple, rapid method is presented for the determination of acetylcholine (ACh) and choline (Ch) in neuronal tissue using HPLC with electrochemical detection. The method is based on the separation of ACh and Ch by reverse-phase HPLC and mixing the effluent as it emerges from the column with acetylcholinesterase and Ch oxidase, which converts endogenous Ch and Ch produced by the hydrolysis of ACh to betaine and hydrogen peroxide. Production of hydrogen peroxide is continuously monitored electrochemically. The sensitivity of the procedure is 1 pmol for Ch and 2 pmol for ACh. Specificity of the method is based on HPLC, two specific enzymatic reactions, and the detection of hydrogen peroxide.  相似文献   

2.
Sheridan RE  Adler M 《Life sciences》2006,79(6):591-595
In primary embryonic spinal cord cultures, synaptic transmission can be conveniently studied by monitoring radiolabeled neurotransmitter release or by recording of electrophysiological responses. However, while the mature spinal cord contains an appreciable number of cholinergic motoneurons, cultures of embryonic spinal cord have a paucity of these neurons and release little or no acetylcholine upon stimulation. To determine whether the proportion of cholinergic neurons in primary mouse spinal cord cultures can be augmented, the effects of several classes of growth factors were examined on depolarization- and Ca(2+)-evoked release of choline/acetylcholine (Ch/ACh). In the absence of growth factors, little or no evoked release of radiolabeled Ch/ACh could be demonstrated. Media supplemented with brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF) were examined for their ability to preserve the population of neurons in culture. CNTF was found to increase the number of surviving neurons and to enhance the release of radiolabeled Ch/ACh; the other factors were without effect. The action of CNTF was transient, and the neuronal population decreased to levels observed in cultures lacking growth factor after 20 days in vitro. The correlation between enhanced neuron survival and increased Ch/ACh release suggests that CNTF protected cholinergic neurons, albeit transiently, from cell death.  相似文献   

3.
Abstract: The effect of choline (60 mg/kg, i.p.) on fluphenazine- and pentylenetetrazol-induced alterations in the concentration of acetylcholine (ACh) and/or the rate of sodium-dependent high-affinity choline uptake (HACU) in rat striatum and hippocampus was studied. Systemic administration of the dopamine receptor blocking agent fluphenazine hydrochloride (0.5 mg/kg, i.p.) decreased the concentration of ACh in the striatum; this effect was prevented by the prior administration of choline. The central nervous system stimulant pentylenetetrazol (30 mg/kg, i.p.) reduced the concentration of ACh in both striatum and hippocampus and increased the velocity of HACU in the hippocampus. Pretreatment with choline totally prevented the depletion of ACh induced by pentylenetetrazol in the striatum. In the hippocampus, prior administration of choline prevented the pentylenetetrazol-induced increase in the rate of HACU and attenuated the effect of pentylenetetrazol on the levels of ACh. Results indicate that the acute administration of choline antagonizes pharmacologically induced alterations in cholinergic activity as assessed by the rate of HACU and the steady-state concentration of ACh. Furthermore, data support the hypothesis that the administration of choline increases the ability of central cholinergic neurons to synthesize ACh under conditions of increased neuronal activity.  相似文献   

4.
A simple, reliable method was developed for measuring brain acetylcholine (ACh) turnover using HPLC methodology. Mice were injected intravenously with [3H]choline ([3H]Ch), and the turnover rate of ACh was calculated from the formation of [3H]ACh. Ch and ACh were separated from phosphorylcholine and from other radioactive compounds using tetraphenylboron extraction and counterion/reverse-phase chromatography. Endogenous Ch and ACh were quantified electrochemically through hydrogen peroxide production in a postcolumn reactor containing covalently bonded ACh esterase and Ch oxidase. Labeled Ch and ACh were quantified in the same sample by collecting the chromatographic fractions for radioactive content determinations. The method is rapid, well adapted to large series, and highly reproducible, with recoveries of 72.1% for Ch and 79.3% for ACh. The turnover value in mouse cerebral hemispheres was 16.02 nmol g-1 min-1 and decreased to 9.94 nmol g-1 min-1 in mice treated with oxotremorine.  相似文献   

5.
The effects of intraperitoneally administered 4-(1-naphthylvinyl)pyridine (NVP; 200 mg/kg) on the concentrations of acetylcholine (ACh), choline (Ch), and acetyl-CoA (AcCoA) in rat striatum, cortex, hippocampus, and cerebellum were investigated. Twenty minutes after treatment, the content of ACh was significantly diminished, whereas that of Ch was increased. In response to stress (swimming for 20 min), these changes were enhanced. However, the AcCoA content did not change in any of the brain regions. It is thus very likely that the decrease of brain ACh concentration induced by NVP is due to the drug's effect on choline acetyltransferase (ChAT) and/or the reduction of the high-affinity Ch uptake, and not on the availability of AcCoA. Presumably, the pharmacologically diminished activity of ChAT may become the rate-limiting factor in the maintenance of ACh levels in cholinergic neurons.  相似文献   

6.
Abstract: Changes in extracellular levels of acetylcholine (ACh) and choline (Ch) in the striatum of rats were examined by in vivo microdialysis after intraperitoneal injections of drugs. A dopamine D2 antagonist, sulpiride (20 mg/kg), and a muscarinic antagonist, atropine (3.5 mg/kg), increased ACh levels and decreased Ch levels. On the contrary, the D2 agonist (±)-2-( N -phenylethyl- N -propyl)amino-5-hydroxytetralin (N-434; 5 mg/kg) and an anesthetic, pentobarbital (50 mg/kg), decreased ACh levels and increased Ch levels. Perfusion of 10 µ M hemicholinium-3 (HC-3), a Ch uptake inhibitor, through the striatum induced a complete inhibition of ACh release and increased Ch levels in all drug-treated groups. The degree of relative increase in the level of Ch induced by HC-3 differed among the drug-pretreated groups; compared with the control group, the relative increase was larger in the sulpiride- and atropine-treated groups and smaller in the N-434 and pentobarbital-treated groups. Thus, we demonstrated reciprocal relations between extracellular concentrations of Ch and ACh after treatments by drugs. The data suggest that in the striatum, which is rich in cholinergic innervation, the extracellular Ch concentration is to a large extent determined by activity of the cholinergic transmission reflected in high-affinity choline uptake.  相似文献   

7.
A modified microbore high-performance liquid chromatography-immobilized enzyme reactor-electrochemical detection system for acetylcholine (ACh) and choline (Ch) was developed. The system used the horseradish peroxidase and a solution mediator ferrocene to convert the analyte into an oxidized ferrocene species which was detected electrochemically by reduction at 0 mV. There was an excellent linear relationship between the concentration of ACh/Ch and the peak height over the range of 1-5000 nmol/l. The limit of detection for ACh was 2 fmol/5 microl (S/N=3:1). Compared with the common method recommended by Bioanalytical System Inc. (BAS), this method exhibits a 200-fold improvement in the detection limit. The ACh and Ch levels in rat brain microdialysate were examined.  相似文献   

8.
Abstract: Nerve growth factor (NGF) treatment of primary cultures of embryonic day 17 rat basal forebrain differentially altered activity of choline acetyltransferase (ChAT) and high-affinity choline transport; ChAT specific activity was increased by threefold in neurons grown in the presence of NGF for between 4 and 8 days, whereas high-affinity choline transport activity was not changed relative to control. Dose-response studies revealed that enhancement of neuronal ChAT activity occurred at low concentrations of NGF with an EC50 of 7 ng/ml, with no enhancement of high-affinity choline transport observed at NGF concentrations up to 100 ng/ml. In addition, synthesis of acetylcholine (ACh) and ACh content in neurons grown in the presence of NGF for up to 6 days was increased significantly compared with controls. These results suggest that regulation of ACh synthesis in primary cultures of basal forebrain neurons is not limited by provision of choline by the high-affinity choline transport system and that increased ChAT activity in the presence of NGF without a concomitant increase in high-affinity choline transport is sufficient to increase ACh synthesis. This further suggests that intracellular pools of choline, which do not normally serve as substrate for ACh synthesis, may be made available for ACh synthesis in the presence of NGF.  相似文献   

9.
Abstract: An existing method for measuring acetylcholine (ACh) and choline (Ch) is shown to be useful formeasuring the turnover rate of ACh in mouse brain. Methl-[3H]Ch is injected into mice. They are killed atdifferent times by microwave irradiation and Ch and AChextracted and separated by reverse-phase HPLC. Ch andACh are converted to hydrogen peroxide by a post-column enzyme reaction. Hydrogen peroxide, which isdirectly related to the tissue content of Ch or ACh, isdetermined electrochemically. The fractions that corre-spond to the detector response for Ch and ACh are col-lected for the measurement of radioactivity. In this wayspecific radioactivities of endogenous Ch and ACh areestimated in the same sample. We used the specific ra-dioactivity values determined by this procedure to esti-mate the turnover of ACh for striatum, cerebral cortex, and hippocampus of the mouse.  相似文献   

10.
The relationships between presynaptic acetylcholinesterase (AChE) and high-affinity choline uptake (HACU) were investigated using a monolayer of rat cortex synaptosomes in superfusion conditions. The following sets of experiments were performed: determination of [3H]choline ([3H]Ch) uptake during superfusion with [3H]Ch; determination of [3H]Ch uptake during superfusion with acetylcholine (ACh) tritiated in the Ch moiety; evaluation of ACh hydrolysis during superfusion with ACh labelled in the acetate moiety; and comparison of the uptake of [3H]Ch generated by hydrolysis of [3H]ACh with that occurring during superfusion with [3H]Ch. Intact ACh was not taken up by superfused synaptosomes. The uptake of [3H]Ch during superfusion with 1 or 0.1 microM [N-methyl-3H]ACh was two-thirds of that occurring during superfusion with the same concentrations of [3H]Ch. The amount of [3H]Ch produced by hydrolysis during 16 min of superfusion was 1/25 of the amount passing through the synaptosomal monolayer during 16 min of superfusion with [3H]Ch. The results indicate that presynaptic AChE and HACU are located in close proximity to each other on the cholinergic terminal membrane, an observation suggesting the possibility of a functional coupling between the two mechanisms.  相似文献   

11.
Choline and acetylcholine metabolism in rat neostriatal slices   总被引:4,自引:3,他引:1  
Choline (Ch) uptake and release and acetylcholine (ACh) synthesis and release have been studied by gas chromatography mass spectrometry (GCMS) in slices of rat neostriatum in vitro to assess the effects of depolarization by 25 mM K+ and the influence of elevated concentrations of Ch in the incubation medium. During the first 60 min after preparation, 25 mM K+ increased ACh release by 182% and reduced ACh levels by 40%. The rate of ACh synthesis was unchanged. After a 1-h equilibration period, the rate of ACh synthesis was considerably less (2.41 nmol mg-1 h-1, compared to 9.78 nmol mg-1 h-1). Exposure to 25 mM K+ during the second hour increased the rate to 6.47 nmol mg-1 h-1. During the first 10 min of exposure to 25 mM K+, ACh synthesis was reduced, regardless of incubation. Increasing concentrations of external [2H4]Ch apparently favored initial rates of net ACh synthesis, since the rank order of initial net ACh synthesis rates is the same as the rank order of external [2H4] Ch concentration under both normal and depolarized conditions. However, the only significant effect of external [2H4]Ch on ACh metabolism was that it increased ACh release during the initial 10 min, when the preparation was depolarized with K+. The efflux of endogenous [2H0]Ch was increased initially (10 min) and slowed over a 60-min period by 25 mM K+, and increased when [2H4]Ch in the medium was increased. Changes in ACh synthesis and release were dependent upon the time exposure of slices to high K+, and the results suggest that Ch favors initial rates of ACh synthesis, but that Ch influences ACh release primarily under conditions of stress (i.e., depolarization).  相似文献   

12.
The effect of McN-A-343 and oxotremorine on acetylcholine (ACh) release and choline (Ch) transport was studied in corticocerebral synaptosomes of the guinea pig. The synaptosomes were preloaded with [3H]Ch after treatment with the irreversible cholinesterase inhibitor, diisopropyl fluorophosphate, and then tested for their ability to release isotope-labeled ACh and Ch in the presence and absence of these agents. The kinetics of release were determined at the resting state (basal release) and in the presence of 50 mM K+. Under either condition, McN-A-343 enhanced the release of isotope-labeled ACh, whereas oxotremorine inhibited the K(+)-evoked release but had no effect on the basal release. The enhancing effect of McN-A-343 on basal ACh release was fully blocked by the selective M1 muscarinic antagonist, pirenzepine (100 nM). In contrast to its enhancing effect on ACh release, McN-A-343 potently inhibited Ch efflux as well as Ch influx. These effects were not blocked by atropine, a nonselective muscarinic antagonist. Oxotremorine had no effect on Ch transport. Binding studies showed that McN-A-343 was 3.6-fold more potent in displacing radiolabeled quinuclidinyl benzilate from cerebral cortex muscarinic receptors (mostly M1 subtype) than from cerebellar receptors (mostly M2 subtype), whereas oxotremorine was 2.6-fold more potent in the cerebellum. The displacements of radio-labeled pirenzepine and cis-dioxolane confirmed the M1 subtype preference of McN-A-343 and the M2 subtype preference of oxotremorine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Electrical stimulation of the chick ciliary nerve leads to a frequency-dependent increase in the Na+-dependent high affinity uptake of [3H]choline (SDHACU) and its conversion to acetylcholine (ACh) in the nerve terminals innervating the iris muscle. The forces that drive this choline (Ch) uptake across the presynaptic membrane were evaluated. Depolarization with increased [K+] out or veratridine decreases Ch accumulation. In addition to the electrical driving force, energy is provided by the Na+ gradient. Inhibition of the Na,K-ATPase decreased the Ch taken up. Thus, changes in the rate of Ch transport are dependent on the electrochemical gradients for both Ch and Na+. Ch uptake and ACh synthesis were increased after a conditioning preincubation with high [K+] out or veratridine. As is the case for electrical stimulation, this acceleration of Ch uptake and ACh synthesis was strongly dependent on the presence of Ca++ in the incubation medium. Na+ influx through a TTX-sensitive channel also contributed to this acceleration. Inasmuch as membrane depolarization reduces the initial velocity of Ch uptake and ACh synthesis, their increases during electrical stimulation therefore cannot be the direct effect of the depolarization phase of the action potential. Instead they are the result of the ionic fluxes accompanying the presynaptic spike. It is concluded that stimulation of Ch uptake and ACh synthesis by nerve activity depends first, on the ACh release elicited by Ca++ influx after depolarization and second, on the activation of the Na,K-ATPase due to Na+ entry. Furthermore, it is suggested that the release of ACh after stimulation drives translocation of cytoplasmic ACh into a protected compartment (probably vesicular). This recompartmentation of intraterminal ACh stimulates ACh synthesis by mass action, allowing further accumulation of Ch.  相似文献   

14.
A sandwich-type enzyme reactor in which the enzymes are physically immobilized in a minimal dead space between two cellulose membranes, resulting in improved sensitivity, was developed for the electro-chemical detection of choline (Ch) and acetylcholine (ACh). The reactor contains the enzymes choline oxidase with or without acetylcholine esterase, for the detection of ACh and Ch, respectively. For the HPLC analysis of Ch and ACh the detection system was coupled post column. Levels of Ch and ACh of rat striatum tissue and human cerebrospinal fluid were found to be similar to those determined with published methods. Because of low back pressure--a further advantage of the reactor--the detection system could also be directly coupled to the outlet of a microdialysis device, allowing the on-line real-time measurement of extracellular brain Ch. The versatility of the enzyme reactor for the monitoring of analytes in HPLC eluates, flow injection analysis, with or without prepurification, is emphasized. The usefulness of the reactor-detector system in biomedical applications is illustrated by the measurement of increases of rat striatal extracellular Ch following cardiac arrest.  相似文献   

15.
The Role of Chloride in Acetylcholine Metabolism   总被引:1,自引:1,他引:0  
Abstract: The chloride dependence of acetylcholine (ACh) synthesis and release and of choline uptake was studied in synaptosomal preparations from rat brain. The substitution of propionate for chloride, in the presence of 35 m m -potassium, lowered the ACh content of the synaptosomes. However, in the presence of 5 m m -potassium, the ACh level in synaptosomes was reduced, but significantly less so. Propionate had no effect on choline acetyltransferase (EC 2.3.1.6) activity when measured in a standard chloride-containing medium. In the presence of propionate, the spontaneous release of ACh was unchanged, but potassium-stimulated release of ACh was markedly reduced as compared with a chloride-containing medium. The synthesis of ACh, as measured by the net increase in the amount of ACh in the synaptosomes and that released to the medium, was reduced with propionate at 5 m m -potassium and was totally inhibited when the potassium concentration was increased to 35 m m . Choline uptake studies revealed that with propionate only a low-affinity component of the choline transport system existed. Further, the V max was markedly reduced when the potassium concentration was increased to 35 m m . The results suggest that under certain conditions choline transported by a low-affinity system might provide a substantial source of choline for ACh synthesis.  相似文献   

16.
Choline Transport and Metabolism in Soman-or Sarin-Intoxicated Brain   总被引:2,自引:1,他引:1  
The metabolism and blood-brain transport of choline (Ch) were investigated in perfused canine brain under control conditions and for 60 min after inhibition of brain cholinesterases by the organophosphorus (OP) compounds soman (pinacolylmethylphosphonofluoridate). Ch and acetylcholine (ACh) in blood and brain samples were analyzed using gas chromatography-mass spectrometry methods. Net transport of Ch was determined by Ch analysis in arterial and venous samples. Unidirectional transport of [3H]Ch was determined using the indicator dilution method. During control perfusion periods of 90 min, net efflux of brain Ch occurred at a rate of 1.6 +/- 0.4 nmol/g/min, and the Ch content of the recirculated perfusate increased 10-fold to approximately 8 microM. Brain Ch content increased in proportion to the increase in perfusate Ch level, but brain ACh was unaltered. Rapid administration of soman (100 micrograms) or sarin (400 micrograms) into the arterial perfusate after a 40-min control period resulted in a greater than 10-fold increase in ACh content in cerebral cortex, brainstem, and hippocampus. The ACh content of cerebellum increased only slightly. The Ch level in all four brain regions studied also increased two- to fourfold above control levels. Ch efflux from brain, however, decreased to 0.2 +/- 0.1 nmol/g/min during the 60 min after OP exposure. Unidirectional influx of [3H]Ch was 0.49 +/- 0.07 nmol/g/min before and did not change significantly 10 or 40 min after OP exposure, thus indicating that the Ch transporter of the brain endothelial cell is not directly inhibited.2+ Based on these results, it is proposed that (a) efflux of brain Ch occurs from the extracellular compartment, which becomes depleted when ACh breakdown is inhibited;(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The synthesis rate of brain acetylcholine (ACh) was estimated in mice following i.v. administration of [3H]choline (Ch). The measurements were performed 1 min after the tracer injection, using the [3H]ACh/[3H]Ch specific radioactivity ratio as an index of ACh synthesis rate. Endogenous and labeled Ch and ACh were quantified using HPLC methodology. Oxotremorine and physostigmine (0.5 mg/kg, i.p.) increased the steady state concentration of brain ACh by +130% and 84%, respectively and of Ch by +60% (oxotremorine); they decreased ACh synthesis by 62 and 55%, respectively. By contrast, scopolamine (0.7 mg/kg, i.p.) decreased the cerebral content of Ch by –26% and of ACh by –23% without enhancing the synthesis of ACh. The results show the utility of HPLC methodology in the investigation of ACh turnover.  相似文献   

18.
Uptake of labeled choline and its incorporation into acetylcholine (ACh) were assayed at the neuromuscular junction of the extensor digitorum longus (EDL) muscle of rats aged 11 (mature adult) and 27 (aged) months. Under resting conditions, there were no significant differences in muscle ACh or choline levels. Following a 1-h incubation in labeled choline, however, tissue from the younger rats contained significantly greater amounts of labeled choline and labeled ACh; the specific activities of ACh and choline were nearly 10-fold higher in the 11-month-old animals, indicating reduced uptake of labeled choline in the older animals. ACh and choline efflux rates under resting conditions did not change with age, indicating an uncoupling of exogenous choline uptake and ACh efflux in EDL during aging. During nerve stimulation (1 Hz), the amount of labeled choline incorporated into ACh was 150% greater in the aged animals. The specific activity of ACh released during stimulation was correspondingly greater in the 27-month-old animals, although total ACh released did not change appreciably with age. There were no age-related differences in choline acetyltransferase activity. Contrasting results were obtained from diaphragm in previous studies; the linkage between choline uptake and ACh efflux was maintained during rest and stimulation in the diaphragm. Hypothetically, these differences between EDL and diaphragm may be related to their diverse activation patterns: EDL is recruited much less frequently and less regularly than diaphragm, a continually active vital muscle.  相似文献   

19.
Abstract: Primary rat fibroblasts genetically modified to express Drosophila choline acetyltransferase (dChAT) synthesize and release acetylcholine (ACh) in vitro. The ACh produced from the transduced fibroblasts was found to be enhanced by increasing amounts of choline chloride in the culture media. These dChAT-expressing cells were then implanted into the intact hippocampus of adult rats and in vivo microdialysis was performed 7–10 days after grafting to assess the ability of the cells to produce ACh and respond to exogenous choline in vivo. Samples collected from anesthetized rats revealed fourfold higher levels of ACh around dChAT grafts than from either non-grafted or control-grafted hippocampi. Localized choline infusion (200 μ) through the dialysis probes was found to induce a selective twofold increase in ACh release only from the dChAT-expressing fibroblasts. These results indicate not only that dChAT-expressing fibroblasts continue to synthesize and secrete ACh for at least 10 days after intracerebral grafting, but that the levels of ACh can be manipulated in vivo. The ability to regulate products within genetically modified cells in vivo may provide a powerful avenue for exploring the role of discrete substances within the CNS.  相似文献   

20.
The objective of these experiments was to determine whether preincubating hippocampal slices with choline provides precursor that can be used during a subsequent incubation to support or enhance the synthesis of acetylcholine (ACh). Slices were preincubated for 60 min with 0, 10, 25, or 50 microM choline, washed, resuspended, and then incubated for 10 min in choline-free buffer containing 4.74 (Krebs-Ringer bicarbonate, KRB) or 25 mM KCl. The tissue contents of ACh and choline were determined prior to and after the preincubation, as well as after the incubation; the amounts of ACh and choline released were measured, and ACh synthesis was calculated. Preincubation in the absence of choline increased the tissue content of ACh to 242% of original levels; preincubation with 10 microM choline did not lead to a further increase, but preincubation with 25 or 50 microM choline increased the ACh content to 272% of original levels, significantly greater than that of slices preincubated with either 0 or 10 microM choline. When tissues were subsequently incubated for 10 min with either KRB or 25 mM KCl, ACh release from slices preincubated with 50 microM choline was greater than from slices preincubated with 0, 10, or 25 microM choline. Incubation of slices with KRB did not alter the tissue content of ACh, but when tissues were incubated with 25 mM KCl, the ACh content of slices preincubated with 0 or 10 microM choline decreased significantly, whereas that of slices preincubated with 25 or 50 microM choline did not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号