首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysing the impact of anthropogenic and natural river barriers on the dispersal of aquatic and semi‐aquatic species may be critical for their conservation. Knowledge of kinship relationships between individuals and reconstructions of pedigrees obtained using genomic data can be extremely useful, not only for studying the social organization of animals, but also inferring contemporary dispersal and quantifying the effect of specific barriers on current connectivity. In this study, we used kinship data to analyse connectivity patterns in a small semi‐aquatic mammal, the Pyrenean desman (Galemys pyrenaicus), in an area comprising two river systems with close headwaters and dams of various heights and types. Using a large SNP dataset from 70 specimens, we obtained kinship categories and reconstructed pedigrees. To quantify the barrier effect of specific obstacles, we built kinship networks and devised a method based on the assortativity coefficient, which measures the proportion between observed and expected kinship relationships across a barrier. The estimation of this parameter enabled us to infer that the most important barrier in the area was the watershed divide between the rivers, followed by a dam on one of the rivers. Other barriers did not significantly reduce the expected number of kinship relationships across them. This strategy and the information obtained with it may be crucial in determining the most important connectivity problems in an area and help develop conservation plans aimed at improving genetic exchange between populations of threatened species.  相似文献   

2.
The genetic structure of small semiaquatic animals may be influenced by dispersal across both rivers and land. The relative importance of these two modes of dispersal may vary across different species and with ecological conditions and evolutionary periods. The Pyrenean desman (Galemys pyrenaicus) is an endemic mammal of the Iberian Peninsula with a strong phylogeographic structure and semiaquatic habits, thus making it an ideal model to study the effects of river and overland dispersal on its genetic structure. Thanks to different types of noninvasive samples, we obtained an extensive sampling of the Pyrenean desman from the northwestern region of the Iberian Peninsula and sequenced two mitochondrial DNA fragments. We then analyzed, using an isolation‐by‐distance approach, the correlation between phylogenetic distances and geographical distances measured along both river networks and land to infer the relative importance of river and overland dispersal. We found that the correlations in the whole area and in a large basin were consistent with an effect of overland dispersal, which may be due to the postglacial colonization of new territories using terrestrial corridors and, possibly, a more extensive fluvial network that may have been present during the Holocene. However, in a small basin, likely to be less influenced by the impact of ancient postglacial dispersal, the correlations suggested significant overall effects of both overland and river dispersal, as expected for a semiaquatic mammal. Therefore, different scales and geographical regions reflect different aspects of the evolutionary history and ecology of this semiaquatic species using this isolation‐by‐distance method. The results we obtained may have crucial implications for the conservation of the Pyrenean desman because they reinforce the importance of interbasin dispersal for this species in the studied area and the need to protect the whole riverine ecosystem, including rivers, upland streams and terrestrial corridors between basins.  相似文献   

3.
Disentangling the effects of natural environmental features and anthropogenic factors on the genetic structure of endangered populations is an important challenge for conservation biology. Here, we investigated the combined influences of major environmental features and stocking with non‐native fish on the genetic structure and local adaptation of Atlantic salmon (Salmo salar) populations. We used 17 microsatellite loci to genotype 975 individuals originating from 34 French rivers. Bayesian analyses revealed a hierarchical genetic structure into five geographically distinct clusters. Coastal distance, geological substrate and river length were strong predictors of population structure. Gene flow was higher among rivers with similar geologies, suggesting local adaptation to geological substrate. The effect of river length was mainly owing to one highly differentiated population that has the farthest spawning grounds off the river mouth (up to 900 km) and the largest fish, suggesting local adaptation to river length. We detected high levels of admixture in stocked populations but also in neighbouring ones, implying large‐scale impacts of stocking through dispersal of non‐native individuals. However, we found relatively few admixed individuals suggesting a lower fitness of stocked fish and/or some reproductive isolation between wild and stocked individuals. When excluding stocked populations, genetic structure increased as did its correlation with environmental factors. This study overall indicates that geological substrate and river length are major environmental factors influencing gene flow and potential local adaptation among Atlantic salmon populations but that stocking with non‐native individuals may ultimately disrupt these natural patterns of gene flow among locally adapted populations.  相似文献   

4.
Metapopulation dynamics are increasingly invoked in management and conservation of endangered species. In this context, asymmetrical gene flow patterns can be density dependent, with migration occurring mainly from larger into smaller populations, which may depend on it for their persistence. Using genetic markers, such patterns have recently been documented for various organisms including salmonids, suggesting this may be a more general pattern. However, metapopulation theory does not restrict gene flow asymmetry to 'source-sink' structures, nor need these patterns be constant over longer evolutionary timescales. In anadromous salmonids, gene flow can be expected to be shaped by various selective pressures underlying homing and dispersal ('straying') behaviours. The relative importance of these selective forces will vary spatially and for populations of different census size. Furthermore, the consequences of life-history variation among populations for dispersal and hence gene flow remain poorly quantified. We examine population structure and connectivity in Atlantic salmon (Salmo salar L.) from Newfoundland and Labrador, a region where populations of this species are relatively pristine. Using genetic variation at 13 microsatellite loci from samples (N=1346) collected from a total of 20 rivers, we examine connectivity at several regional and temporal scales and test the hypothesis that the predominant direction of gene flow is from large into small populations. We reject this hypothesis and find that the directionality of migration is affected by the temporal scale over which gene flow is assessed. Whereas large populations tend to function as sources of dispersal over contemporary timescales, such patterns are often changed and even reversed over evolutionary, coalescent-derived timescales. These patterns of population structure furthermore vary between different regions and are compatible with demographic and life-history attributes. We find no evidence for sex-biased dispersal underlying gene flow asymmetry. Our findings caution against generalizations concerning the directionality of gene flow in Atlantic salmon and emphasize the need for detailed regional study, if such information is to be meaningfully applied in conservation and management of salmonids.  相似文献   

5.
1. The European freshwater pearl mussel, Margaritifera margaritifera (Bivalvia: Unionoida), is one of the most threatened mussels. The Iberian populations of this species are considered peripheral because their distinct characters such as growth rate and longevity, and require development of effective conservation strategies. 2. We assessed population density and age structure of pearl mussels in two Galician rivers (Eo and Masma in north‐west Spain). Four sampling sites were selected in each river to cover stretches of 100 m. The mean density of mussels in each of these sampling transects was estimated using the adaptive sampling technique, given that mussels occur at low densities and are highly aggregated in these rivers. 3. Age structure was inferred for each population using length–age keys. The empty shells encountered during sampling were used to determine the length of the specimens at different ages (years), together with length‐at‐age data from shells previously analysed for computing growth rates from the same rivers. Water samples from both rivers were analysed for typical physicochemical parameters. 4. Mean densities were very variable, even within the same river (from 0.27 to 6.55 m?2 in the River Eo and from 0.98 to 2.38 m?2 in the River Masma). Individuals in the 0‐ to 5‐year age class were scarce in both rivers. 5. Margaritifera margaritifera showed a preference for the strip of river bed within 1.5 m from the river bank and avoided sites at greater distances. The species also showed a preference for sites with more than 80% tree cover and avoided sites with <50% cover. 6. Iberian populations exhibit the highest growth rate, together with the lowest maximum age and maximum length known for M. margaritifera. Detailed knowledge about these peripheral Iberian populations will contribute to developing strategies for conservation and management of this endangered species.  相似文献   

6.
Salix hukaoana is an endangered riparian pioneer tree that is distributed within a restricted area of Japan. Microsatellite genetic variations and genetic structures were investigated in 80 subpopulations patchily distributed within five river basins with varying degrees of habitat fragmentation. The correlation between geographic distance and genetic distance based on the Bayesian assignment test was significant across relatively intact riparian habitats, with steeper slopes of regression for more densely grouped subpopulations, suggesting restricted gene flow. However, the correlation became less apparent with increasing spacing of the habitat patches. These contradictory results are attributed to the increased chance of long-distance dispersal of sexual propagules among more isolated habitat patches. The observed accumulation of genetic diversity with increasing distance downstream along a few, but not all, of the rivers and the results of assignment tests suggested a downstream directionality of gene flow. The results of this study illustrate the patterns of genetic diversity and contemporary dispersal of S. hukaoana, and provide important insights into understanding the gene dispersal of riparian trees and into the conservation of genetic resources for this species.  相似文献   

7.
Investigating macro-geographical genetic structures of animal populations is crucial to reconstruct population histories and to identify significant units for conservation. This approach may also provide information about the intraspecific flexibility of social systems. We investigated the history and current structure of a large number of populations in the communally breeding Bechstein's bat ( Myotis bechsteinii ). Our aim was to understand which factors shape the species' social system over a large ecological and geographical range. Using sequence data from one coding and one noncoding mitochondrial DNA region, we identified the Balkan Peninsula as the main and probably only glacial refugium of the species in Europe. Sequence data also suggest the presence of a cryptic taxon in the Caucasus and Anatolia. In a second step, we used seven autosomal and two mitochondrial microsatellite loci to compare population structures inside and outside of the Balkan glacial refugium. Central European and Balkan populations both were more strongly differentiated for mitochondrial DNA than for nuclear DNA, had higher genetic diversities and lower levels of relatedness at swarming (mating) sites than in maternity (breeding) colonies, and showed more differentiation between colonies than between swarming sites. All these suggest that populations are shaped by strong female philopatry, male dispersal, and outbreeding throughout their European range. We conclude that Bechstein's bats have a stable social system that is independent from the postglacial history and location of the populations. Our findings have implications for the understanding of the benefits of sociality in female Bechstein's bats and for the conservation of this endangered species.  相似文献   

8.
A continent-wide survey of sequence variation in mitochondrial (mt) and nuclear (n) DNA of the endangered great bustard (Otis tarda) was conducted to assess the extent of phylogeographic structure in a morphologically monotypic bird. DNA sequence variation in a combined 809 bp segment of the mtDNA genome from 66 individuals from the last six breeding regions showed relatively low levels of intraspecific sequence diversity (n = 0.32%) but significant differences in the regional distribution of 11 haplotypes (phiST = 0.49). Despite their exceptional potential for dispersal, a complete and long-term historical separation between the populations from the Iberian Peninsula (Spain) and mainland Europe (Hungary, Slovakia, Germany, and Russia) was demonstrated. Divergence between populations based on a 3-bp insertion-deletion polymorphism within the intron region of the nuclear CHD-Z gene was geographically concordant with the primary subdivision identified within the mtDNA sequences. Inferred aspects of phylogeography were used to formulate conservation recommendations for this endangered species.  相似文献   

9.
Current understanding of the postglacial colonization of Nearctic and Palearctic species relies heavily on inferences drawn from the phylogeographic analysis of contemporary generic variants. Modern postglacial populations are supposed to be representative of their Pleistocene ancestors, and their current distribution is assumed to reflect the different colonization success and dispersal patterns of refugial lineages. Yet, testing of phylogeographic models against ancestral genomes from glacial refugia has rarely been possible. Here we compare ND1 mitochondrial DNA variation in late Pleistocene (16,000-40,000 years before present), historical and contemporary Atlantic salmon (Salmo salar) populations from northern Spain and other regions of western Europe. Our study demonstrates the presence of Atlantic salmon in the Iberian glacial refugium during the last 40,000 years and points to the Iberian Peninsula as the likely source of the most common haplotype within the Atlantic lineage in Europe. However, our findings also suggest that there may have been significant changes in the genetic structure of the Iberian refugial stock since the last ice age, and question whether modern populations in refugial areas are representative of ice age populations. A common haplotype that persisted in the Iberian Peninsula during the Pleistocene last glacial maximum is now extremely rare or absent from European rivers, highlighting the need for caution when making phylogeographic inferences about the origin and distribution of modern genetic types.  相似文献   

10.
Quantifying spatial genetic structure can reveal the relative influences of contemporary and historic factors underlying localized and regional patterns of genetic diversity and gene flow – important considerations for the development of effective conservation efforts. Using 10 polymorphic microsatellite loci, we characterize genetic variation among populations across the range of the Eastern Sand Darter (Ammocrypta pellucida), a small riverine percid that is highly dependent on sandy substrate microhabitats. We tested for fine scale, regional, and historic patterns of genetic structure. As expected, significant differentiation was detected among rivers within drainages and among drainages. At finer scales, an unexpected lack of within‐river genetic structure among fragmented sandy microhabitats suggests that stratified dispersal resulting from unstable sand bar habitat degradation (natural and anthropogenic) may preclude substantial genetic differentiation within rivers. Among‐drainage genetic structure indicates that postglacial (14 kya) drainage connectivity continues to influence contemporary genetic structure among Eastern Sand Darter populations in southern Ontario. These results provide an unexpected contrast to other benthic riverine fish in the Great Lakes drainage and suggest that habitat‐specific fishes, such as the Eastern Sand Darter, can evolve dispersal strategies that overcome fragmented and temporally unstable habitats.  相似文献   

11.
Inferring the processes underlying spatial patterns of genomic variation is fundamental to understand how organisms interact with landscape heterogeneity and to identify the factors determining species distributional shifts. Here, we use genomic data (restriction site‐associated DNA sequencing) to test biologically informed models representing historical and contemporary demographic scenarios of population connectivity for the Iberian cross‐backed grasshopper Dociostaurus hispanicus, a species with a narrow distribution that currently forms highly fragmented populations. All models incorporated biological aspects of the focal taxon that could hypothetically impact its geographical patterns of genomic variation, including (a) spatial configuration of impassable barriers to dispersal defined by topographic landscapes not occupied by the species; (b) distributional shifts resulting from the interaction between the species bioclimatic envelope and Pleistocene glacial cycles; and (c) contemporary distribution of suitable habitats after extensive land clearing for agriculture. Spatiotemporally explicit simulations under different scenarios considering these aspects and statistical evaluation of competing models within an Approximate Bayesian Computation framework supported spatial configuration of topographic barriers to dispersal and human‐driven habitat fragmentation as the main factors explaining the geographical distribution of genomic variation in the species, with no apparent impact of hypothetical distributional shifts linked to Pleistocene climatic oscillations. Collectively, this study supports that both historical (i.e., topographic barriers) and contemporary (i.e., anthropogenic habitat fragmentation) aspects of landscape composition have shaped major axes of genomic variation in the studied species and emphasizes the potential of model‐based approaches to gain insights into the temporal scale at which different processes impact the demography of natural populations.  相似文献   

12.
Habitat and geographical features of river systems strongly influence gene flow and spatial genetic patterning in riparian plant populations. We investigated the patterns of genetic diversity within and among populations of Ainsliaea faurieana relative to different spatial conditions (along a river, among rivers, and among regions on an island), based on nuclear and chloroplast microsatellite DNA variations. Within an individual river system, we found higher haplotype diversities in downstream populations, and in a Bayesian analysis of recent migration, we detected unidirectional gene movements from upstream to downstream, indicating water-mediated dispersal along the river. Mantel tests detected no isolation-by-distance in genetic variation, suggesting the maintenance of a metapopulation with wide-range seed dispersal by water. Moreover, the observed high level of genetic differentiation, especially in the cpDNA (F(ST) = 0.539), indicated a metapopulation structure with frequent extinction and colonization. On a larger scale, we found high population differentiation and clear genetic structuring among regions, suggesting that gene flow was restricted by geographical features (mountains separating river systems) for relatively long periods. Our findings of genetic structures based on different spatial conditions elucidated patterns and ranges of historical and contemporary gene movement in a plant species that is persistent in extremely disturbed riparian environments.  相似文献   

13.
Aquatic plants, and especially the emblematic genus Baldellia (Alismataceae), are among the most threatened organisms, due to unprecedented human-driven habitat destructions. Therefore protection plans are crucially needed and call for thoroughly documenting the genetic diversity and clarifying the taxonomy of this endangered genus. Our sampling included 282 individuals from 42 natural populations and covered the whole geographical range of the genus, across Europe and the Mediterranean. We combined sequencing of nuclear internal transcribed spacer (ITS) and chloroplastic trnL-ndhF regions with amplified fragment length polymorphism (AFLP) genotyping to investigate the Alismataceae phylogeny, and produce a phylogeography of Baldellia. Our phylogeny strongly supported the monophyly of Baldellia and placed it as the sister clade to Luronium and Alisma, therefore excluding, as previously supposed, a close genetic relatedness to the predominantly neotropical genus Echinodorus. The phylogeography of Baldellia outlined patterns consistent with a hypothesis considering glacial refugia located in the Iberian Peninsula and the Italy/Balkan region from which two distinct genetic lineages re-colonized Europe. These two lineages corresponded respectively to Baldellia ranunculoides (Italy/Balkan derived populations) and Baldellia repens (populations recovered from the Iberian Peninsula refuge), therefore supporting differences outlined between the two taxa in previous ecological and morphological studies. These results allowed clarifying taxonomic uncertainties by confirming the genetic distinctness of B. repens according to B. ranunculoides. A third lineage, Baldellia alpestris, originated and remained endemic to the mountainous regions of the Iberian Peninsula. Unexpectedly, B. repens populations collected in northern Africa, appeared to be genetically distinct from their European counterparts, this calls for further investigation to fully address their genetic and conservation status. Finally, we detected a large hybridization zone in northwestern Europe between B. repens and B. ranunculoides. These results were discussed in light of conservation approaches for Baldellia populations.  相似文献   

14.
Global efforts to halt biodiversity loss mandate the establishment of protected areas. In the face of habitat loss and climate uncertainty, large-scale networks of protected areas connected by corridors are needed to increase the dispersal and persistence potential of biota. For example, the recent European Biodiversity Strategy for 2030 defines clear targets for identifying, establishing and integrating ecological corridors, as part of a Trans-European Nature Network. Here, we examined whether rivers could serve as such corridors, facilitating landscape connectivity (i.e. extent to which landscape facilitates or impedes species movement, exchange of genes, natal dispersal and metapopulation dynamics) among protected areas hosted within different countries in the Balkan Peninsula, southeastern Europe. To quantitatively address this question, we calculated the proportion of the river network enclosed within a protected area per country to detect patterns of protection coverage and explored the degree to which spatial connections between 1878 protected areas are supported by the river network. Acknowledging that dams hinder instream continuity, we further quantified potential loss of connections between protected areas caused by the existence of already implemented or planned dam projects upon critical river habitats of endangered fish species. Our results highlight that Balkan rivers have great potential in providing the spatial connections needed to establish landscape connectivity between most of protected areas in the region. Still, heedless hydropower growth and dissimilarities in river protection between neighboring countries remain key challenges for the evolution of a relative framework. Transnational cooperation and systematic planning of infrastructure development could be the only efficient steps towards supporting the establishment of a river-based network to reconstruct connectivity between protected areas and meet biodiversity goals.  相似文献   

15.
Dispersal patterns can have a major impact on the dynamics and viability of populations, and understanding these patterns is crucial to the conservation and management of a species. In this study, patterns of sex-biased dispersal and waterway/overland dispersal are investigated in the endemic Australian platypus, Ornithorhynchus anatinus, a semi-aquatic monotreme. Analyses of over 750 individuals from south-eastern Australia at 13 microsatellite loci and two mitochondrial genes, cytochrome b and cytochrome oxidase subunit II, provide genetic insight into dispersal patterns. For the first time, platypuses of western Victoria are shown to be genetically distinct from other populations of the mainland. Despite distinct morphological differentiation either side of the Great Dividing Range, populations remain genetically similar between coastal and inland areas suggesting gene flow is likely to occur across these ranges. Landscape genetic analyses indicate variability in dispersal patterns between Victorian and Tasmanian platypuses with a greater avoidance of overland travel indicated in Victoria compared to Tasmania. Females appear to remain within their natal area or return to breed, maintaining greater genetic structure in maternally inherited mitochondrial DNA in comparison to nuclear DNA and sharing genetic similarity within a short river distance (i.e. ≤1.4 km). The results of this study provide a valuable spatial framework for the management of wild platypus populations within south-eastern Australia and a baseline for future monitoring of populations that are likely to be impacted by environmental and anthropogenic change.  相似文献   

16.
Human population expansion has promoted contact between wildlife and domestic animals with severe ecological consequences, such as anthropogenic hybridization. In Portugal, Iberian wolf (Canis lupus signatus) populations are considered “Endangered” and co-habit with humans so the risks of hybridization with free-ranging dogs, and livestock depredation can be particularly high. Our aim was to report the occurrence of wolf-dog hybridization in an endangered Iberian wolf sub-population, located in the south of the Douro river, Portugal. We used mitochondrial DNA and microsatellite data to investigate putative hybrids between Iberian wolves and dogs. Here, we report for the first time a wolf-dog hybrid located in the south of the Douro river. This is the second hybrid found in Portugal, and even if hybridization cases are still considered rare, they can be particularly problematic in isolated, fragmented and endangered populations, such as the one studied here. Appropriate management and conservation measures are recommended.  相似文献   

17.
Understanding factors that shape patterns of kinship in sedentary species is important for evolutionary ecologists as well as conservation biologists. Yet, how patterns of relatedness are hierarchically structured in space remains poorly known, even in common species. Here, we use information from 16 polymorphic microsatellite DNA markers to study how small-scale kinship structure varies among house sparrows (Passer domesticus) along an urban-rural gradient. Average levels of relatedness were higher among urban individuals than among individuals from rural areas, suggesting lower rates of dispersal in more built-up habitats. Comparison of observed levels of relatedness with simulated distributions of known kinship values showed that central urban individuals had the highest proportion of closely related conspecifics in their immediate neighbourhood. Spatial auto-correlograms supported this small-scale genetic structure and further indicated stronger effects of genetic drift and/or limited dispersal in urban populations. Results of this study underscore the importance of individual-level analyses as a complementary approach to traditional population-level analyses when studying genetic population structure over small spatial scales.  相似文献   

18.
Even though the reed, Phragmites australis, is an extensively studied wetland species, little is known about reproduction and dispersal modes within and among reed populations at the scale of small river systems. Using microsatellite analysis of 189 individuals from three adjacent river catchments in the Czech Republic, we elucidated the role of the river corridors in the dispersal of P. australis. Using Bayesian clustering of individuals, we found that 19% of clusters were distributed only along one river, which implied dispersal by water (or by wind) along river corridors, whereas 38% of clusters were widely distributed and were likely the product of wind long-distance dispersal among rivers. Intensive exchange of propagules among river systems is further demonstrated by only 6% of total variance being attributed to the variance among rivers in the AMOVA-analysis. Spatial autocorrelation analysis revealed a decreasing pattern up to 5–10 km and no clear pattern over longer distances. This gives an evidence for pollen and seed dispersal at short distances (up to 1 km), whereas most likely only seed dispersal at longer distances up to 10 km. We found five multilocus genotypes distributed in two different populations. The distances between populations with the same genotype ranged from 0.5 to 10.8 km. This can be interpreted as long-distance vegetative dispersal.  相似文献   

19.
The Mauritia flexuosa L.f. palm is known as the “tree of life” given its importance as fundamental food and construction resources for humans. The species is broadly distributed in wet habitats of Amazonia and dry habitats of the Amazon and Orinoco river basins and in the Cerrado savanna. We collected 179 individuals from eight different localities throughout these habitats and used microsatellites to characterize their population structure and patterns of gene flow. Overall, we found high genetic variation, except in one savanna locality. Gene flow between populations is largely congruent with river basins and the direction of water flow within and among them, suggesting their importance for seed dispersal. Further, rivers have had a higher frequency of human settlements than forested sites, contributing to population diversity and structure through increased human use and consumption of M. flexuosa along rivers. Gene flow patterns revealed that migrants are sourced primarily from within the same river basin, such as those from Madeira and Tapajós basins. Our work suggests that rivers and their inhabitants are a critical element of the landscape in Amazonia and have impacted the dispersal and subsequent distribution of tropical palm species, as shown by the patterns of genetic variation in M. flexuosa.  相似文献   

20.
Populations of Sinojackia rehderiana are highly threatened and have small and scattered distribution due to habitat fragmentation and human activities. Understanding changes in genetic diversity, the fine-scale spatial genetic structure (SGS) at different life stages and gene flow of S. rehderiana is critical for developing successful conservation strategies for fragmented populations of this endangered species. In this study, 208 adults, 114 juveniles and 136 seedlings in a 50 × 100-m transect within an old-growth forest were mapped and genotyped using eight microsatellite makers to investigate the genetic diversity and SGS of this species. No significant differences in genetic diversity among different life-history stages were found. However, a significant heterozygote deficiency in adults and seedlings may result from substantial biparental inbreeding. Significant fine-scale spatial structure was found in different life-history stages within 19 m, suggesting that seed dispersal mainly occurred near a mother tree. Both historical and contemporary estimates of gene flow (13.06 and 16.77 m) indicated short-distance gene dispersal in isolated populations of S. rehderiana. The consistent spatial structure revealed in different life stages is most likely the result of limited gene flow. Our results have important implications for conservation of extant populations of S. rehderiana. Measures for promoting pollen flow should be taken for in situ conservation. The presence of a SGS in fragmented populations implies that seeds for ex situ conservation should be collected from trees at least 19-m apart to reduce genetic similarity between neighbouring individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号