共查询到20条相似文献,搜索用时 15 毫秒
1.
Site-directed mutagenesis of Bacillus subtilis N7 alpha-amylase has been performed to evaluate the roles of the active site residues in catalysis and to prepare an inactive catalytic-site mutant that can form a stable complex with natural substrates. Mutation of Asp-176, Glu-208, and Asp-269 to their amide forms resulted in over a 15,000-fold reduction of its specific activity, but all the mutants retained considerable substrate-binding abilities as estimated by gel electrophoresis in the presence of soluble starch. Conversion of His-180 to Asn resulted in a 20-fold reduction of kcat with a 5-fold increase in Km for a maltopentaose derivative. The relative affinities for acarbose vs. maltopentaose were also compared between the mutants and wild-type enzyme. The results are consistent with the roles previously proposed in Taka-amylase A and porcine pancreatic alpha-amylase based on their X-ray crystallographic analyses, although different pairs had been assigned as catalytic residues for each enzyme. Analysis of the residual activity of the catalytic-site mutants by gel electrophoresis has suggested that it derived from the wild-type enzyme contaminating the mutant preparations, which could be removed by use of an acarbose affinity column; thus, these mutants are completely devoid of activity. The affinity-purified mutant proteins should be useful for elucidating the complete picture of the interaction of this enzyme with starch. 相似文献
2.
Two cistrons of the gerC operon of Bacillus subtilis encode the two subunits of heptaprenyl diphosphate synthase. 下载免费PDF全文
The two proteins (GerC1 and GerC3) encoded by the gerC locus of Bacillus subtilis, which has been shown to be involved in vegetative cell growth and spore germination, were identified as dissociable heterodimers of the heptaprenyl diphosphate synthase involved in the biosynthesis of the side chain of menaquinone-7. 相似文献
3.
Eleven of the codons specifying the amino acids of the flexible catalytic loop [KRRPRPNVAEVM(197-208)] of Bacillus subtilis phosphoribosyl diphosphate synthase have been changed individually to specify alanine. The resulting variant enzyme forms, as well as the wildtype enzyme, were produced in an Escherichia coli strain lacking endogenous phosphoribosyl diphosphate synthase activity and purified to near homogeneity. The B. subtilis phosphoribosyl diphosphate synthase mutant variants K197A and R199A were studied in detail. The physical properties of the two enzymes were similar to those of the wildtype enzyme. Kinetic characterization showed that the V(max) values of the K197A and R199A mutant enzymes were more than 30 000- and more than 24 000-fold reduced, respectively, compared to the wildtype enzyme. The K(m) values for ATP and ribose 5-phosphate of the two mutant enzymes were essentially unchanged. V(app) values of the remaining mutant enzymes were much less affected, ranging from 20 to 100% of the V(max) value of the wildtype enzyme. The data presented show that Lys197 and Arg199 are important in stabilization of the transition state. 相似文献
4.
K Hirooka S Ohnuma A Koike-Takeshita T Koyama T Nishino 《European journal of biochemistry》2000,267(14):4520-4528
A member of the medium-chain prenyl diphosphate synthases, Bacillus stearothermophilus heptaprenyl diphosphate synthase, catalyzes the consecutive condensation of isopentenyl diphosphate with allylic diphosphate to produce (all-E)-C35 prenyl diphosphate as the ultimate product. We previously showed that the product specificity of short-chain prenyl diphosphate synthases is regulated by the structure around the first aspartate-rich motif (FARM). The FARM is also conserved in a subunit of heptaprenyl diphosphate synthase, component II', which suggests that the structure around the FARM of component II' regulates the elongation. To determine whether component II' regulates the product chain length by a mode similar to that of the short-chain prenyl diphosphate synthases, we replaced a bulky amino acid at the eighth position before the FARM of component II', isoleucine 76, by glycine and analyzed the product specificity. The mutated enzyme, I76G, can catalyze condensations of isopentenyl diphosphate beyond the native chain length of C35. Moreover, two mutated enzymes of A79Y and S80F, which have a single replacement to the aromatic residue at the fourth or the fifth position before the FARM, mainly yielded a C20 product. These results strongly suggest that a common mechanism controls the product chain length of both short-chain and medium-chain prenyl diphosphate synthases and that, in wild-type heptaprenyl diphosphate synthase, the prenyl chain can grow on the surface of the small residues at positions 79 and 80, and the elongation is precisely blocked at the length of C35 by isoleucine 76. 相似文献
5.
Four conserved residues of Clostridium thermocellum endoglucanase CelC were replaced by site-directed mutagenesis. Proteins mutated in His-90, Asn-139 and Glu-140 showed strongly reduced activity, in agreement with predictions of sequence alignments. Mutations in Glu-140 did not result in any detectable change in Km, or apparent size, suggesting that Glu-140 is directly involved in catalysis. The pH optimum of the proteins carrying the Glu-140/Ala and Glu140/Gln mutations was lower than that of the wild type, whereas the activity vs. pH profile of Glu-140/Asp CelC was similar to that of the wild type, suggesting that Glu-140 may act as a proton donor. 相似文献
6.
Abe I Abe T Lou W Masuoka T Noguchi H 《Biochemical and biophysical research communications》2007,352(1):259-263
Squalene epoxidase catalyzes the conversion of squalene to (3S)2,3-oxidosqualene, which is a rate-limiting step of the cholesterol biogenesis. To evaluate the importance of conserved aromatic residues, 15 alanine-substituted mutants were constructed and tested for the enzyme activity. Except F203A, all the mutants significantly lost the enzyme activity, confirming the importance of the residues, either for correct folding of the protein, or for the catalytic machinery of the enzyme. Further, interestingly, F223A mutant no longer accepted (3S)2,3-oxidosqualene as a substrate, while Y473A mutant converted (3S)2,3-oxidosqualene to (3S,22S)2,3:22,23-dioxidosqualene twice more efficiently than wild-type enzyme. It is remarkable that the single amino acid replacement yielded mutants with altered substrate and product specificities. These aromatic residues are likely to be located at the substrate-binding domain of the active-site, and control the stereochemical course of the enzyme reaction. 相似文献
7.
M Vihinen P Ollikka J Niskanen P Meyer I Suominen M Karp L Holm J Knowles P M?nts?l? 《Journal of biochemistry》1990,107(2):267-272
The relationship between structure, activity, and stability of the thermostable Bacillus stearothermophilus alpha-amylase was studied by site-directed mutagenesis of the three most conserved residues. Mutation of His-238 to Asp involved in Ca2+ and substrate binding reduced the specific activity and thermal stability, but did not affect the pH and temperature optima. Replacement of Asp-331 by Glu in the active site caused almost total inactivation. Interestingly, in prolonged incubation this mutant enzyme showed an altered end-product profile by liberating only maltose and maltotriose. Conservative mutation of the conserved Arg-232 by Lys, for which no function has yet been proposed, resulted in lowered specific activity: around 12% of the parental enzyme. This mutant enzyme had a wider pH range but about the same temperature optimum and thermal stability as the wild-type enzyme. Results obtained with different mutants were interpreted by computer aided molecular modeling. 相似文献
8.
Comparison of the farnesyl diphosphate (FPP) synthase amino acid sequences from four species with amino acid sequences from the related enzymes hexaprenyl diphosphate synthase and geranylgeranyl diphosphate synthase show the presence of two aspartate rich highly conserved domains. The aspartate motif ((I, L, or V)XDDXXD) of the second of those domains has homology with at least 9 prenyl transfer enzymes that utilize an allylic prenyl diphosphate as one substrate. In order to investigate the role of this second aspartate-rich domain in rat FPP synthase, we mutated the first or third aspartate to glutamate, expressed the wild-type and mutant enzymes in Escherichia coli, and purified them to apparent homogeneity using a single chromatographic step. Approximately 12 mg of homogeneous protein was isolated from 120 mg of crude bacterial extract. The kinetic parameters of the purified wild-type recombinant FPP synthase containing the DDYLD motif were as follows: Vmax = 0.84 mumol/min/mg; GPP Km = 1.0 microM; isopentenyl diphosphate (IPP) Km = 2.7 microM. Substitution of glutamate for the first aspartate (EDYLD) decreased the Vmax by over 90-fold. The Km for IPP increased, whereas the Km for GPP remained the same in this D243E mutant. Substitution of glutamate for the third aspartate (DDYLE) did not result in altered enzyme kinetics in the D247E mutant. These results suggest that the first aspartate in the second domain is involved in the catalysis by FPP synthase. 相似文献
9.
Site-directed mutagenesis reveals roles for conserved amino acid residues in the hexameric DNA helicase DnaB from Bacillus stearothermophilus 下载免费PDF全文
Site-directed mutagenesis studies on conserved amino acid residues within motifs H1, H1a, H2 and H3 of the hexameric replicative helicase DnaB from Bacillus stearothermophilus revealed specific functions associated with these residues. In particular, residues that coordinate a bound Mg2+ in the active site (T217 and D320) are important for the function of the enzyme but are not required for the formation of stable hexamers. A conserved glutamic acid (E241) in motif H1a is likely to be involved in the activation of a water molecule for in line attack on the γ-phosphate of the bound nucleotide during catalysis. A conserved glutamine (Q362) in motif H3 acts as a γ-phosphate sensor and mediates the conformational coupling of nucleotide- and DNA-binding sites. The nature of the residue at this position is also important for the primase-mediated activation of DnaB, suggesting that primase uses the same conformational coupling pathway to induce its stimulatory effect on the activity of DnaB. Together, these mutations reveal a conservation of many aspects of biochemical activity in the active sites of monomeric and hexameric helicases. 相似文献
10.
ClpB is a member of a multichaperone system in Escherichia coli (with DnaK, DnaJ, and GrpE) that reactivates strongly aggregated proteins. The sequence of ClpB contains two ATP-binding domains, each containing Walker consensus motifs. The N- and C-terminal sequence regions of ClpB do not contain known functional motifs. In this study, we performed site-directed mutagenesis of selected charged residues within the Walker A motifs (Lys212 and Lys611) and the C-terminal region of ClpB (Asp797, Arg815, Arg819, and Glu826). We found that the mutations K212T, K611T, D797A, R815A, R819A, and E826A did not significantly affect the secondary structure of ClpB. The mutation of the N-terminal ATP-binding site (K212T), but not of the C-terminal ATP-binding site (K611T), and two mutations within the C-terminal domain (R815A and R819A) inhibited the self-association of ClpB in the absence of nucleotides. The defects in self-association of these mutants were also observed in the presence of ATP and ADP. The four mutants K212T, K611T, R815A, and R819A showed an inhibition of chaperone activity, which correlated with their low ATPase activity in the presence of casein. Our results indicate that positively charged amino acids that are located along the intersubunit interface (this includes Lys212 in the Walker A motif of the N-terminal ATP-binding domain as well as Arg815 and Arg819 in the C-terminal domain) participate in intersubunit salt bridges and stabilize the ClpB oligomer. Interestingly, we have identified a conserved residue within the C-terminal domain (Arg819) which does not participate directly in nucleotide binding but is essential for the chaperone activity of ClpB. 相似文献
11.
Site-directed mutation of conserved cysteine residues does not inactivate the Streptococcus pyogenes hyaluronan synthase. 总被引:1,自引:0,他引:1
Hyaluronan synthase (HAS), the enzyme responsible for the production of hyaluronic acid (HA), is a well-conserved membrane-bound protein in both prokaryotes and eukaryotes. This enzyme performs at least six discrete functions in producing a heterodisaccharide polymer of several million molecular weight and extruding it from the cell. Among the conserved motifs and domains within the Class I HAS family are four cysteine residues. Cysteines in many proteins are important in establishing and maintaining tertiary structure or in the coordination of catalytic functions. In the present study we utilized a combination of site-directed mutagenesis, chemical labeling, and kinetic analyses to determine the importance of specific Cys residues for catalysis and structure of the HA synthase from Streptococcus pyogenes (spHAS). The enzyme activity of spHAS was partially inhibited by cysteine-reactive chemical reagents such as N-ethylmaleimide. Quantitation of the number of Cys residues modified by these reagents, using MALDI-TOF mass spectrometry, demonstrated that there are no stable disulfide bonds in spHAS. The six Cys residues of spHAS were then mutated, individually and in various combinations, to serine or alanine. The single Cys-mutants were all kinetically similar to the wild-type enzyme in terms of their V(max) and K(m) values for HA synthesis. The Cys-null mutant, in which all Cys residues were mutated to alanine, retained approximately 66% of wild-type activity, demonstrating that despite their high degree of conservation within the HAS family, Cys residues are not absolutely necessary for HA biosynthesis by the spHAS enzyme. 相似文献
12.
Leucine aminopeptidase (LAP) is an exopeptidase that catalyzes the hydrolysis of amino acid residues from the amino terminus of proteins and peptides. Sequence alignment shows that the conserved Ala348 and Gly350 residues of Bacillus kaustophilus LAP (BkLAP) are located right next to a coordinated ligand. We further investigated the roles of these two residues by performing computer modeling and site-directed mutagenesis. Based on the modeling, the carbonyl group of Ala348 interacts with Asn345 and Asn435, and that of Gly350 with Ile353 and Leu354, where these interactions might maintain the zinc-coordinated residues at their correct positions. Replacement of Ala348 with Arg resulted in a dramatic reduction in LAP activity. A complete loss of the activity was also observed in A348E, A348V, and the Gly350 variants. Measurement of intrinsic tryptophan fluorescence revealed alteration of the microenvironment of aromatic amino acid residues, while circular dichroism spectra were nearly identical for wild-type and all mutant enzymes. Protein modeling and site-directed mutagenesis suggest that residues Ala348 and Gly350 are essential for BkLAP in maintaining a stable active-site environment for the catalytic reaction. 相似文献
13.
Site-directed mutagenesis of the Klebsiella pneumoniae nitrogenase. Effects of modifying conserved cysteine residues in the alpha- and beta-subunits. 总被引:2,自引:0,他引:2 下载免费PDF全文
The five conserved cysteine residues present in the alpha-subunit and the three conserved cysteine residues present in the beta-subunit of nitrogenase component 1 were individually changed to alanine. Mutations in the alpha-subunit at positions 63, 89, 155 and 275 and in the beta-subunit at positions 69, 94 and 152 all resulted in a loss of diazotrophic growth and component 1 activity and loss of the normal e.p.r. signal of the component 1 protein. Component 2 activity was retained. Replacement of cysteine-184 in the alpha-subunit with alanine greatly diminished, but did not eliminate, diazotrophic growth and component 1 activity. Substitution of serine for cysteine at position 152 in the beta-subunit, in contrast with the substitution of alanine at this position, resulted in the formation of active component 1. Replacement of the non-conserved cysteine-112 in the beta-subunit with alanine did not greatly perturb diazotrophic growth or the activity of component 1. Extracts prepared from a mutant, with cysteine-275 of the alpha-subunit replaced by alanine, complemented extracts of a mutant unable to synthesize the iron-molybdenum cofactor of nitrogenase, indicating that the alanine-275 substitution increases the availability of cofactor. Furthermore extracts of this mutant exhibited an e.p.r. signal similar to that of extracted iron-molybdenum cofactor. These data suggest a role for cysteine-275 as a ligand to the cofactor. 相似文献
14.
Hongling Liu Xihui Wang Shaojie Yang Ruiming Wang Tengfei Wang 《Biotechnology progress》2019,35(4):e2826
Trehalose is a nonreducing disaccharide synthesized by trehalose synthase (TreS), which catalyzes the reversible interconversion of maltose and trehalose. We aimed to enhance the catalytic conversion of maltose to trehalose by saturation mutagenesis, and constructed a self-inducible TreS expression system by generating a robust Bacillus subtilis recombinant. We found that the conversion yield and enzymatic activity of TreS was enhanced by saturation mutations, especially by the combination of V407M and K490L mutations. At the same time, these saturation mutations were contributing to reducing by-products in the reaction. Compared to WT TreS, the conversion yield of maltose to trehalose was increased by 11.9%, and the kcat/Km toward trehalose was 1.33 times higher in the reaction catalyzed by treSV407M-K490L. treSV407M-K490L expression was further observed in the recombinant B. subtilis W800N(ΔσF) under the influence of PsrfA, Pcry3Aa, and PsrfA-cry3Aa promoters without an inducer. It was shown that PsrfA-cry3Aa was evidently a stronger promoter for treSV407M-K490L expression, with the intracellular enzymatic activity of recombinant treSV407M-K490L being over 5,800 U/g at 35 hr in TB medium. These results suggested the combination of two mutations, V407M and K490L, was conducive for the production of trehalose. In addition, the self-inducible TreSV407M/K490L mutant in the B. subtilis host provides a low-cost choice for the industrial production of endotoxin-free trehalose with high yields. 相似文献
15.
Anthony W. Kingston Heng Zhao Gregory M. Cook John D. Helmann 《Molecular microbiology》2014,93(1):37-49
Heptaprenyl diphosphate (C35‐PP) is an isoprenoid intermediate in the synthesis of both menaquinone and the sesquarterpenoids. We demonstrate that inactivation of ytpB, encoding a C35‐PP utilizing enzyme required for sesquarterpenoid synthesis, leads to an increased sensitivity to bacitracin, an antibiotic that binds undecaprenyl pyrophosphate (C55‐PP), a key intermediate in cell wall synthesis. Genetic studies indicate that bacitracin sensitivity is due to accumulation of C35‐PP, rather than the absence of sesquarterpenoids. Sensitivity is accentuated in a ytpB menA double mutant, lacking both known C35‐PP consuming enzymes, and in a ytpB strain overexpressing the HepST enzyme that synthesizes C35‐PP. Conversely, sensitivity in the ytpB background is suppressed by mutation of hepT or by supplementation with 1,4‐dihydroxy‐2‐naphthoate, a co‐substrate with C35‐PP for MenA. Bacitracin sensitivity results from impairment of the BceAB and BcrC resistance mechanisms by C35‐PP: in a bceAB bcrC double mutant disruption of ytpB no longer increases bacitracin sensitivity. These results suggest that C35‐PP inhibits both BcrC (a C55‐PP phosphatase) and BceAB (an ABC transporter that confers bacitracin resistance). These findings lead to a model in which BceAB protects against bacitracin by transfer of the target, C55‐PP, rather than the antibiotic across the membrane. 相似文献
16.
Site-directed mutagenesis of a conserved region of the 5-enolpyruvylshikimate-3-phosphate synthase active site 总被引:11,自引:0,他引:11
S R Padgette D B Re C S Gasser D A Eichholtz R B Frazier C M Hironaka E B Levine D M Shah R T Fraley G M Kishore 《The Journal of biological chemistry》1991,266(33):22364-22369
The active site of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) has been probed using site-directed mutagenesis and inhibitor binding techniques. Replacement of a specific glycyl with an alanyl or a prolyl with a seryl residue in a highly conserved region confers glyphosate tolerance to several bacterial and plant EPSPS enzymes, suggesting a high degree of structural conservation between these enzymes. The glycine to alanine substitution corresponding to Escherichia coli EPSPS G96A increases the Ki(app) (glyphosate) of petunia EPSPS 5000-fold while increasing the Km(app)(phosphoenolpyruvate) about 40-fold. Substitution of this glycine with serine, however, abolishes EPSPS activity but results in the elicitation of a novel EPSP hydrolase activity whereby EPSP is converted to shikimate 3-phosphate and pyruvate. This highly conserved region is critical for the interaction of the phosphate moiety of phosphoenolpyruvate with EPSPS. 相似文献
17.
Abietadiene synthase catalyzes two sequential, mechanistically distinct cyclization reactions in the formation of a mixture of abietadiene double bond isomers as the committed step in resin acid biosynthesis. Each reaction is carried out at a separate active site residing in a structurally distinct domain, and the reactions are kinetically separable. The first cyclization reaction is initiated by protonation of the terminal double bond of the universal diterpene precursor, geranylgeranyl diphosphate. The pH dependence of the overall reaction is consistent with an acid-base catalytic mechanism, and a divalent metal ion plays a role in this reaction probably by binding the diphosphate moiety to assist in positioning the substrate for catalysis. A putative active site for the protonation-initiated cyclization was defined by modeling abietadiene synthase and locating the DXDD motif previously shown to be involved in this reaction. A number of charged and aromatic residues, which are highly conserved in mechanistically related diterpene cyclases, line the putative active site. Alanine substitutions were made for each of these residues, as were asparagine and glutamate substitutions for the aspartates of the DXDD motif. Kinetic evaluation confirmed the involvement of most of the targeted residues in the reaction, and analysis of mutational effects on the pH-activity profile and affinity for a transition state analogue suggested specific roles for several of these residues in catalyzing the cyclization of geranylgeranyl diphosphate to (+)-copalyl diphosphate. A functional role was also suggested for the cryptic insertional element found in abietadiene synthase and other diterpene synthases that carry out similar protonation-initiated cyclizations. 相似文献
18.
19.
Site-directed mutagenesis of histidine residues in Clostridium perfringens alpha-toxin. 总被引:9,自引:0,他引:9 下载免费PDF全文
Mutagenesis of H-68 or -148 in Clostridium perfringens alpha-toxin resulted in complete loss of hemolytic, phospholipase C, sphingomyelinase, and lethal activities of the toxin. These activities of the variant toxin at H-126 or -136 decreased by approximately 100-fold of the activities of the wild-type toxin. Mutation at H-46, -207, -212, or -241 showed no effect on the biological activities, indicating that these residues are not essential for these activities. The variant toxin at H-11 was not detected in culture supernatant and in cells of the transformant carrying the variant toxin gene. Wild-type toxin and the variant toxin at H-148 bound to erythrocytes in the presence of Ca2+; however, the variant toxins at H-68, -126, and -136 did not. Co2+ and Mn2+ ions stimulated binding of the variant toxin at H-68, -126, and -136 to membranes in the presence of Ca2+ and caused an increase in hemolytic activity. Wild-type toxin and the variant toxins at H-68, -126, and -136 contained two zinc atoms in the molecule. Wild-type toxin inactivated by EDTA contained two zinc atoms. These results suggest that wild-type toxin contains two tightly bound zinc atoms which are not coordinated to H-68, -126, and -136. The variant toxin at H-148 possessed only one zinc atom. Wild-type toxin and the variant toxin at H-148 showed [65Zn]2+ binding, but the variant toxins at H-68, -126, and -136 did not. Furthermore, [65Zn]2+ binding to wild-type toxin was competitively inhibited by unlabeled Zn2+, Co2+, and Mn2+. These results suggest that H-68, -126, and -136 residues bind an exchangeable and labile metal which is important for binding to membranes and that H-148 tightly binds one zinc atom which is essential for the active site of alpha-toxin. 相似文献
20.
Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues 总被引:1,自引:0,他引:1
The flavoenzyme UDP-galactopyranose mutase (UGM) is a mediator of cell wall biosynthesis in many pathogenic microorganisms. UGM catalyzes a unique ring contraction reaction that results in the conversion of UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). UDP-Galf is an essential precursor to the galactofuranose residues found in many different cell wall glycoconjugates. Due to the important consequences of UGM catalysis, structural and biochemical studies are needed to elucidate the mechanism and identify the key residues involved. Here, we report the results of site-directed mutagenesis studies on the absolutely conserved residues in the putative active site cleft. By generating variants of the UGM from Klebsiella pneumoniae, we have identified two arginine residues that play critical catalytic roles (alanine substitution abolishes detectable activity). These residues also have a profound effect on the binding of a fluorescent UDP derivative that inhibits UGM, suggesting that the Arg variants are defective in their ability to bind substrate. One of the residues, Arg280, is located in the putative active site, but, surprisingly, the structural studies conducted to date suggest that Arg174 is not. Molecular dynamics simulations indicate that closed UGM conformations can be accessed in which this residue contacts the pyrophosphoryl group of the UDP-Gal substrates. These results provide strong evidence that the mobile loop, noted in all the reported crystal structures, must move in order for UGM to bind its UDP-galactose substrate. 相似文献