首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palmitate increased AMPK (5′-AMP-activated protein kinase) activity, glucose utilization and 2-DOG (2-deoxyglucose) transport in rat adipocytes. All three effects were blocked by the AMPK inhibitor Compound C, leading to the conclusion that in response to an increase in long-chain NEFA (non-esterified fatty acid) concentration AMPK mediated an enhancement of adipocyte glucose transport, thereby providing increased glycerol 3-phosphate for FA (fatty acid) esterification to TAG (triacylglycerol). Activation of AMPK in response to palmitate was not due to an increase in the adipocyte AMP:ATP ratio. Glucose decreased AMPK activity and effects of palmitate and glucose on AMPK activity were antagonistic. While insulin had no effect on basal AMPK activity insulin did decrease AMPK activity in the presence of palmitate and also decreased the percentage effectiveness of palmitate to increase the transport of 2-DOG. It is suggested that activation of adipocyte AMPK by NEFA, as well as decreasing the activity of hormone-sensitive lipase, could modulate adipose tissue dynamics by increasing FA esterification and, under certain circumstances, FA synthesis.  相似文献   

2.
Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous “beige,” and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL.  相似文献   

3.
Triacylglycerol (TAG) stored in adipose tissue can be rapidly mobilized by the hydrolytic action of lipases, with the release of fatty acids (FA) that are used by other tissues during times of energy deprivation. Unlike synthesis of TAG, which occurs not only in adipose tissue but also in other tissues such as liver for very-low-density lipoprotein formation, hydrolysis of TAG, lipolysis, predominantly occurs in adipose tissue. Until recently, hormone-sensitive lipase was considered to be the key rate-limiting enzyme responsible for regulating TAG mobilization. However, recent studies on hormone-sensitive lipase-null mice have challenged such a concept. A novel lipase named desnutrin/ATGL has been recently discovered to play a key role in lipolysis in adipocytes. Lipolysis is under tight hormonal regulation. Although opposing regulation of lipolysis in adipose tissue by insulin and catecholamines is well understood, autocrine/paracrine factors may also participate in its regulation. Intricate cooperation of these endocrine and autocrine/paracrine factors leads to a fine regulation of lipolysis in adipocytes, needed for energy homeostasis. In this review, we summarize and discuss the recent progress made in the regulation of adipocyte lipolysis.  相似文献   

4.
1. The activity of lipoprotein lipase (LPL) was measured in whole adipose tissue from 9 identified adipose depots of sedentary, fasting adult guinea pigs and following 30 min of exercise or voluntary ingestion of chow, and in adipocyte and stromal-vascular fractions from exercised specimens. 2. In sedentary, fasting specimens, LPL activity was up to 4 times higher in the small intermuscular depots than in the perirenal and epididymal depot (Table 1). 3. LPL activity increased significantly after feeding only in the large superficial depot, groin, and in the perirenal depot. LPL activity decreased after exercise only in the 2 intermuscular depots and in small anterior superficial depots. These effects of exercise were consistently greater in males than in females (Table 3). 4. Following exercise, there was up to twice as much LPL in the adipocytes as in the stromal-vascular fraction of the intermuscular depots, about 50% more in adipocytes from the minor superficial depots and about equal quantities in the 2 fractions of the intra-abdominal and groin depots (Table 2). 5. The data demonstrate the physiological inhomogeneity of both superficial and internal adipose depots, and are consistent with the hypothesis that LPL originating from adipose tissue may enter the circulation.  相似文献   

5.
The aim of the present study was to evaluate the effects of 24 hours of starvation on lipoprotein lipase (LPL) activity in various depots of white and brown adipose tissues in control rats and in rats with two different degrees of overweight, both induced by dietary treatment. In control rats, no changes in LPL immunoreactive mass were observed in either white or brown adipose tissues after fasting, whereas the effects of food deprivation on enzyme activity were opposite in white versus brown adipose tissues. The LPL activity response to fasting was impaired by obesity: White adipose depots of cafeteria obese rats showed a lower ability to downregulate LPL during fasting and the increased LPL activity induced by fasting in brown adipose depots was less intense in the obese rats compared with control animals. When the degree of overweight was reduced, the differences between obese and control rats were also attenuated.  相似文献   

6.
Indirect evidence suggests that impaired triglyceride storage in the subcutaneous fat depot contributes to the development of insulin resistance via lipotoxicity. We directly tested this hypothesis by measuring, in vivo, TG synthesis, de novo lipogenesis (DNL), adipocyte proliferation, and insulin suppression of lipolysis in subcutaneous adipose tissue of BMI-matched individuals classified as insulin resistant (IR) or insulin sensitive (IS). Nondiabetic, moderately obese subjects with BMI 25–35 kg/m2, classified as IR or IS by the modified insulin suppression test, consumed deuterated water (2H2O) for 4 weeks. Deuterium incorporation into glycerol, palmitate, and DNA indicated TG synthesis, DNL, and adipocyte proliferation, respectively. Net TG synthesis and DNL in adipose cells were significantly lower in IR as compared with IS subjects, whereas adipocyte proliferation did not differ significantly. Plasma FFAs measured during an insulin suppression test were 2.5-fold higher in IR subjects, indicating resistance to insulin suppression of lipolysis. Adipose TG synthesis correlated directly with DNL but not with proliferation. These results provide direct in vivo evidence for impaired TG storage in subcutaneous adipose tissue of IR as compared with IS. Relative inability to store TG in the subcutaneous depot may represent a mechanism contributing to the development of insulin resistance in the setting of obesity.  相似文献   

7.
Thiazolidinediones (TZDs) increase tissue insulin sensitivity in diabetes. Here, we hypothesize that, in adipose tissue, skeletal muscle, and heart, alterations in protein-mediated FA uptake are involved in the effect of TZDs. As a model, we used obese Zucker rats, orally treated for 16 days with 5 mg rosiglitazone (Rgz)/kg body mass/day. In adipose tissue from Rgz-treated rats, FA uptake capacity increased by 2.0-fold, coinciding with increased total contents of fatty acid translocase (FAT/CD36; 2.3-fold) and fatty acid transport protein 1 (1.7-fold) but not of plasmalemmal fatty acid binding protein, whereas only the plasmalemmal content of FAT/CD36 was changed (increase of 1.7-fold). The increase in FA uptake capacity of adipose tissue was associated with a decline in plasma FA and triacylglycerols (TAGs), suggesting that Rgz treatment enhanced plasma FA extraction by adipocytes. In obese hearts, Rgz treatment had no effect on the FA transport system, yet the total TAG content decreased, suggesting enhanced insulin sensitivity. Also, in skeletal muscle, the FA transport system was not changed. However, the TAG content remained unaltered in skeletal muscle, which coincided with increased cytoplasmic adipose-type FABP content, suggesting that increased extramyocellular TAGs mask the decline of intracellular TAG in muscle. In conclusion, our study implicates FAT/CD36 in the mechanism by which Rgz increases tissue insulin sensitivity.  相似文献   

8.
Lipoprotein lipase (LPL) is the enzyme responsible for hydrolysis of circulating triglyceride-rich lipoproteins and is important for storage of adipocyte lipid. To study the regulation of LPL synthetic rate in adipose tissue, primary cultures of isolated rat adipocytes were pulse-labeled with [35S]methionine, and LPL was immunoprecipitated with an LPL-specific antibody. A pulse-chase experiment identified the cellular and secreted forms of LPL as a 55-57-kDa protein. In the presence of heparin, there was a large increase in secretion of newly synthesized LPL from the cells, although heparin did not stimulate cellular LPL synthetic rate. When cells were exposed to insulin for 2 h, pulse-labeling revealed that insulin stimulated a maximal dose-related increase in LPL synthetic rate of 300% of control. This increase in LPL synthetic rate was observed after an exposure to insulin for as little as 60 min and was accompanied by only a 10-25% increase in total protein synthesis. In addition, insulin had no effect on the turnover of intracellular LPL. Using a cDNA probe for LPL, insulin induced a 2-fold increase in the LPL mRNA. Thus, insulin stimulated an increase in specific LPL mRNA in isolated rat adipocytes. This increase in LPL mRNA then leads to an increase in the synthetic rate of the LPL protein.  相似文献   

9.
Retinol-binding protein 4 (RBP4) and nicotinamide phosphoribosyltransferase/visfatin (Nampt/visfatin) are adipocyte-secreted proteins (adipokines) whose relevance to the metabolic syndrome and regulation in obesity remain controversial. Here, we tested the hypothesis that adipose tissue expression and circulating levels of these two adipokines are elevated in obesity by analyzing their changes in both a genetic and a diet-induced model of obesity in the rat (obese FA/ FA Zucker rats and Wistar rats fed a cafeteria diet, respectively). Compared with lean controls, obese FA/ FA rats were hyperleptinemic, hyperinsulinemic, and insulin resistant and had reduced RBP4 serum levels and mRNA levels in adipose depots, unchanged Nampt/visfatin serum levels, and reduced Nampt/visfatin mRNA levels selectively in the inguinal adipose depot. Cafeteria diet-induced obesity resulted in increased fed blood glucose levels, a variable degree of insulin resistance, unchanged serum Nampt/visfatin and RBP4 levels, and reduced mRNA levels of both adipokines in several adipose depots. Hence, increases in RBP4 or Nampt/visfatin do not accompany obesity and insulin resistance in the models examined.  相似文献   

10.
The amount of triacylglycerol (TAG) that accumulates in adipose tissue depends on 2 opposing processes: lipogenesis and lipolysis. We have previously shown that the weight and lipid content of epididymal (EPI) adipose tissue increases in growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The aim of this work was to study the pathways involved in lipogenesis and lipolysis, which ultimately regulate lipid accumulation in the tissue. De novo fatty acid synthesis was evaluated in vivo and was similar for rats fed an LPHC diet or a control diet; however, the LPHC-fed rats had decreased lipoprotein lipase activity in the EPI adipose tissue, which suggests that there was a decreased uptake of fatty acids from the circulating lipoproteins. The LPHC diet did not affect synthesis of glycerol-3-phosphate (G3P) via glycolysis or glyceroneogenesis. Glycerokinase activity - i.e., the phosphorylation of glycerol from the hydrolysis of endogenous TAG to form G3P - was also not affected in LPHC-fed rats. In contrast, adipocytes from LPHC animals had a reduced lipolytic response when stimulated by norepinephrine, even though the basal adipocyte lipolytic rate was similar for both of the groups. Thus, the results suggest that the reduction of lipolytic activity stimulated by norepinephrine seems essential for the TAG increase observed in the EPI adipose tissue of LPHC animals, probably by impairment of the process of activation of lipolysis by norepinephrine.  相似文献   

11.
Two fatty acid binding proteins (FABPs) are expressed in adipose tissue, adipocyte lipid binding protein (ALBP) and keratinocyte lipid binding protein (KLBP). This study investigated FABP expression in visceral and subcutaneous human adipose tissue depots and associations with lipolytic differences between the depots and circulating insulin concentrations. ALBP and KLBP (protein and RNA) were quantified in subcutaneous and omental adipose tissue from obese individuals and expressed relative to actin. ALBP RNA and protein expression was significantly higher in subcutaneous compared to omental adipose tissue (both p < 0.05), whereas KLBP RNA and protein expression was no different between the two sites. There were significant inverse correlations between serum insulin concentrations and the ALBP/KLBP RNA ratio in both subcutaneous and omental adipose tissue (both p < 0.02). Basal rates of glycerol and fatty acid release measured in adipocytes isolated from subcutaneous and omental adipose tissue were significantly higher in the former (p 0.02). Therefore the relative ALBP/KLBP content of human adipose tissue is different in different adipose tissue depots and at the RNA level is related to the circulating insulin concentration, at least in obese subjects. The higher rates of basal lipolysis in adipocytes isolated from subcutaneous compared to omental adipose tissue might be related to the increased ALBP content of the former. Therefore adipose tissue FABPs are interesting candidates for investigation to further our understanding of the insulin resistance syndrome and regulation of lipolysis.  相似文献   

12.
Agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma) are insulin sensitizers that potently improve lipemia in rodents. This study aimed to determine the contribution of lipid secretion vs. clearance and the involvement of white adipose tissue (WAT) and brown adipose tissue (BAT) in the rapid hypolipidemic action of PPARgamma agonism. Male rats were treated with rosiglitazone (RSG; 15 mg x kg(-1) x day(-1)) for 1 to 4 days, and determinants of lipid metabolism were assessed postprandially. Serum triglycerides (TG) were lowered (-54%) after 3 days of RSG treatment, due to accelerated clearance from blood without contribution of changes in secretion rates. Both BAT and WAT were the major sites of RSG action on TG clearance, the increase in TG-derived fatty acid (FA) uptake reaching threefold in BAT and 60-90% in WAT depots. Accelerated TG clearance was associated with increased lipoprotein lipase (LPL) activity mostly in BAT. Serum nonesterified FA were lowered (-20%) by a single dose of RSG, an effect associated with increased expression levels of FA binding/transport (fatty acid binding protein-4), esterification (diacylglycerol acyltransferase-1), and recycling glycerol kinase and phosphoenolpyruvate carboxykinase enzymes in BAT and WAT, suggesting FA trapping. After 4 days of RSG treatment, nonesterified fatty acid (NEFA) uptake was also stimulated in both BAT (2.5-fold) and WAT (40%). These findings demonstrate the causal involvement of increased efficiency of LPL-mediated TG clearance and reveal the important contribution of TG-derived and albumin-bound FA uptake by BAT in the rapid hypolipidemic action of PPARgamma agonism in the rat.  相似文献   

13.
EDENS, N. K., A. MOSHIRFAR, G. M. POTTER, S. K. FRIED, AND T. W. CASTONGUAY. Adrenalectomy reduces adiposity by decreasing feed efficiency, not direct effects on white adipose tissue. Obes Res. Objective: This study was conducted to establish the effects of adrenalectomy (ADX) on adipose tissue metabolism in male Sprague—Dawley rats fed a standard chow diet. Research Methods and Procedures: The effects of adrenalectomy on adipose cell size, lipoprotein lipase activity, and basal and insulin-stimulated glucose conversion to lipid and lipolysis were measured. Results: ADX decreased body weight gain during the postoperative period in the absence of changes in food intake; feed efficiency was decreased significantly. ADX decreased adipocyte size by 30%. ADX increased adipocyte response to the effect of submaximal concentrations of insulin on lipid synthesis and lipolysis. ADX decreased maximally insulin-stimulated lipid synthesis, but this effect was accounted for by decreased adipocyte size. In contrast, ADX had no effect on maximally insulin-inhibited lipolysis. ADX did not affect heparin-releasable LPL. The small effect of ADX on residual extractable adipose tissue LPL activity was accounted for by decreased fat cell size. Discussion: ADX decreased adiposity in the absence of changes in food intake, lipoprotein lipase activity, and adipocyte lipid metabolism. The effect is best attributed to decreased feed efficiency.  相似文献   

14.
15.
The Δ-6 desaturase (D6D) enzyme is not only critical for the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid (ALA), but recent evidence suggests that it also plays a role in adipocyte lipid metabolism and body weight; however, the mechanisms remain largely unexplored. The goal of this study was to investigate if a D6D deficiency would inhibit triacylglycerol storage and alter lipolytic and lipogenic pathways in mouse white adipose tissue (WAT) depots due to a disruption in EPA and DHA production. Male C57BL/6J D6D knockout (KO) and wild-type (WT) mice were fed either a 7% w/w lard or flax (ALA rich) diet for 21 weeks. Energy expenditure, physical activity, and substrate utilization were measured with metabolic caging. Inguinal and epididymal WAT depots were analyzed for changes in tissue weight, fatty acid composition, adipocyte size, and markers of lipogenesis, lipolysis, and insulin signaling. KO mice had lower body weight, higher serum nonesterified fatty acids, smaller WAT depots, and reduced adipocyte size compared to WT mice without altered food intake, energy expenditure, or physical activity, regardless of the diet. Markers of lipogenesis and lipolysis were more highly expressed in KO mice compared to WT mice in both depots, regardless of the diet. These changes were concomitant with lower basal insulin signaling in WAT. Collectively, a D6D deficiency alters triacylglycerol/fatty acid cycling in WAT by promoting lipolysis and reducing fatty acid re-esterification, which may be partially attributed to a reduction in WAT insulin signaling.  相似文献   

16.
Adipose tissue normally has low glycerol kinase activity, but its expression is enhanced under conditions of augmented insulin sensitivity and/or obesity. Since these conditions occur during early pregnancy, the comparative utilization of glucose or glycerol by isolated adipocytes from rats at 0, 7, 14, or 20 days of pregnancy was studied. Incubations were carried out in the presence of [U14C]-glucose or -glycerol in medium supplemented or not with 5 mM glucose and 100 nM insulin. The conversion of glucose into esterified fatty acids and glyceride glycerol was greatest in adipocytes from 7-day pregnant rats, the effect being further enhanced by insulin. Both the amount of aquoporin 7 and the in vitro conversion of glycerol into glyceride glycerol were greatest in adipocytes of 7-day pregnant rats, the later being unaltered by insulin. In the presence of glucose, the overall glycerol utilization was lower than in its absence and glycerol conversion into glyceride glycerol was further decreased by insulin, the effect only being significant in adipocytes from 7-day pregnant rats. It is proposed that the enhanced utilization of glycerol for glyceride glycerol synthesis in adipose tissue contributes to the net accumulation of fat depots that normally takes place in early pregnancy.  相似文献   

17.
Objective: This study investigated the effect of different sodium content diets on rat adipose tissue carbohydrate metabolism and insulin sensitivity. Methods and Procedures: Male Wistar rats were fed on normal‐ (0.5% Na+; NS), high‐ (3.12% Na+; HS), or low‐sodium (0.06% Na+; LS) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail‐cuff system. An intravenous insulin tolerance test (ivITT) was performed in fasted animals. At the end of each period, rats were killed and blood samples were collected for glucose and insulin determinations. The white adipose tissue (WAT) from abdominal and inguinal subcutaneous (SC) and periepididymal (PE) depots were weighed and processed for adipocyte isolation and measurement of in vitro rates of insulin‐stimulated 2‐deoxy‐d ‐[3H]‐glucose uptake (2DGU) and conversion of ‐[U‐14C]‐glucose into 14CO2. Results: After 6 weeks, HS diet significantly increased the BP, SC and PE WAT masses, PE adipocyte size, and plasma insulin concentration. The sodium dietary content did not influence the whole‐body insulin sensitivity. A higher half‐maximal effective insulin concentration (EC50) from the dose‐response curve of 2DGU and an increase in the insulin‐stimulated glucose oxidation rate were observed in the isolated PE adipocytes from HS rats. Discussion: The chronic salt overload enhanced the adipocyte insulin sensitivity for glucose uptake and the insulin‐induced glucose metabolization, contributing to promote adipocyte hypertrophy and increase the mass of several adipose depots, particularly the PE fat pad.  相似文献   

18.
Adipose tissue lipoprotein lipase (LPL) is a necessary enzyme for storage of very‐low‐density lipoprotein–triglyceride (VLDL‐TG), but whether it is a rate‐determining step is unknown. To test this hypothesis we included 10 upper‐body obese (UBO), 11 lower‐body obese (LBO), and 8 lean women. We infused ex vivo‐labeled VLDL‐14C‐TG and then performed adipose tissue biopsies to understand the relationship between VLDL‐TG storage and LPL activity in femoral and upper‐body subcutaneous fat. Both fractional tracer storage and rate of storage of the VLDL‐TG tracer were evaluated. VLDL‐TG storage was also examined as a function of regional adipose tissue blood flow (ATBF), insulin, VLDL‐TG turnover, regional fat mass, fat‐free mass (FFM), and fat cell size. LPL activity per adipocyte was significantly greater in obese than lean women but not significantly different per gram lipid. Both VLDL‐TG fractional tracer storage per kg lipid and VLDL‐TG storage rate per kg lipid were similar in abdominal and femoral fat in all three groups and were not significantly different between groups. Multiple regression analysis identified FFM and femoral fat mass as significant independent predictors of VLDL‐TG fractional tracer storage and insulin as a significant predictor of VLDL‐TG fatty acid storage rate. LPL activity, ATBF, and VLDL‐TG turnover did not predict VLDL‐TG storage. We conclude that lower FFM and greater plasma insulin are associated with greater VLDL‐TG deposition in abdominal subcutaneous and femoral fat. Greater femoral fat mass signals greater femoral VLDL‐TG storage. We suggest that the differences in VLDL‐TG storage in abdominal and femoral fat that occur with progressive obesity are regulated through mechanisms other than LPL activity.  相似文献   

19.
In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-14C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-14C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.  相似文献   

20.
We have examined the nutritional and insulin regulation of the mRNA expression of transmembrane fatty acid (FA) transporters [FA transport protein-1 (FATP1) and CD36] together with the lipoprotein lipase (LPL), the cytosolic FA carrier FA binding protein (FABP3), and mitochondrial FA-CoA and -carnitine palmitoyl transferase carriers (CPT)1 and -2 in Atlantic salmon tissues and myocyte cell culture. Two weeks of fasting diminished FATP1, CD36, and LPL in adipose tissue, suggesting a reduction in FA uptake, while FABP3 increased in liver, probably enhancing the transport of FA to the mitochondria. Insulin injection decreased FATP1 and CD36 in white and red muscles, while both transporters were upregulated in the adipose tissue in agreement with the role of insulin-inhibiting muscle FA oxidation and stimulating adipose fat stores. Serum deprivation of 48 h in Atlantic salmon myotubes increased FATP1, FABP3, and CPT-2, while CPT-1 was diminished. In myotubes, insulin induced FATP1 expression but decreased CD36, FABP3, and LPL, suggesting that FATP1 could be more involved in the insulin-stimulated FA uptake. Insulin increased the FA uptake in myotubes mediated, at least in part, through the relocation of FATP1 protein to the plasma membrane. Overall, Atlantic salmon FA transporters are regulated by fasting and insulin on in vivo and in vitro models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号