首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
    
In the face of rapid anthropogenic environmental change, it is increasingly important to understand how ecological and evolutionary interactions affect the persistence of natural populations. Augmented gene flow has emerged as a potentially effective management strategy to counteract negative consequences of genetic drift and inbreeding depression in small and isolated populations. However, questions remain about the long‐term impacts of augmented gene flow and whether changes in individual and population fitness are reflected in ecosystem structure, potentiating eco‐evolutionary feedbacks. In this study, we used Trinidadian guppies (Poecilia reticulata) in experimental outdoor mesocosms to assess how populations with different recent evolutionary histories responded to a scenario of severe population size reduction followed by expansion in a high‐quality environment. We also investigated how variation in evolutionary history of the focal species affected ecosystem dynamics. We found that evolutionary history (i.e., gene flow vs. no gene flow) consistently predicted variation in individual growth. In addition, gene flow led to faster population growth in populations from one of the two drainages, but did not have measurable impacts on the ecosystem variables we measured: zooplankton density, algal growth, and decomposition rates. Our results suggest that benefits of gene flow may be long‐term and environment‐dependent. Although small in replication and duration, our study highlights the importance of eco‐evolutionary interactions in determining population persistence and sets the stage for future work in this area.  相似文献   

2.
    
  相似文献   

3.
    
The strength of species interactions influences strongly the structure and dynamics of ecological systems. Thus, quantifying such strength is crucial to understand how species interactions shape communities and ecosystems. Although the concepts and measurement of interaction strength in food webs have received much attention, there has been comparatively little progress in the context of mutualism. We propose a conceptual scheme for studying the strength of plant–animal mutualistic interactions. We first review the interaction strength concepts developed for food webs, and explore how these concepts have been applied to mutualistic interactions. We then outline and explain a conceptual framework for defining ecological effects in plant–animal mutualisms. We give recommendations for measuring interaction strength from data collected in field studies based on a proposed approach for the assessment of interaction strength in plant–animal mutualisms. This approach is conceptually integrative and methodologically feasible, as it focuses on two key variables usually measured in field studies: the frequency of interactions and the fitness components influenced by the interactions.  相似文献   

4.
    
The coupling of ecology and evolution during range expansions enables mutations to establish at expanding range margins and reach high frequencies. This phenomenon, called allele surfing, is thought to have caused revolutions in the gene pool of many species, most evidently in microbial communities. It has remained unclear, however, under which conditions allele surfing promotes or hinders adaptation. Here, using microbial experiments and simulations, we show that, starting with standing adaptive variation, range expansions generate a larger increase in mean fitness than spatially uniform population expansions. The adaptation gain results from ‘soft’ selective sweeps emerging from surfing beneficial mutations. The rate of these surfing events is shown to sensitively depend on the strength of genetic drift, which varies among strains and environmental conditions. More generally, allele surfing promotes the rate of adaptation per biomass produced, which could help developing biofilms and other resource‐limited populations to cope with environmental challenges.  相似文献   

5.
6.
    
Individuals moving in heterogeneous environments can improve their fitness considerably by habitat choice. Induction by past exposure, genetic preference alleles and comparison of local performances can all drive this decision‐making process. Despite the importance of habitat choice mechanisms for eco‐evolutionary dynamics in metapopulations, we lack insights on the connection of their cue with its effect on fitness optimization. We selected a laboratory population of Tetranychus urticae Koch (two‐spotted spider mite) according to three distinct host‐choice selection treatments for ten generations. Additionally, we tested the presence of induced habitat choice mechanisms and quantified the adaptive value of a choice before and after ten generations of artificial selection in order to gather insight on the habitat choice mechanisms at play. Unexpectedly, we observed no evolution of habitat choice in our experimental system: the initial choice of cucumber over tomato remained. However, this choice became maladaptive as tomato ensured a higher fitness at the end of the experiment. Furthermore, a noteworthy proportion of induced habitat choice can modify this ecological trap depending on past environments. Despite abundant theory and applied relevance, we provide the first experimental evidence of an emerging trap. The maladaptive choice also illustrates the constraints habitat choice has in rescuing populations endangered by environmental challenges or in pest control.  相似文献   

7.
    
Forest community structure may be influenced by seedling density dependence, however, the effect is loosely coupled with population dynamics and diversity in the short term. In the long term the strength of conspecific density dependence may fluctuate over time because of seedling abundance, yet few long‐term studies exist. Based on 11 years of seedling census data and tree census data from a 25‐ha temperate forest plot in Northeast China, we used generalized linear mixed models to test the relative effects of local neighborhood density and abiotic factors on seedling density and seedling survival. Spatial point pattern analysis was used to determine if spatial patterns of saplings and juveniles, in relation to conspecific adults, were in accordance with patterns uncovered by conspecific negative density dependence at the seedling stage. Our long‐term results showed that seedling density was mainly positively affected by conspecific density, suggesting dispersal limitation of seedling development. The probability of seedling survival significantly decreased over 1 year with increasing conspecific density, indicating conspecific negative density dependence in seedling establishment. Although there was variation in conspecific negative density dependence at the seedling stage among species and across years, a dispersed pattern of conspecific saplings relative to conspecific adults at the local scale (<10 m) was observed in four of the 11 species examined. Overall, sapling spatial patterns were consistent with the impacts of conspecific density on seedling dynamics, which suggests that conspecific negative density dependence is persistent over the long term. From the long‐term perspective, conspecific density dependence is an important driver of species coexistence in temperate forests.  相似文献   

8.
    
Plants interact simultaneously with each other and with soil biota, yet the relative importance of competition vs. plant–soil feedback (PSF) on plant performance is poorly understood. Using a meta‐analysis of 38 published studies and 150 plant species, we show that effects of interspecific competition (either growing plants with a competitor or singly, or comparing inter‐ vs. intraspecific competition) and PSF (comparing home vs. away soil, live vs. sterile soil, or control vs. fungicide‐treated soil) depended on treatments but were predominantly negative, broadly comparable in magnitude, and additive or synergistic. Stronger competitors experienced more negative PSF than weaker competitors when controlling for density (inter‐ to intraspecific competition), suggesting that PSF could prevent competitive dominance and promote coexistence. When competition was measured against plants growing singly, the strength of competition overwhelmed PSF, indicating that the relative importance of PSF may depend not only on neighbour identity but also density. We evaluate how competition and PSFs might interact across resource gradients; PSF will likely strengthen competitive interactions in high resource environments and enhance facilitative interactions in low‐resource environments. Finally, we provide a framework for filling key knowledge gaps and advancing our understanding of how these biotic interactions influence community structure.  相似文献   

9.
    
A wide variety of microorganisms known to produce auxin and auxin precursors form beneficial relationships with plants and alter host root development. Moreover, other signals produced by microorganisms affect auxin pathways in host plants. However, the precise role of auxin and auxin‐signalling pathways in modulating plant–microbe interactions is unknown. Dissecting out the auxin synthesis, transport and signalling pathways resulting in the characteristic molecular, physiological and developmental response in plants will further illuminate upon how these intriguing inter‐species interactions of environmental, ecological and economic significance occur. The present review seeks to survey and summarize the scattered evidence in support of known host root modifications brought about by beneficial microorganisms and implicate the role of auxin synthesis, transport and signal transduction in modulating beneficial effects in plants. Finally, through a synthesis of the current body of work, we present outstanding challenges and potential future research directions on studies related to auxin signalling in plant–microbe interactions.  相似文献   

10.
    
1. Fungal endophytes are ubiquitous associates of virtually all plant species. Although many studies have focused on the role of these microorganisms as mediators of plant–herbivore interactions, these studies have usually been conducted using short‐term experiments. 2. Truly effective defences against herbivores may require normal functioning of the plant, as excised leaves may be less resistant as compared with those still attached to the plant. Yet, most studies investigating possible effects of endophytes in conferring host resistance to herbivores have been conducted with plant parts rather than intact plants. 3. Using the root endophytic fungus (Acremonium strictum)—broad bean (Vicia faba)—generalist herbivore (Helicoverpa armigera) model, we conducted experiments to examine whether endophyte effects on herbivory would depend on the experimental setting used in the investigation and whether they would translate into a subsequent generation of the herbivore. 4. Acremonium strictum negative effects on the fitness of H. armigera first generation were more evident when the larvae foraged freely on inoculated intact whole plants than when offered leaf discs of inoculated plants. Furthermore, these effects were carried over into H. armigera second generation reared on an artificial diet. 5. Acremonium strictum could not be re‐isolated from V. faba leaves; hence direct contact between the endophyte and the insect could be excluded. Alternatively, loss of volatiles or inhibitory effects of compounds that were stronger in situ might have caused changes in larval feeding and performance on leaf discs as compared with intact plants, regardless of infection status. 6. We suggest that the reduction in fitness parameters of H. armigera across two generations is caused indirectly via an endophyte‐triggered reduction in plant quality.  相似文献   

11.
    
Throughout the world, numerous tree species are reported to be in decline, either due to increased mortality of established trees or reduced recruitment. The situation appears especially acute for oaks, which are dominant features of many landscapes in the northern hemisphere. Although numerous factors have been hypothesized to explain reductions in tree performance, vertebrate herbivores and granivores may serve as important drivers of these changes. Here, using data from 8‐ and 14‐year‐old exclosure experiments, we evaluated the individual and interactive effects of large and small mammalian herbivores on the performance of three widespread oak species in California—coast live oak (Quercus agrifolia), California black oak (Q. kelloggii), and Oregon white oak (Q. garryana). Although impacts varied somewhat by species and experiment, herbivory by black‐tailed deer (Odocoileus hemionus columbianus) reduced the height and survival of juvenile coast live oaks and altered their architecture, as well as reduced the abundance of black oak seedlings, the richness of woody species and the cover of nonoak woody species. Small mammals (Microtus californicus and Peromyscus maniculatus) had even more widespread effects, reducing the abundance of black oak seedlings and the height and cover of all three oak species. We also detected numerous interactions between small mammals and deer, with one herbivore having positive or negative effects on oak abundance and cover when the other herbivore was either present or absent. For example, deer often had negative effects on seedling abundance only when, or even more so when, small mammals were present. In summary, mammalian consumers play crucial roles in limiting oak recruitment by reducing seedling abundance, maintaining trees in stunted states, and preventing them from reaching sapling stages and becoming reproductive. Interactions between large and small mammals can also alter the intensity and direction of their effects on trees.  相似文献   

12.
    
Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density.  相似文献   

13.
    
Northern forest ecosystems are exposed to a range of anthropogenic processes including global warming, atmospheric deposition, and changing land‐use. The vegetation of northern forests is composed of species with several functional traits related to these processes, whose effects may be difficult to disentangle. Here, we combined analyses of spatio‐temporal dynamics and functional traits of ground flora species, including morphological characteristics, responses to macro‐ and microclimate, soil conditions, and disturbance. Based on data from the Swedish National Forest Inventory, we compared changes in occurrence of a large number of ground flora species during a 20‐year period (1994–2013) in boreal and temperate Sweden respectively. Our results show that a majority of the common ground flora species have changed their overall frequency. Comparisons of functional traits between increasing and declining species, and of trends in mean trait values of sample plots, indicate that current floristic changes are caused by combined effects of climate warming, nitrogen deposition and changing land‐use. Changes and their relations with plant traits were generally larger in temperate southern Sweden. Nutrient‐demanding species with mesotrophic morphology were favored by ongoing eutrophication due to nitrogen deposition in the temperate zone, while dwarf shrubs with low demands on nitrogen decreased in frequency. An increase of species with less northern and less eastern distribution limits was also restricted to temperate Sweden, and indicates effects of a moister and milder macroclimate. A trend toward dense plantation forests is mirrored by a decrease of light‐demanding species in both vegetation zones, and a decrease of grassland species in the temperate zone. Although denser tree canopies may buffer effects of a warmer climate and of nitrogen deposition to some extent, traits related to these processes were weakly correlated in the group of species with changing frequency. Hence, our results indicate specific effects of these often confounded anthropogenic processes.  相似文献   

14.
    
  1. Plant defense against pathogens includes a range of mechanisms, including, but not limited to, genetic resistance, pathogen‐antagonizing endophytes, and pathogen competitors. The relative importance of each mechanism can be expressed in a hierarchical view of defense. Several recent studies have shown that pathogen antagonism is inconsistently expressed within the plant defense hierarchy. Our hypothesis is that the hierarchy is governed by contingency rules that determine when and where antagonists reduce plant disease severity.
  2. Here, we investigated whether pathogen competition influences pathogen antagonism using Populus as a model system. In three independent field experiments, we asked whether competition for leaf mesophyll cells between a Melampsora rust pathogen and a microscopic, eriophyid mite affects rust pathogen antagonism by fungal leaf endophytes. The rust pathogen has an annual, phenological disadvantage in competition with the mite because the rust pathogen must infect its secondary host in spring before infecting Populus. We varied mite–rust competition by utilizing Populus genotypes characterized by differential genetic resistance to the two organisms. We inoculated plants with endophytes and allowed mites and rust to infect plants naturally.
  3. Two contingency rules emerged from the three field experiments: (a) Pathogen antagonism by endophytes can be preempted by host genes for resistance that suppress pathogen development, and (b) pathogen antagonism by endophytes can secondarily be preempted by competitive exclusion of the rust by the mite.
  4. Synthesis: Our results point to a Populus defense hierarchy with resistance genes on top, followed by pathogen competition, and finally pathogen antagonism by endophytes. We expect these rules will help to explain the variation in pathogen antagonism that is currently attributed to context dependency.
  相似文献   

15.
Genetic data are often used to assess ‘population connectivity’ because it is difficult to measure dispersal directly at large spatial scales. Genetic connectivity, however, depends primarily on the absolute number of dispersers among populations, whereas demographic connectivity depends on the relative contributions to population growth rates of dispersal vs. local recruitment (i.e. survival and reproduction of residents). Although many questions are best answered with data on genetic connectivity, genetic data alone provide little information on demographic connectivity. The importance of demographic connectivity is clear when the elimination of immigration results in a shift from stable or positive population growth to negative population growth. Otherwise, the amount of dispersal required for demographic connectivity depends on the context (e.g. conservation or harvest management), and even high dispersal rates may not indicate demographic interdependence. Therefore, it is risky to infer the importance of demographic connectivity without information on local demographic rates and how those rates vary over time. Genetic methods can provide insight on demographic connectivity when combined with these local demographic rates, data on movement behaviour, or estimates of reproductive success of immigrants and residents. We also consider the strengths and limitations of genetic measures of connectivity and discuss three concepts of genetic connectivity that depend upon the evolutionary criteria of interest: inbreeding connectivity, drift connectivity, and adaptive connectivity. To conclude, we describe alternative approaches for assessing population connectivity, highlighting the value of combining genetic data with capture‐mark‐recapture methods or other direct measures of movement to elucidate the complex role of dispersal in natural populations.  相似文献   

16.
Nitrogen (N) deposition and biodiversity loss are important drivers of global change, with uncertain consequences for carbon (C) and nutrient turnover in terrestrial ecosystems. We evaluated the simultaneous effects of N deposition and plant diversity on litter decomposition within a temperate forest in Patagonia. We identified ‘tree triangles’ created by the intersection of three tree‐canopies that directly controlled micro‐environmental conditions on the forest floor, and combined it with an N addition treatment. Triangles were composed of one or three Nothofagus species (N. dombeyi, N. obliqua or N. nervosa). We placed litterbags containing litter of each of the Nothofagus species and litterbags containing a mixture of the three species within all triangles and assessed mass loss over 2 years. We used a standard litter type in all triangles to independently evaluate triangle effects on decomposition. N addition had strong and positive effects on decomposition with an average 46% increase in the decomposition constant. Litter species significantly differed in their response to N addition; litter with higher lignin content and lower labile C content had larger increase in decomposition due to fertilization. Also, N addition disrupted two types of species interactions that control decomposition. The affinity relation between litter and decomposers, that enhanced decomposition of home litter (‘home‐field advantage’) that was demonstrated to be significant for all three Nothofagus species, disappeared with N addition. Second, N addition modified litter species interactions, transforming neutral effects of litter mixtures to positive, nonadditive effects on mass loss. Finally, N addition stimulated N release from decomposing litter which was modulated by plant species effects. Together, these results suggest that N addition to unpolluted forests increases C loss, contrary to what has been observed for temperate forests in industrialized areas of the world, and that alterations in nutrient pools have effects on species interactions, including the elimination of affinity effects for decomposition.  相似文献   

17.
    
Currently, Brzeziecki et al. 2016 (Journal of Vegetation Science 27: 460–467.) are using data from permanent study plots established in 1936 in Bia?owie?a National Park (NE Poland) to develop theoretical equilibrium tree size distributions and to then compare modelled and actual distributions with a view to assessing the population dynamics of the species involved. As part of their discussion, the authors address the question of possible consequences for the overall diversity of forest ecosystems under strict protection if long‐term trends relating to tree population densities and size structures are maintained. In the overall context of the above, the goal of the present paper is to respond to Jaroszewicz et al. (Journal of Vegetation Science 28: 218–222.) who suggest that the paper of Brzeziecki et al. (2016) is not representative for the whole Bia?owie?a National Park, and that – in this connection – strict protection should not be seen as a cause for concern. In this paper, we show that the data analysed by Brzeziecki et al. (2016) adequately characterize conditions in the wider Park. We also point out that the thorough scientific understanding of the long‐term dynamics of woodland communities under strict protection should indeed be taken into account as efforts are made to arrive at an effective conservation strategy capable of ensuring that the uniquely valuable features of the Bia?owie?a Forest are retained.  相似文献   

18.
    
Plants are exposed to microbial pathogens as well as herbivorous insects and their natural enemies. Here, we examined the effects of inoculation of potato plants, Solanum tuberosum L. (Solanaceae), with the late blight pathogen Phytophthora infestans (Mont.) de Bary (Peronosporales: Pythiaceae) on an aphid species commonly infesting potato crops and one of the aphid's major parasitoids. We observed the peach‐potato aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), and its natural enemy, the biocontrol agent Aphidius colemani Viereck (Hymenoptera: Braconidae), on potato either inoculated with water or P. infestans. Population growth of the aphid, parasitism rate of its natural enemy, and other insect life‐history traits were compared on several potato genotypes, the susceptible cultivar Désirée and genetically modified (GM) isogenic lines carrying genes conferring resistance to P. infestans. Effects of P. infestans inoculation on the intrinsic rate of aphid population increase and the performance of the parasitoid were only found on the susceptible cultivar. Insect traits were similar when comparing inoculated with non‐inoculated resistant GM genotypes. We also tested how GM‐plant characteristics such as location of gene insertion and number of R genes could influence non‐target insects by comparing insect performance among GM events. Different transformation events leading to different positions of R‐gene insertion in the genome influenced aphids either with or without P. infestans infection, whereas effects of position of R‐gene insertion on the parasitoid A. colemani were evident only in the presence of inoculation with P. infestans. We conclude that it is important to study different transformation events before continuing with further stages of risk assessment of this GM crop. This provides important information on the effects of plant resistance to a phytopathogen on non‐target insects at various trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号