首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The life cycles of plants are characterized by two major life history transitions—germination and the initiation of flowering—the timing of which are important determinants of fitness. Unlike annuals, which make the transition from the vegetative to reproductive phase only once, perennials iterate reproduction in successive years. The floral repressor PERPETUAL FLOWERING 1 (PEP1), an ortholog of FLOWERING LOCUS C, in the alpine perennial Arabis alpina ensures the continuation of vegetative growth after flowering and thereby restricts the duration of the flowering episode. We performed greenhouse and garden experiments to compare flowering phenology, fecundity and seed traits between A. alpina accessions that have a functional PEP1 allele and flower seasonally and pep1 mutants and accessions that carry lesions in PEP1 and flower perpetually. In the garden, perpetual genotypes flower asynchronously and show higher winter mortality than seasonal ones. PEP1 also pleiotropically regulates seed dormancy and longevity in a way that is functionally divergent from FLC. Seeds from perpetual genotypes have shallow dormancy and reduced longevity regardless of whether they after‐ripened in plants grown in the greenhouse or in the experimental garden. These results suggest that perpetual genotypes have higher mortality during winter but compensate by showing higher seedling establishment. Differences in seed traits between seasonal and perpetual genotypes are also coupled with differences in hormone sensitivity and expression of genes involved in hormonal pathways. Our study highlights the existence of pleiotropic regulation of seed traits by hub developmental regulators such as PEP1, suggesting that seed and flowering traits in perennial plants might be optimized in a coordinated fashion.  相似文献   

3.
Host ecological traits may limit exposure to infectious disease, thereby generating the wide variation in disease incidence observed between host populations or species. The exclusion of disease by ecological traits may then allow selection to act against physiological defenses when they are costly to maintain in the absence of disease. This study investigates ecological resistance in the Silene-Microbotryum pathosystem. An estimated 80% of perennial Silene species host the anther-smut disease while no annuals harbor the disease in nature. Artificial inoculations of annual and perennial Silene plants, obtained from both natural and horticultural populations, demonstrate that the absence of disease in annuals is not explained by elevated physiological resistance. The annual habit is thus a powerful form of ecological defense against anther smut. Moreover, the higher susceptibility of annual species to anther smut relative to perennials supports the hypothesis of a loss of costly physiological resistance under ecological protection. The observation in annuals that physiological susceptibility is correlated with lower rates of flowering (i.e., lower fitness) suggests that variation in physiological resistance is costly in the absence of disease, even in a naїve Silene species. The absence of disease in natural populations of annuals combined with their high physiological susceptibility attest to the strength of host ecology in shaping the distribution of disease and to the dynamic nature of disease resistance.  相似文献   

4.
Chromosomal inversions can play an important role in adaptation, but the mechanism of their action in many natural populations remains unclear. An inversion could suppress recombination between locally beneficial alleles, thereby preventing maladaptive reshuffling with less‐fit, migrant alleles. The recombination suppression hypothesis has gained much theoretical support but empirical tests are lacking. Here, we evaluated the evolutionary history and phenotypic effects of a chromosomal inversion which differentiates annual and perennial forms of Mimulus guttatus. We found that perennials likely possess the derived orientation of the inversion. In addition, this perennial orientation occurs in a second perennial species, M. decorus, where it is strongly associated with life history differences between co‐occurring M. decorus and annual M. guttatus. One prediction of the recombination suppression hypothesis is that loci contributing to local adaptation will predate the inversion. To test whether the loci influencing perenniality pre‐date this inversion, we mapped QTLs for life history traits that differ between annual M. guttatus and a more distantly related, collinear perennial species, M. tilingii. Consistent with the recombination suppression hypothesis, we found that this region is associated with life history in the absence of the inversion, and this association can be broken into at least two QTLs. However, the absolute phenotypic effect of the LG8 inversion region on life history is weaker in M. tilingii than in perennials which possess the inversion. Thus, while we find support for the recombination suppression hypothesis, the contribution of this inversion to life history divergence in this group is likely complex.  相似文献   

5.
For a species to be able to respond to environmental change, it must either succeed in following its optimal environmental conditions or in persisting under suboptimal conditions, but we know very little about what controls these capacities. We parameterized species distribution models (SDMs) for 135 plant species from the Algerian steppes. We interpreted low false‐positive rates as reflecting a high capacity to follow optimal environmental conditions and high false‐negative rates as a high capacity to persist under suboptimal environmental conditions. We also measured functional traits in the field and built a unique plant trait database for the North‐African steppe. For both perennial and annual species, we explored how these two capacities can be explained by species traits and whether relevant trait values reflect species strategies or biases in SDMs. We found low false‐positive rates in species with small seeds, flowers attracting specialist pollinators, and specialized distributions (among annuals and perennials), low root:shoot ratios, wide root‐systems, and large leaves (perennials only) (R2 = .52–58). We found high false‐negative rates in species with marginal environmental distribution (among annuals and perennials), small seeds, relatively deep roots, and specialized distributions (annuals) or large leaves, wide root‐systems, and monocarpic life cycle (perennials) (R2 = .38 for annuals and 0.65 for perennials). Overall, relevant traits are rarely indicative of the possible biases of SDMs, but rather reflect the species' reproductive strategy, dispersal ability, stress tolerance, and pollination strategies. Our results suggest that wide undirected dispersal in annual species and efficient resource acquisition in perennial species favor both capacities, whereas short life spans in perennial species favor persistence in suboptimal environmental conditions and flowers attracting specialist pollinators in perennial and annual species favor following optimal environmental conditions. Species that neither follow nor persist will be at risk under future environmental change.  相似文献   

6.
7.
Abstract The long-term growth and coexistence of species with large mixed populations in varying environments were modelled for representative environments and life-history characteristics of annual and perennial plants. The effects of the relationships between the means, variances, and covariances of seed yield, establishment, and survival, were explored by Taylor's expansion. The main findings are: 1. Individual variation in reproductive success within generations has no effect on long-term growth, which is determined only by the mean growth rate of the individuals of the species. 2. In annual species with nonoverlapping generations and without seed banks, the species with the largest mean log of the annual growth rate Y, that is the product of the average seed yield per plant and the establishment probability per seed, will win in competition with other species, independent of the correlations between the growth rates of the different species. In this case there is a negative tradeoff between the mean and the variance. 3. In perennial species with a lottery type of equal access to vacant sites, a high annual survival probability allows stable coexistence between perennial species with independent or negatively correlated variance in their mean annual product of seed production and establishment Y. 4. The coexistence range and the likely number of coexisting perennial species increase as a function of the variance of the common species, and is decreased by the variance of the rare species. The coexistence range is decreased by the covariance between the growth rates of the species, and between the survival of the rare species and its growth rate. 5. If mortality in the community of long-lived perennials is synchronized, the generations become nonoverlapping, and the competitive dynamics become similar to that of annuals. 6. Coexistence between annual and perennial species is promoted if the covariances between the annual survival and the relative yield of perennials, and between the yields of perennials and annuals, decrease and become more negative. 7. Selection for seed yield and establishment in different conditions in annuals favours a generalist strategy with low variance between years which provides a moderate yield and establishment over a wide range of environmental conditions. In perennial plants, long-term growth rate is determined by the lifetime seed yield and establishment. Because of strong competition with annuals in the more common conditions, selection in perennials favours instead a specialist strategy, with a high seed yield and establishment at relatively rare occasions in space and time, in which there is only weak competition with annuals. 8. Coexistence of annual species with a long-lived seed bank in the soil is also made possible by independent variation in different years of the germination, seed yield and establishment of different species, analogous to the situation of perennial plants.  相似文献   

8.
Abstract. We studied the interactions between woody perennial species and native and non-native annual species in a number of vegetation types within a nature reserve in the Western Australian wheatbelt. In particular, we examined the responses of annuals to perennial canopy removal, fire, soil disturbance and nutrient additions, and the effects of removal of annuals on perennial seedling regeneration. Experimental shrub removal significantly increased the abundance of annuals in a dense shrubland dominated by Allocasuarina campestris, but had no effect in a more open species-rich sandplain heath. Soil disturbance and nutrient addition in the heath area had no significant influence on annual abundance until three years after treatment. Fire had no clear effect on annual abundance in the heath within the reserve, but promoted a large increase in non-native species within an adjacent roadverge. A pattern of increased soil nutrient levels was accompanied by greatly increased non-native annual abundance beneath individual trees of Santalum spicatum. Exploratory laboratory bioassay experiments indicated that several woody perennials produced leachates that were capable of reducing the germination or growth of the introduced grass Avena fatua, indicating that allelopathy may be an important component of the interaction between the annual and perennial components. Within a woodland community, fire temporarily reduced the abundance of annual species and increased the establishment of perennial seedlings. Field experiments showed that annuals significantly reduced the survival of seedlings of the shrub Allocasuarina campestris. Our results indicate that intact native vegetation canopies effectively prevent invasion by non-native annuals, and that regeneration by native perennials is likely to be inhibited by the presence of an abundant annual cover.  相似文献   

9.
The effect of glaciation on the levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly, complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (Nobliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE = 0.502–0.662) and slight, but significant, genetic structure (RST = 8.7–16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well‐defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis.  相似文献   

10.
11.
Successful restoration of an invaded landscape to a diverse, invasion‐resistant native plant community requires determining the optimal native species mix to add to the landscape. We manipulated native seed mix (annuals, perennials, or a combination of the two), while controlling the growth of non‐native species to test the hypothesis that altering native species composition can influence native establishment and subsequent non‐native invasion. Initial survival of native annuals and perennials was higher when seeded in separate mixes than when combined, and competition between the native perennials and annuals led to lower perennial cover in year 2 of mixed‐seeded plots. The plots with the highest perennial cover had the highest resistance to invasion by Brassica nigra. To clarify interactions among different functional groups of natives and B. nigra, we measured competitive interactions in pots. We grew one native annual, one native perennial, and B. nigra alone or with different competitors and measured biomass after 12 weeks. Brassica nigra was the strongest competitor, limiting the growth of all native species, and was not impacted by competition with native annuals or perennial seedlings. Results from the potted plant experiment demonstrated the strong negative influence of B. nigra on native seedlings. Older native perennials were the strongest competitors against invasive species in the field, yet perennial seedling survival was limited by competition with native annuals and B. nigra. Management action that maximizes perennial growth in early years may lead to a relatively more successful restoration and the establishment of an invasion‐resistant community.  相似文献   

12.
Phylogenetic relationships of Oceanian staple yams (species of Dioscorea section Enantiophyllum) were investigated using plastid trnL‐F and rpl32‐trnL(UAG) sequences and nine nuclear co‐dominant microsatellites. Analysis of herbarium specimens, used as taxonomic references, allowed the comparison with samples collected in the field. It appears that D. alata, D. transversa and D. hastifolia are closely related species. This study does not support a direct ancestry from D. nummularia to D. alata as previously hypothesized. The dichotomy in D. nummularia previously described by farmers in semi‐perennial and annual types was reflected by molecular markers, but the genetic structure of D. nummularia appears more complex. Dioscorea nummularia displayed two haplotypes, each corresponding to a different genetic group. One, including a D. nummularia voucher from New Guinea, is closer to D. tranversa, D. alata and D. hastifolia and encompasses only semi‐perennial types. The second group is composed of semi‐perennial and annual yams. However, some of these annual yams also displayed D. alata haplotypes. Nuclear markers revealed that some annual yams shared alleles with D. alata and semi‐perennial D. nummularia, suggesting a hybrid origin, which may explain their intermediate morphotypes and the difficulty met in classifying them.  相似文献   

13.
14.
Plants constantly monitor changes in photoperiod and temperature throughout the year to synchronize flowering with optimal environmental conditions. In the temperate zones, both photoperiod and temperature fluctuate in a somewhat predictable manner through the seasons, although a transient shift to low temperature is also encountered during changing seasons, such as early spring. Although low temperatures are known to delay flowering by inducing the floral repressor FLOWERING LOCUS C (FLC), it is not fully understood how temperature signals are coordinated with photoperiodic signals in the timing of seasonal flowering. Here, we show that the cold signaling activator INDUCER OF CBF EXPRESSION 1 (ICE1), FLC and the floral promoter SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) constitute an elaborate signaling network that integrates cold signals into flowering pathways. The cold‐activated ICE1 directly induces the gene encoding FLC, which represses SOC1 expression, resulting in delayed flowering. In contrast, under floral promotive conditions, SOC1 inhibits the binding of ICE1 to the promoters of the FLC gene, inducing flowering with a reduction of freezing tolerance. These observations indicate that the ICE1‐FLC‐SOC1 signaling network contributes to the fine‐tuning of flowering during changing seasons.  相似文献   

15.
Competition between native and non-native species can change the composition and structure of plant communities, but in deserts, the highly variable timing of resource availability also influences non-native plant establishment, thus modulating their impacts on native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native Mojave Desert perennials—Larrea tridentata, Achnatherum hymenoides, and Pleuraphis rigida—in either winter or spring. For comparison, additional plots were prepared for the same perennial species and seasons, but with a mixture of native annual species as neighbors. Growth of perennials declined when Bromus was established in winter because Bromus stands had 2–3 months of growth and high water use before perennial growth began. However, water potentials for the perennials were not significantly reduced, suggesting that direct competition for water may not be the major mechanism driving reduced perennial growth. The impact of Bromus on Larrea was lower than for the two perennial grasses, likely because Larrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This result contrasts with the perennial grasses, whose phenology completely overlaps with (Achnatherum) or closely follows (Pleuraphis) that of Bromus. In comparison, Bromus plants established in spring were smaller than those established in winter and thus did not effectively reduce growth of the perennials. Growth of perennials with mixed annuals as neighbors also did not differ from those with Bromus neighbors of equivalent biomass, but stands of these native annuals did not achieve the high biomass of Bromus stands that were necessary to reduce perennial growth. Seed dormancy and narrow requirements for seedling survivorship of native annuals produce densities and biomass lower than those achieved by Bromus; thus, impacts of native Mojave Desert annuals on perennials are expected to be lower than those of Bromus.  相似文献   

16.
In the Central Valley of California, native perennial grass species have been largely replaced by Eurasian annual species, while in many parts of the Mediterranean Basin native perennial grasses continue to dominate, even on disturbed or degraded sites. We assessed whether differences in summer rainfall patterns have lead to the development of different plant-water strategies between grasses from these two regions. We compared six measures of plant-water physiology for three guilds of grasses: California perennial grasses, Mediterranean perennial grasses, and Mediterranean annual grasses. Discriminant analysis distinguished between the three guilds; Mediterranean perennial grasses were characterized by a more conservative water-relations physiology than Mediterranean annual grasses, whereas California perennial grasses were in some ways intermediate between the two Mediterranean grass guilds. For individual traits, California perennial grasses were either intermediate or more like Mediterranean annuals than Mediterranean perennials. Our results suggest California perennials are more drought tolerant than Mediterranean annuals but less drought tolerant than Mediterranean perennials, despite the fact that California??s Central Valley has a more intense summer drought than the Mediterranean Basin. These patterns may help explain why Mediterranean annuals, but not Mediterranean perennials, have been more successful invaders of interior California grasslands.  相似文献   

17.
Plant community functional composition can be manipulated in restored ecosystems to reduce the establishment potential of invading species. This study was designed to compare invasion resistance among communities with species functionally similar or dissimilar to yellow starthistle (Centaurea solstitialis), a late‐season annual. A field experiment was conducted in the Central Valley of California with six experimental plant communities that included (1) six early‐season native annual forbs (AF); (2) five late‐season native perennials and one summer annual forb (NP); (3) a combination of three early‐season native annual forbs and three late‐season native perennials (FP); (4) six early‐season non‐native annual grasses (AG); (5) monoculture of the late‐season native perennial grass Elymus glaucus (EG); and (6) monoculture of the late‐season native perennial Grindelia camporum (GC). Following establishment, C. solstitialis seed was added to half of the plots, and a monoculture of C. solstitialis (CS) was established as a control. Over a 5‐year period, the AF and AG communities were ineffective at preventing C. solstitialis invasion. Centaurea solstitialis cover remained less than 10% in the FP and NP communities, except in year 1. By the fourth year, E. glaucus cover was greater than 50% in NP and FP communities and had spread to all other communities (e.g., 27% cover in CS in year 5). Communities containing E. glaucus, which is functionally similar to C. solstitialis, better resisted invasion than communities lacking a functional analog. In contrast, G. camporum, which is also functionally similar to C. solstitialis, failed to survive. Consequently, species selection for restored communities must consider not only functional similarity to the invader but also establishment success, competitiveness, and survivorship.  相似文献   

18.
Annualization of woody perennials has the potential to revolutionize the breeding and production of fruit crops and rapidly improve horticultural species. Kiwifruit (Actinidia chinensis) is a recently domesticated fruit crop with a short history of breeding and tremendous potential for improvement. Previously, multiple kiwifruit CENTRORADIALIS (CEN)‐like genes have been identified as potential repressors of flowering. In this study, CRISPR/Cas9‐ mediated manipulation enabled functional analysis of kiwifruit CEN‐like genes AcCEN4 and AcCEN. Mutation of these genes transformed a climbing woody perennial, which develops axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development. The number of affected genes and alleles and severity of detected mutations correlated with the precocity and change in plant stature, suggesting that a bi‐allelic mutation of either AcCEN4 or AcCEN may be sufficient for early flowering, whereas mutations affecting both genes further contributed to precocity and enhanced the compact growth habit. CRISPR/Cas9‐mediated mutagenesis of AcCEN4 and AcCEN may be a valuable means to engineer Actinidia amenable for accelerated breeding, indoor farming and cultivation as an annual crop.  相似文献   

19.
R. Joffre 《Oecologia》1990,85(1):142-149
Summary The predominance of annual species in the rangelands of southwestern Spain is not due only to climatic factors but is also strongly influenced by grazing management. Manipulating the grazing system in an experimental plot gave a vegetation structure with patches of annual grasses (mainly Vulpia ssp. and Bromus hordeaceus) and patches of perennial grasses (mainly Phalaris aquatica). This vegetation change allowed us to test the hypothesis that life-cycle differences between annual and perennial grasses affect soil nitrogen availability and plant uptake. Nitrogen availability, measured by in situ incubation, and nitrogen uptake were measured through the growing period (October to June). Amounts of in situ mineralized nitrogen over the whole growth phase were more important for soils supporting perennials (37 ppm) than for soils supporting annuals (27 ppm). The difference between the mineral nitrogen produced in situ and the mineral nitrogen accumulated during the same time in the soil allowed an estimation of the maximum mineral nitrogen quantity which can be taken up by the vegetation during each incubation period. The quantities accumulated over the year were 47 and 38 ppm (or 103 and 83 kg/ha) for soils supporting perennials and annuals respectively. For the same period, amounts of nitrogen immobilized in biomass production were 90 and 70 kg/ha for perennials and annuals respectively. During the autumn, a large proportion of mineral nitrogen was leached from soils supporting annual plants which had only just commenced germination. By contrast, the ability to use mineral nitrogen as soon as autumn rains occurred gave a competitive advantage to the perennial species, but only if they were protected from grazing during this period. The higher mineralization and use of this nitrogen reserve by perennials indicates that they made more efficient use of nitrogen resources than annuals, and validate the initial hypothesis.  相似文献   

20.
To resist establishment by an invasive plant, a community may require one or more species functionally similar to the invader in their resource acquisition pattern. In this study, communities consisting of native winter annual forbs, non‐native annual grasses, native perennials, or a combination of the two native communities were established with and without Centaurea solstitialis to determine the effect of soil moisture and light availability on plant community invasion resistance. The annual plant communities were unable to resist invasion by C. solstitialis. In the native winter annual forb community, senescence in late spring increased light penetration (>75%) to the soil surface, allowing seeded C. solstitialis to quickly establish and dominate the plots. In addition, native annual forbs utilized only shallow soil moisture, whereas C. solstitialis used shallow and deep soil moisture. In communities containing native perennials, only Elymus glaucus established well and eventually dominated the plots. During the first 2 years of establishment, water use pattern of perennial communities was similar to native annual forbs and resistance to invasion was associated with reduced light availability during the critical stages of C. solstitialis establishment. In later years, however, water use pattern of perennial grass communities was similar or greater than C. solstitialis‐dominated plots. These results show that Central Valley grasslands that include E. glaucus resist C. solstitialis invasion by a combination of light suppression and soil water competition. Spatiotemporal resource utilization patterns, and not just functional similarity, should be considered when developing restoration strategies to resist invasion by many non‐native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号