首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus megaterium contains an NADH-linked disulfide reductase that is specific for disulfides containing pantethine 4',4'-diphosphate moieties. This reductase is at its highest level in cells late in sporulation and in dormant spores, and could be involved in the formation and cleavage of coenzyme A-protein disulfides which take place late in sporulation and early in spore germination, respectively.  相似文献   

2.
Degradation of small, acid-soluble spore proteins during germination of Bacillus subtilis spores is initiated by a sequence-specific protease called GPR. Western blot (immunoblot) analysis of either Bacillus megaterium or B. subtilis GPR expressed in B. subtilis showed that GPR is synthesized at about the third hour of sporulation in a precursor form and is processed to an approximately 2- to 5-kDa-smaller species 2 to 3 h later, at or slightly before the time of accumulation of dipicolinic acid by the forespore. This was found with both normal levels of expression of B. subtilis and B. megaterium GPR in B. subtilis, as well as when either protein was overexpressed up to 100-fold. The sporulation-specific processing of GPR was blocked in all spoIII, -IV, and -V mutants tested (none of which accumulated dipicolinic acid), but not in a spoVI mutant which accumulated dipicolinic acid. The amino-terminal sequences of the B. megaterium and B. subtilis GPR initially synthesized in sporulation were identical to those predicted from the coding genes' sequences. However, the processed form generated in sporulation lacked 15 (B. megaterium) or 16 (B. subtilis) amino-terminal residues. The amino acid sequence surrounding this proteolytic cleavage site was very homologous to the consensus sequence recognized and cleaved by GPR in its small, acid-soluble spore protein substrates. This observation, plus the efficient processing of overproduced GPR during sporulation, suggests that the GPR precursor may autoproteolyze itself during sporulation. During spore germination, the GPR from either species expressed in B. subtilis was further processed by removal of one additional amino-terminal amino acid (leucine), generating the mature protease which acts during spore germination.  相似文献   

3.
Dormant spores of Bacillus megaterium contained no detectable reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) despite significant levels of the oxidized forms of these nucleotides (NAD and NADP). During the first minutes of spore germination there was rapid accumulation of NADH and NADPH. However, this accumulation followed the fall in optical density that is characteristic of the initiation of spore germination. Accumulation of NADH and NADPH early in germination was not blocked by fluoride or cyanide, and it occurred even when germination was carried out in the absence of an exogenous source of reducing power. In addition to pyridine nucleotide reduction, de novo synthesis also began early in germination as the pyridine nucleotide levels increased to those found in growing cells. Midlog-phase cells grown in several different media had 20 to 35 times as much total pyridine nucleotide as did dormant spores. However, as growth and sporulation proceeded, the NADH plus NAD level fell four- to fivefold whereas the NADPH plus NADP level fell by a lesser amount. From min 10 of spore germination until midway through sporulation the value for the ratio of NADH/NAD is about 0.1 (0.03 to 0.18) while the ratio of NADPH/ANDP is about 1.4 (0.3 to 2.4). Comparison of these ratios in log-phase versus stationary phase (sporulation) growth in all three growth media tested did not reveal any common pattern of changes.  相似文献   

4.
Dormant spores Bacillus megaterium contained a group of low-molecular-weight (5,000 to 11,000) basic (pI greater than 9.4) proteins (termed D, E, F, and G proteins) which could be extracted from disrupted spores with strong acids. These proteins were distinct from the previously described A, B, and C proteins which are degraded during spore germination. However, the D, E, F, and G proteins were also rapidly degraded during spore germination, accounting for 10 to 15% of the protein degraded. Proteins similar to the D, E, F, and G species were also present in spores of other bacterial species. In B. megaterium, the D, E, F, and G proteins were low or absent (less than 15% of the spore level) in vegetative and young sporulating cells and appeared only late in sporulation. The D, E, F, and G proteins were purified to homogeneity, and all contained a high percentage of hydrophilic amino acids; one protein (G) contained 31% basic amino acids and also contained tryptophan. All four proteins were rapidly degraded in vitro by dormant spore extracts. Two proteins (D and F) were degraded in vitro by the previously described spore protease which initiates degradation of the A, B, and C proteins in vivo; the spore enzyme (s) degrading proteins E and G have not been identified.  相似文献   

5.
An NADH-linked disulfide reductase specific for disulfides containing pantethine 4',4"-diphosphate moieties was purified 23,000-fold to homogeneity from spores of Bacillus megaterium. The enzyme had a native molecular weight of 122,000 with two apparently identical subunits, contained one molecule of flavin adenine dinucleotide per subunit, and was inhibited by the vicinal dithiol reagent arsenite. The enzyme was active only on disulfides containing pantethine 4',4"-diphosphate moieties, including pantethine 4',4"-diphosphate, oxidized coenzyme A, and coenzyme A in disulfide linkage to acyl carrier protein. However, the Km values for pantethine 4',4"-diphosphate and oxidized coenzyme A were 0.65 and 7.4 mM, respectively. The enzyme was at a low level in log-phase cells but increased up to 10-fold early in the stationary phase and had a similar specific activity in both the mother cell and the forespore compartment; the enzyme activity fell only slowly during spore germination and outgrowth. The enzyme was not detected in several eucaryotic sources and was present in at most a low level in a number of gram-negative bacteria. Surprisingly, the specific activity of this enzyme varied more than 200-fold in extracts from different Bacillus species, with values in B. subtilis being 5- to 6-fold lower and values in B. cereus and B. sphaericus being 8- and 35-fold higher, respectively, than the maximum value in B. megaterium. However, the high specific activity in B. sphaericus did not represent more enzyme protein than in B. megaterium. The possible function of this newly discovered enzyme is discussed.  相似文献   

6.
P M Hauser  D Karamata 《Biochimie》1992,74(7-8):723-733
A reliable method for measuring the spore DNA content, based on radioactive DNA labelling, spore germination in absence of DNA replication and diphenylamine assay, was developed. The accuracy of the method, within 10-15%, is adequate for determining the number of chromosomes per spore, provided that the genome size is known. B subtilis spores were shown to be invariably monogenomic, while those of larger bacilli Bacillus megaterium, Bacillus cereus and Bacillus thuringiensis, often, if not invariably, contain two genomes. Attempts to modify the spore DNA content of B subtilis by altering the richness of the sporulation medium, the sporulation conditions (liquid or solid medium), or by mutation, were apparently unsuccessful. An increase of spore size with medium richness, not accompanied by an increase in DNA content, was observed. The implication of the apparently species-specific spore ploidy and the influence of the sporulation conditions on spore size and shape are discussed.  相似文献   

7.
A fourfold increase in sulfhydryl content upon germination of Bacillus megaterium spores was observed by the standard fluorescein mercuric acetate assay as reported by others. However, assay of ruptured dormant spores or the use of N-ethylmaleimide and a denaturing agent on intact spores showed a constant sulfhydryl level in dormancy and in germination. The apparent increase in sulfhydryl groups observed on germination was shown to be due to inaccessibility of most sulfhydryl groups in the dormant spore to sulfhydryl reagents. The disulfide content of dormant spores showed no change on germination, nor was any evidence found for production of low-molecular-weight sulfhydryl or disulfide compounds during germination.  相似文献   

8.
Spore pool glutamic acid as a metabolite in germination   总被引:5,自引:4,他引:5       下载免费PDF全文
Spore glutamic acid pools were examined in dormant and germinating spores using colorimetric and (14)C analytical procedures. Germination of spores of Bacillus megaterium (parent strain), initiated by d-glucose, was accompanied by a rapid drop in the level of spore pool glutamate, from 12.0 mug/mg of dry spores to 7.7 mug/mg of dry spores after 30 sec of germination. Similar decreases in extractable spore pool glutamate were observed with l-alanine-initiated germination of B. licheniformis spores. On the other hand, glutamate pools of mutant spores of B. megaterium, with a requirement of gamma-aminobutyric acid for spore germination, remained unchanged for 9 min of germination, at which time more than 50% of the spore population had germinated. Evidence for conversion of spore pool glutamate to gamma-aminobutyric acid during germination of spores of B. megaterium (parent strain) was obtained.  相似文献   

9.
The protease which initiates the massive protein degradation early in bacterial spore germination has been purified from Bacillus megaterium spores. The enzyme has a molecular weight of 160,000 and contains four apparently identical subunits, but only the tetramer is enzymatically active. A radioimmunoassay has been developed for this enzyme and has been used to show that the protease is absent from growing cells, but appears early in sporulation within the developing forespore. In contrast, the protease antigen disappears rapidly during spore germination, in parallel with the loss in enzyme activity.  相似文献   

10.
Light scattering techniques provide a non-destructive probe into structural aspects concerning the dormancy, heat resistance and germination of bacterial spores. Quasi-elastic light scattering techniques are applied to a study of the diffusion and scaling properties of dormant and germinating Bacillus megaterium spores (strain KM). A translational coefficient of (5.01 ± 0.10) × 10-9 cm2/s is obtained for the dormant spore, with little apparent change during the early stages of germination. Dormant and germinated spores, however, give different scaling characteristics. The significance of these observations in terms of theories concerning the dormancy and heat resistance of spores is discussed.  相似文献   

11.
Sequence of events during Bacillus megaterim spore germination   总被引:14,自引:10,他引:4  
Levinson, Hillel S. (U.S. Army Natick Laboratories, Natick, Mass.), and Mildred T. Hyatt. Sequence of events during Bacillus megaterium spore germination. J. Bacteriol. 91:1811-1818. 1966.-An integrated investigation of the sequence of events during the germination of Bacillus megaterium spores produced on three different media-Liver "B" (LB), synthetic, and Arret and Kirshbaum (A-K)-is reported. Heat-activated spores were germinated in a mixture of glucose and l-alanine. For studies of dipicolinic acid (DPA) release and increase in stainability and phase-darkening, germination levels were stabilized by the addition of 2 mm HgCl(2). Heat resistance was measured by conventional plating techniques and by a new microscopic method. The sequence (50% completion time) of LB spore germination events was: loss of resistance to heat and to toxic chemicals (3.0 min); DPA loss (4.7 min); stainability and Klett-measured loss of turbidity (5.5 min); phase-darkening (7.0 min); and Beckman DU-measured loss of turbidity (7.2 min). The time difference between 50% completion of stainability and complete phase darkening was 1.5 min, in excellent agreement with the microgermination time of 1.49 min as determined by observation of spores darkening under phase optics. Alteration of the sporulation medium modified the 50% completion times of these germination events, and, in some cases, their sequence. In the A-K spores, the rates of loss of heat resistance and DPA were substantially higher than those of the other germination events, whereas in spores produced in the LB and synthetic media all germination events followed an approximately parallel time course. This is discussed from the point of view of spore population heterogeneity and germination mechanisms.  相似文献   

12.
Peptidase and protease activities on many different substrates have been determined in several stages of growth of Bacillus megaterium. Extracts of log-phase cells, sporulating cells, and dormant spores of B. megaterium each hydrolyzed 16 different di- and tripeptides. The specific peptidase activity was highest in dormant spores, and the activity in sporulating cells and log-phase cells was about 1.2-fold and 2- to 3-fold lower, respectively. This peptidase acticity was wholly intracellular since extracellular peptidase activity was not detected throughout growth and sporulation. In contrast, intracellular protease activity on a variety of common protein substrates was highest in sporulating cells, and much extracellular activity was also present at this time. The specific activity of intracellular protease in sporulating cells was about 50- and 30-fold higher than that in log-phase cells and dormant spores, respectively. However, the two unique dormant spores proteins known to be the major species degraded during spore germination were degraded most rapidly by extracts of dormant spores, and slightly slower by extracts from log-phase or sporulating cells. The specific activities for degradation of peptides and proteins are compared to values for intracellular protein turnover during various stages of growth.  相似文献   

13.
Dormant spores of Bacillus megaterium were activated for germination on glucose by heating them in aqueous suspension (but not if heated dry), by treating them with aqueous ethyl alcohol at 30 C, or by exposing them to water vapor at room temperature. The degree of water vapor activation depended upon the relative humidity, the time, and the temperature of exposure. Activation increased the extent and rate of glucose-induced germination and decreased the average microlag. Extended water vapor treatment also activated spores for germination induced by KI and by l-alanine. Spores activated by any of the three treatments were deactivated by treatment at 66 C, either for 18 hr in 100% ethyl alcohol or for 40 hr over P(2)O(5). Deactivated spores were reactivated by heat, by 5 m ethyl alcohol, or by water vapor. It is postulated that heating and ethyl alcohol may change the structure of liquid water, so that it is more like water vapor and can more readily penetrate to and hydrate a critical (enzymatic?) spore site, leading to activation.  相似文献   

14.
A sulfonic acid found to be a major constituent of spores of Bacillus subtilis was provisionally identified as 3-l-sulfolactic acid. This compound was completely absent from vegetative cells during growth, but large amounts accumulated in sporulating cells just before the development of refractile spores. Essentially all of the accumulated sulfolactic acid was eventually incorporated into the nature spore, where it may represent more than 5% of the dry weight of the spore. Germination resulted in the rapid and complete release into the medium of unaltered sulfolactic acid. This compound was not found in spores of Bacillus megaterium, B. cereus, or B. thuringiensis.  相似文献   

15.
Acid-soluble spore proteins of Bacillus subtilis   总被引:3,自引:12,他引:3       下载免费PDF全文
Acid-soluble spore proteins (ASSPs) comprise about 5% of the total protein of mature spores of different Bacillus subtilis strains. They consist of three abundant species, alpha, beta, and gamma, four less abundant species, and several minor species, alpha, beta, and gamma make up about 18, 18 and 36%, respectively, of the total ASSPs of strain 168, have molecular weights of 5,900, 5,9000, and 11,000, respectively, and resemble the major (A, C, and B) components of Bacillus megaterium ASSPs in several respects, including sensitivity to a specific B. megaterium spore endopeptidase. However, they have pI's of 6.58, 6.67, and 7.96, all lower than those of any of the B. megaterium ASSPs. Although strains varied in the proportions of different ASSPs, to overall patterns seen on gel electrophoresis are constant. ASSPs are located interior to the cortex, presumably in the spore cytoplasm, and are synthesized during sporulation and degraded during germination.  相似文献   

16.
17.
A homologue of the grmA spore germination gene of Bacillus megaterium and of a NaH-antiporter gene (napA) of Enterococcus hirae has been identified in Bacillus cereus 569 (ATCC 10876). The putative protein product has 58 and 43% amino acid identity with GrmA and NapA, respectively. Insertional inactivation of this B. cereus gene, named gerN, did not affect vegetative growth or sporulation. The null mutant spores were 30-fold slower to germinate in inosine (5 mM) but germinated almost normally in response to L-alanine (10 mM). The null mutant spores germinated after several hours with inosine as the sole germinant, but germination was asynchronous and the normal order of germination events was perturbed. At a suboptimal germinant concentration (50 microM), inosine germination was completely blocked in the mutant, while the rate of germination in 50 microM L-alanine was reduced to one-third of that of the wild type. The requirement for GerN function in the response to a particular germinant suggests that a germination receptor may have a specifically associated antiporter, which is required at the initiation of germination and which, in the case of the inosine receptor, is GerN. Since germination in suboptimal concentrations of L-alanine shows a delay, additional germination transporters may be required for optimal response at low germinant concentrations.  相似文献   

18.
AIMS: To elucidate the factors influencing the sensitivity of Bacillus subtilis spores in killing and disrupting by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. METHODS AND RESULTS: Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. CONCLUSIONS: Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore's cortex-lytic enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion.  相似文献   

19.
The levels of fatty acids and their distribution were determined in cultures of Bacillus megaterium during growth, sporulation, and germination. Branched-chain pentadecanoates (br-C15) were the principal fatty acids of log-phase cells. Synthesis of branched-chain tetradecanoates (br-C14) during sporulation increased the relative proportion of these branched fatty acids in sporulating cells and in mature spores. The log-phase distribution was reestablished during outgrowth of the spore. The ratio of br-C15 to br-C14 could be radically altered by addition of their respective amino acid precursors, isoleucine and valine, without seriously affecting the sporulation process. The fatty acid composition of each of the purified phospholipids from log-phase cells was the same, indicating that each phospholipid receives a portion of the fatty acid pool present in the cell at the time of its synthesis. Similarly, the fatty acids of each of the spore phospholipids resembled those of the spore extract. Phospholipids accounted for two-thirds of the fatty acids of the log-phase but only one-third of those of the spore.  相似文献   

20.
AIMS: The effect of spore density on the germination (time-to-germination, percent germination) of Bacillus megaterium spores on tryptic soy agar was determined using direct microscopic observation. METHODS AND RESULTS: Inoculum size varied from approximately 10(3) to 10(8) cfu ml(-1) in a medium where pH=7 and the sodium chloride concentration was 0.5% w/v. Inoculum size was measured by global inoculum size (the concentration of spores on a microscope slide) and local inoculum size (the number of spores observed in a given microscope field of observation). Both global and local inoculum sizes had a significant effect on time-to-germination (TTG), but only the global inoculum size influenced the percentage germination of the observed spores. CONCLUSIONS: These results show that higher concentrations of Bacillus megaterium spores encourage more rapid germination and more spores to germinate, indicating that low spore populations do not behave similarly to high spore populations. SIGNIFICANCE AND IMPACT OF THE STUDY: A likely explanation for the inoculum size-dependency of germination would be chemical signalling or quorum sensing between Bacillus spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号