首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dipteran Chironomus riparius is found across the entire Palearctic region; its larvae are among the most abundant macroinvertebrates inhabiting inland waterbodies. Chironomid larvae have been extensively used in ecotoxicological and cytogenetic research, but relatively little is known on the population structure of this species. Transposable elements (TEs) are DNA sequences that are capable of autonomous replication; the number and genomic location of TE insertions varies across individuals; this variability is increasingly being used in population studies. Several TEs had been characterized in Chironomids; this enabled the analysis of insertional variability of four different TEs in six natural populations of C. riparius from Italy, Bulgaria and Russia using a PCR-based method, transposon insertion display (TID). The method allows to obtain dominant markers, similar to AFLP. In all populations, TE insertions showed high individual polymorphism, while median copy numbers of the same TEs did not vary between populations. Analysis of molecular variance (AMOVA) detected significant differentiation between populations for three of the TEs; although no correlation between genetic and geographic distances was found, the corresponding population structures were found to be significantly correlated and indicate a degree of isolation by distance. TEs belonging to different classes have different mechanisms of replication, resulting in different transposition rates of mobilization; the finding of mostly concordant population structuring for three of the TEs indicates that population dynamics contributed significantly in shaping the detected insertional polymorphism.  相似文献   

2.
3.
Not long ago, scientists paid dearly in time, money and skill for every nucleotide that they sequenced. Today, DNA sequencing technologies epitomize the slogan ‘faster, easier, cheaper and more’, and in many ways, sequencing an entire genome has become routine, even for the smallest laboratory groups. This is especially true for mitochondrial and plastid genomes. Given their relatively small sizes and high copy numbers per cell, organelle DNAs are currently among the most highly sequenced kind of chromosome. But accurately characterizing an organelle genome and the information it encodes can require much more than DNA sequencing and bioinformatics analyses. Organelle genomes can be surprisingly complex and can exhibit convoluted and unconventional modes of gene expression. Unravelling this complexity can demand a wide assortment of experiments, from pulsed‐field gel electrophoresis to Southern and Northern blots to RNA analyses. Here, we show that it is exactly these types of ‘complementary’ analyses that are often lacking from contemporary organelle genome papers, particularly short ‘genome announcement’ articles. Consequently, crucial and interesting features of organelle chromosomes are going undescribed, which could ultimately lead to a poor understanding and even a misrepresentation of these genomes and the genes they express. High‐throughput sequencing and bioinformatics have made it easy to sequence and assemble entire chromosomes, but they should not be used as a substitute for or at the expense of other types of genomic characterization methods.  相似文献   

4.
5.
Recombination and selection drive the extent of linkage disequilibrium (LD) among loci and therefore affect the reshuffling of adaptive genetic variation. However, it is poorly known to what extent the enrichment of transposable elements (TEs) in recombinationally‐inert regions reflects their inefficient removal by purifying selection and whether the presence of polymorphic TEs can modify the local recombination rate. In this study, we investigate how TEs and recombination interact at fine scale along chromosomes and possibly support linked selection in natural populations. Whole‐genome sequencing data of 304 individuals from nearby alpine populations of Arabis alpina were used to show that the density of polymorphic TEs is specifically correlated with local LD along chromosomes. Consistent with TEs modifying recombination, the characterization of 28 such LD blocks of up to 5.5 Mb in length revealed strong evidence of selective sweeps at a few loci through either site frequency spectrum or haplotype structure. A majority of these blocks were enriched in genes related to ecologically relevant functions such as responses to cold, salt stress or photoperiodism. In particular, the S‐locus (i.e., supergene responsible for strict outcrossing) was identified in a LD block with high levels of polymorphic TEs and evidence of selection. Another such LD block was enriched in cold‐responding genes and presented evidence of adaptive loci related to photoperiodism and flowering being increasingly linked by polymorphic TEs. These results are consistent with the hypothesis that TEs modify recombination landscapes and thus interact with selection in driving blocks of linked adaptive loci in natural populations.  相似文献   

6.
Variation and divergence patterns of the multilocus genome markers in twelve Chironomus species belonging to the plumosus and piger sibling-species groups were examined by use of polymerase chain reaction with random primers (RAPD method). The chironomid species showed high levels of the RAPD markers polymorphism. The genetic distances (GD) were determined between the species within the group of closely related species, as well as between the species from different groups. The estimates obtained characterized the divergence levels between the sibling species (GD = 0.739) and morphologically distinct species (GD = 0.935). Comparison of the variation and divergence levels of the RAPD markers with those for the other genome markers, namely, the enzyme-coding genes and chromosomes (gene linkage groups) have demonstrated different divergence rates for different genome components during speciation of Chironimids.  相似文献   

7.
Five variable microsatellite loci are reported for the nonbiting midge species Chironomus riparius and Chironomus piger. All loci show considerable intraspecific variation and species‐specific alleles, which allow to discriminate among the two closely related species and their interspecific hybrids, and to estimate genetic diversity within and between populations. Additionally, the loci were localized on C. riparius polytene chromosomes to verify their single copy status and investigate possible chromosomal linkage. The described markers are used in different studies with regard to population and ecological genetics and evolutionary ecotoxicology of Chironomus.  相似文献   

8.
A population of Chironomus riparius from a Po river station near Moncalieri (a trace-metal polluted station) was studied. In this population was established a great variability of band structure of polytene chromosomes as well as paracentric heterozygous inversions, deletions, deficiencies, partial breaks, diploid chromosome fragments, and changes in functional activity and appearance of heterochromatin. In arms A through F, some bands had an increased size compared to the standard chromosomic map. Some bands appeared in a heterozygous or normal homozygous state or were amplified. In all arms, many condensed stable bands appeared in the decondensed state when compared to the standard map. Asynaptic zones in arms E and G as well as heterozygous Balbiani rings and NORs were established. Very often the 4th chromosome was almost completely heteropycnotic and looded like a pompon chromosome. For the first time in this species, a high frequency of ectopic pairings of different arms was observed. Telomeric regions involved in ectopic pairings had a granular appearance, as did some centromeres. The hypothesis is advanced that such a high frequency of structural rearrangements could be correlated with genomic distribution of specific mobile elements.  相似文献   

9.
Larvae of the midge, Chironomus riparius Mg., have four anal papillae arranged as two pairs, one dorsal to and the other ventral to the anus. Structural study with light and electron microscopes has revealed that their integument consists of a thin cuticle overlaying a thick, syncytial epidermis which is specialised to facilitate ion transport. There is a distinct neck or collar region at the junction of each papilla with the rest of the body wall. Although in many respects these structures resemble those in mosquitoes, there are both morphological and physiological features which suggest that differences exist in the means by which ion exchange with the environment is controlled and effected in the two families.  相似文献   

10.
An integrative multidisciplinary approach was used to delimit boundaries among cryptic species within the Anastrepha fraterculus complex in Brazil. Sexual compatibility, courtship and sexual acoustic behaviour, female morphometric variability, variation for the mitochondrial gene COI, and the presence of Wolbachia were compared among A. fraterculus populations from the Southern (Vacaria, Pelotas, Bento Gonçalves, São Joaquim) and Southeastern (Piracicaba) regions of Brazil. Our results suggest full mating compatibility among A. fraterculus populations from the Southern region and partial pre‐zygotic reproductive isolation of these populations when compared with the population from the Southeastern region. A. fraterculus populations from both regions differed in the frequency of courtship displays and aspects of the calling phase and mounting acoustic signal. Morphometric analysis showed differences between Southern region and Southeastern region samples. All populations analyzed were infected with Wolbachia. The trees generated from the COI sequencing data are broadly congruent with the behavioural and morphometric data with the exception of one Southern population. The likely mechanisms by which A. fraterculus populations might have diverged are discussed in detail based on behavioural, morphometric, molecular genetics, and biogeographical studies.  相似文献   

11.
Summary The larval integument of the midge, Chironomus riparius Mg., is unusually thin although it conforms with the normal insect pattern. The cuticle of the post-cephalic segments is about 3 m thick and overlies an epidermis which has an irregular basal plasma membrane resulting in spaces occurring between it and the basement membrane. The ventral tubuli have a similar epidermis but the cuticle is somewhat thinner. The anal papillae have the thinnest cuticular covering with a uniquely folded epicuticle of variable thickness, and their epidermis has the characteristics of a transporting epithelium. No evidence of pore canals could be found in the cuticle of any part except the head capsule which has a remarkably smooth epicuticle and a distinct layer which may represent the exocuticle. There are no spaces between the basement membrane and basal plasma membrane of the epidermis in the head. Ultrastructural evidence would suggest that gaseous exchange can occur across most of the post-cephalic integument.The author is indebted to Mrs. L. Rolph and Mr. R.L. Jones for their technical assistance  相似文献   

12.
Sequencing pools of individuals (Pool‐Seq) is a cost‐effective method to determine genome‐wide allele frequency estimates. Given the importance of meta‐analyses combining data sets, we determined the influence of different genomic library preparation protocols on the consistency of allele frequency estimates. We found that typically no more than 1% of the variation in allele frequency estimates could be attributed to differences in library preparation. Also read length had only a minor effect on the consistency of allele frequency estimates. By far, the most pronounced influence could be attributed to sequence coverage. Increasing the coverage from 30‐ to 50‐fold improved the consistency of allele frequency estimates by at least 27%. We conclude that Pool‐Seq data can be easily combined across different library preparation methods, but sufficient sequence coverage is key to reliable results.  相似文献   

13.
There is a mounting evidence for the correlation between the gene expression pattern and sequence divergence. However, little is known about the relationship between the gene expression pattern and polymorphism. We compiled the gene expression, polymorphism, and divergence data from the public databases of the human genome. The ratios of nonsynonymous (A) to synonymous (S) substitutions in polymorphism and divergence in the human genome were strongly influenced by the expression pattern and breadth of genes and showed strong correlations. Among the tissues we analyzed, the brain-expressed genes have the smallest and the liver-expressed genes have the largest proportion of amino acid changes both in polymorphism and divergence. The analysis implies that negative selection is the primary factor affecting expression-dependent gene evolution and the prevalent but nonuniform distribution of slightly deleterious mutations in the genome. Although the genes under relaxed negative selection evolved faster than the other genes, these genes are even more liable to slightly deleterious mutations in the population. On the other hand, nonneutral mutations in the highly conservative genes, such as brain-expressed and housekeeping genes, are largely deleterious and eliminated before they enter the population.  相似文献   

14.
As natural selection must act on underlying genetic variation, discovering the number and location of loci under the influence of selection is imperative towards understanding adaptive divergence in evolving populations. Studies employing genome scans have hypothesized that the action of divergent selection should reduce gene flow at the genomic locations implicated in adaptation and speciation among natural populations, yet once 'outlier' patterns of variation have been identified the function and role of such loci needs to be confirmed. We integrated adaptive QTL mapping and genomic scans among diverging sympatric pairs of the lake whitefish (Coregonus clupeaformis) species complex in order to test the hypothesis that differentiation between dwarf and normal ecotypes at growth-associated QTL was maintained by directional selection. We found evidence of significantly high levels of molecular divergence among eight growth QTL where two of the strongest candidate loci under the influence of directional selection exhibited parallel reductions of gene flow over multiple populations.  相似文献   

15.
The ultrastruct of the neural sheath, glial cells and neurons in the brain of the neoimaginal male Chironomus riparius is described. The neural sheath comprises a neural lamella and underlying perineurium. The neural lamella consists of an amorphous matrix in which fine fibrils occur. The perineurium is composed of two cell types forming a continuous layer around the brain. The subjacent cortical layer, composed of the cell bodies of neurons and glial cells, varies considerably in thickness and surrounds the centrally located neuropiles. Three types of glial cells are distinguished on the basis of their positions and appearances. Five types of neurons are described which differ in size and relative frequency of organelles. Four types of axons, including those of neurosecretory cells, are distinguished by their size and content.  相似文献   

16.
17.
Martens  Koen 《Hydrobiologia》2000,419(1):83-101
Specific Mate Recognition Systems (SMRS) consist of a set of morphological, behavioural and physiological traits which allow mate recognition. The Limnocytherinae, a lineage of non-marine podocopid Ostracoda, have a relatively wide diversity of copulatory modules, a concept largely congruent with the morphological part of the SMRS. The present paper describes the various copulatory modules in some detail and discusses potential mechanisms responsible for the divergence of these modules. Although none of the processes was thus far demonstrated directly, resulting patterns provide indirect evidence that four different mechanisms contribute. Stochastic processes (chance) as well as developmental and other phylogenetic constraints are involved in the initial selection (choice) of modified structures. Subsequent (positive) directional sexual selection on traits of the recognition systems causes radiative speciation within lineages. At all times, natural selection acts on the development of these structures, either stabilising or negative directional. A number of potential tests for these hypotheses are suggested.  相似文献   

18.
《Journal of Asia》2023,26(1):102033
The carrion beetle, Necrodes nigricornis Harold, 1875 (Coleoptera: Silphidae) is one of the most frequently encountered insect species among Silphidae in animal cadavers in Korea. Consequently, the postmortem colonization of the species can provide useful information regarding the time-since-death. In this study, we report the mitochondrial genome (mitogenome) characteristics of N. nigricornis with the aim of increasing the genomic data pools of the family Silphidae, which is of considerable forensic importance. The full-length circular genome is 18,503 bp, with 75.60 % A/T content. It contains a typical set of 37 metazoan genes, but the non-coding A + T-rich region is unusually long at 3,818 bp in length, containing two similar-sized repeats (539 and 542 bp) with a slight length and nucleotide variation. The gene arrangement of the species is identical to that of the ancestral arrangement found in the majority of insects. The biased A/T content in the genome is also reflected in the form of biased codon usage; six codons among 62 comprised solely of A/T nucleotides (TTA, ATT, TTT, ATA, TTA, and TAT) were highly used, accounting for 41.28 % of the total. The maximum-likelihood tree built using 12 PCG (excluding ND2) and lrRNA revealed monophyletic Silphidae, Silphinae, and Nicrophorinae, with relatively higher nodal supports (bootstrap support ≥ 80 %). N. nigricornis, belonging to Silphinae, was placed as the sister to congeneric N. littoralis with the highest nodal support. We believe this mitogenome sequences of the carrion beetle can become an important baseline information for future studies on phylogeny at various levels of taxonomic diversity, intra-specific variation, as well as species identification.  相似文献   

19.
B Chénais  A Caruso  S Hiard  N Casse 《Gene》2012,509(1):7-15
Transposable elements (TEs) are present in roughly all genomes. These mobile DNA sequences are able to invade genomes and their impact on genome evolution is substantial. The mobility of TEs can induce the appearance of deleterious mutations, gene disruption and chromosome rearrangements, but transposition activity also has positive aspects and the mutational activities of TEs contribute to the genetic diversity of organisms. This short review aims to give a brief overview of the impact TEs may have on animal and plant genome structure and expression, and the relationship between TEs and the stress response of organisms, including insecticide resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号