共查询到20条相似文献,搜索用时 15 毫秒
1.
Muñoz M Alves E Ramayo-Caldas Y Casellas J Rodríguez C Folch JM Silió L Fernández AI 《Animal genetics》2012,43(5):620-623
Studies of the variation in recombination rate across the genome provide a better understanding of evolutionary genomics and are also an important step towards mapping and dissecting complex traits in domestic animals. With the recent completion of the porcine genome sequence and the availability of a high‐density porcine single nucleotide polymorphism (SNP) array, it is now possible to construct a high‐density porcine linkage map and estimate recombination rate across the genome. A total of 416 animals were genotyped with the Porcine SNP60BeadChip, and high‐density chromosome linkage maps were constructed using CRI‐MAP, assuming the physical order of the Sscrofa10 assembly. The total linkage map length was 2018.79 cM, using 658 meioses and 14 503 SNPs. The estimated average recombination rate across the porcine autosomes was 0.86 cM/Mb. However, a large variation in recombination rate was observed among chromosomes. The estimated average recombination rates (cM/Mb) per chromosome ranged from 0.48 in SSC1 to 1.48 in SSC10, displaying a significant negative correlation with the chromosome sizes. In addition, the analysis of the variation in the recombination rates taking 1‐Mb sliding windows has allowed us to demonstrate the variation in recombination rates within chromosomes. In general, a larger recombination rate was observed in the extremes than in the centre of the chromosome. Finally, the ratio between female and male recombination rates was also inferred, obtaining a value of 1.38, with the heterogametic sex having the least recombination. 相似文献
2.
Niclas Backström Arild Husby Anna Qvarnström Carina F. Mugal Pall Olason Hans Ellegren 《Molecular ecology》2014,23(16):4035-4058
Detailed linkage and recombination rate maps are necessary to use the full potential of genome sequencing and population genomic analyses. We used a custom collared flycatcher 50 K SNP array to develop a high‐density linkage map with 37 262 markers assigned to 34 linkage groups in 33 autosomes and the Z chromosome. The best‐order map contained 4215 markers, with a total distance of 3132 cM and a mean genetic distance between markers of 0.12 cM . Facilitated by the array being designed to include markers from most scaffolds, we obtained a second‐generation assembly of the flycatcher genome that approaches full chromosome sequences (N50 super‐scaffold size 20.2 Mb and with 1.042 Gb (of 1.116 Gb) anchored to and mostly ordered and oriented along chromosomes). We found that flycatcher and zebra finch chromosomes are entirely syntenic but that inversions at mean rates of 1.5–2.0 event (6.6–7.5 Mb) per My have changed the organization within chromosomes, rates high enough for inversions to potentially have been involved with many speciation events during avian evolution. The mean recombination rate was 3.1 cM /Mb and correlated closely with chromosome size, from 2 cM /Mb for chromosomes >100 Mb to >10 cM /Mb for chromosomes <10 Mb. This size dependence seemed entirely due to an obligate recombination event per chromosome; if 50 cM was subtracted from the genetic lengths of chromosomes, the rate per physical unit DNA was constant across chromosomes. Flycatcher recombination rate showed similar variation along chromosomes as chicken but lacked the large interior recombination deserts characteristic of zebra finch chromosomes. 相似文献
3.
There is considerable scope for genetic improvement of cultured blacklip abalone Haliotis rubra in Australia using molecular marker-assisted, selective-breeding practices. Such improvement is dependent on the availability of primary genetic resources, such as a genetic linkage map. This study presents a first-generation linkage map of H. rubra, containing 122 microsatellite markers typed in a single full-sib family. These loci mapped to 17 and 20 linkage groups for the male and female respectively, and when aligned, the consensus map represented 18 linkage groups. The male linkage map contained 102 markers (one unlinked) covering 621 cM with an average intermarker spacing of 7.3 cM, and the female map contained 98 markers (eight unlinked) covering 766 cM with an average intermarker spacing of 9.8 cM. Analysis of markers informative in both parents showed a significantly higher recombination rate in the female parent, with an average male-to-female recombination ratio of 1:1.45 between linked pairs of markers. This linkage map represents a significant advancement in the genetic resource available for H. rubra and provides a framework for future quantitative trait loci mapping and eventual implementation of marker-assisted selection. 相似文献
4.
T. Moen M. Delghandi M. S. Wesmajervi J.-I. Westgaard K. T. Fjalestad 《Animal genetics》2009,40(6):993-996
A first genetic linkage map of the Atlantic cod ( Gadus morhua ) was produced, based on segregation data from 12 full-sib families of Norwegian origin. The map contained 174 single nucleotide polymorphism markers and 33 microsatellites, distributed on 25 linkage groups and had a length of 1225 cM. A significant difference in recombination rates between sexes was found, the average ratio of female:male recombination rates being 1.78 ± 1.62 (SD). 相似文献
5.
Charles F. Aquadro Vanessa Bauer DuMont Floyd A. Reed 《Current opinion in genetics & development》2001,11(6):627-634
Average levels of nucleotide diversity are ten-fold lower in humans than in the fruitfly, Drosophila melanogaster. Despite this difference, apparently as a result of a lower population size, patterns of genomic diversity are strikingly similar in being correlated with local rates of recombination, and influenced by similar interactions between positive natural selection and recombination. Both species also show lower levels of variation on average in non-African compared to African populations, reflecting a similar evolutionary history and perhaps both natural selection and founder effects in new environments. 相似文献
6.
A number of tests have been developed to detect positive selection at the molecular level. These tests are based on DNA polymorphism within and divergence between species. Applications of these tests have revealed a large collection of genes that have evolved under positive selection and some general insights into adaptive evolution. Recently, these tests have been applied on a genomic scale and have provided estimates of the frequency of adaptive substitutions and a critical test of the neutral theory. 相似文献
7.
Wang Y Rannala B 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1512):3921-3930
Recently, several statistical methods for estimating fine-scale recombination rates using population samples have been developed. However, currently available methods that can be applied to large-scale data are limited to approximated likelihoods. Here, we developed a full-likelihood Markov chain Monte Carlo method for estimating recombination rate under a Bayesian framework. Genealogies underlying a sampling of chromosomes are effectively modelled by using marginal individual single nucleotide polymorphism genealogies related through an ancestral recombination graph. The method is compared with two existing composite-likelihood methods using simulated data.Simulation studies show that our method performs well for different simulation scenarios. The method is applied to two human population genetic variation datasets that have been studied by sperm typing. Our results are consistent with the estimates from sperm crossover analysis. 相似文献
8.
《Current biology : CB》2020,30(8):1517-1528.e6
- Download : Download high-res image (210KB)
- Download : Download full-size image
9.
Eric Yi Liu Andrew P. Morgan Elissa J. Chesler Wei Wang Gary A. Churchill Fernando Pardo-Manuel de Villena 《Genetics》2014,197(1):91-106
Since the publication of the first comprehensive linkage map for the laboratory mouse, the architecture of recombination as a basic biological process has become amenable to investigation in mammalian model organisms. Here we take advantage of high-density genotyping and the unique pedigree structure of the incipient Collaborative Cross to investigate the roles of sex and genetic background in mammalian recombination. Our results confirm the observation that map length is longer when measured through female meiosis than through male meiosis, but we find that this difference is modified by genotype at loci on both the X chromosome and the autosomes. In addition, we report a striking concentration of crossovers in the distal ends of autosomes in male meiosis that is absent in female meiosis. The presence of this pattern in both single- and double-recombinant chromosomes, combined with the absence of a corresponding asymmetry in the distribution of double-strand breaks, indicates a regulated sequence of events specific to male meiosis that is anchored by chromosome ends. This pattern is consistent with the timing of chromosome pairing and evolutionary constraints on male recombination. Finally, we identify large regions of reduced crossover frequency that together encompass 5% of the genome. Many of these “cold regions” are enriched for segmental duplications, suggesting an inverse local correlation between recombination rate and mutation rate for large copy number variants. 相似文献
10.
A microsatellite linkage map for Atlantic salmon (Salmo salar) 总被引:5,自引:0,他引:5
A linkage map of the Atlantic salmon is described here consisting of 15 linkage groups containing 50 microsatellite loci with a 14 additional unlinked markers (including three allozymes). The map shows the largest sex-specific recombination rate differences so far found in any vertebrate species (3.92:1 female:male). Homologies with previous linkage mapping studies of Atlantic salmon and rainbow trout are described. An in silico search of the Genbank database carried out using the microsatellites used in the mapping process identified significant matches between the flanking regions of the microsatellite SS11 and the calcium-binding mitochondrial carrier protein, 'Aralar1'. 相似文献
11.
Sirviö A Pamilo P Johnson RA Page RE Gadau J 《Evolution; international journal of organic evolution》2011,65(3):869-884
Hybridizing harvester ants of the Pogonomyrmex barbatus/rugosus complex have an exceptional genetic caste determination (GCD) mechanism. We combined computer simulations, population genomics, and linkage mapping using >1000 nuclear AFLP markers and a partial mtDNA sequence to explore the genetic architecture and origin of the dependent lineages. Our samples included two pairs of hybridizing lineages, and the mitochondrial and nuclear data showed contradicting affinities between them. Clustering of individual genotypes based on nuclear markers indicated some exceptions to the general GCD system, that is, interlineage hybrid genes as well as some pure-line workers. A genetic linkage map of P. rugosus showed one of the highest recombination rates ever measured in insects (14.0 cM/Mb), supporting the view that social insects are characterized by high recombination rates. The population data had 165 markers in which sibling pairs showed a significant genetic difference depending on the caste. The differences were scattered in the genome; 13 linkage groups had loci with F(ST)>0.9 between the hybridizing lineages J1 and J2.The mapping results and the population data indicate that the dependent lineages have been initially formed through hybridization at different points in time but the role of introgression has been insignificant in their later evolution. 相似文献
12.
The number and placement of meiotic crossover events during meiosis have important implications for the fidelity of chromosome segregation as well as patterns of inheritance. Despite the functional importance of recombination, recombination landscapes vary widely among and within species, and this can have a strong impact on evolutionary processes. A good knowledge of recombination landscapes is important for model systems in evolutionary and ecological genetics, since it can improve interpretation of genomic patterns of differentiation and genome evolution, and provides an important starting point for understanding the causes and consequences of recombination rate variation. Arabidopsis arenosa is a powerful evolutionary genetic model for studying the molecular basis of adaptation and recombination rate evolution. Here, we generate genetic maps for 2 diploid A. arenosa individuals from distinct genetic lineages where we have prior knowledge that meiotic genes show evidence of selection. We complement the genetic maps with cytological approaches to map and quantify recombination rates, and test the idea that these populations might have distinct patterns of recombination. We explore how recombination differs at the level of populations, individuals, sexes and genomic regions. We show that the positioning of crossovers along a chromosome correlates with their number, presumably a consequence of crossover interference, and discuss how this effect can cause differences in recombination landscape among sexes or species. We identify several instances of female segregation distortion. We found that averaged genome-wide recombination rate is lower and sex differences subtler in A. arenosa than in Arabidopsis thaliana. 相似文献
13.
Differences in recombination rates on chromosome 23 between German Angus and German Simmental and breed specific linkage mapping 总被引:1,自引:0,他引:1
Five paternal half sib families of German Angus (GA) (n = 428) and six of German Simmental (GS) (n = 378) including dams were genotyped with 11 microsatellites (INRA132, RM033, BM1815, BM1258, BOLA-DRB1, BM1818, BM1905, BM1443, CYP21, CSSM5 and DYMS1) derived from chromosome 23. Differences in heterozygosity between the breeds were observed. Significant differences in recombination rates between GA and GS could be demonstrated for the marker intervals INRA132-CSSM5, CYP21-BOLA-DRB1 and BOLA-DRB1-BM1818. The length of the map of GA was 90.5 cM in contrast to 117.8 cM for GS. The breed specific linkage maps show differences in length but confirmation of the order of the markers. 相似文献
14.
Despite their importance to successful meiosis and various evolutionary processes, meiotic recombination rates sometimes vary within species or between closely related species. For example, humans and chimpanzees share virtually no recombination hotspot locations in the surveyed portion of the genomes. However, conservation of recombination rates between closely related species has also been documented, raising an apparent contradiction. Here, we evaluate how and why conflicting patterns of recombination rate conservation and divergence may be observed, with particular emphasis on features that affect recombination, and the scale and method with which recombination is surveyed. Additionally, we review recent studies identifying features influencing fine-scale and broad-scale recombination patterns and informing how quickly recombination rates evolve, how changes in recombination impact selection and evolution in natural populations, and more broadly, which forces influence genome evolution. 相似文献
15.
用统计的方法,对以一个商品猪群为参考家系,采用163个微卫星标记和3个I-型分子标记(RYR1、PRKAG3、PIT1)构建的猪常染色体雌、雄连锁图谱的长度进行了比较。结果表明,常染色体的雌性连锁图谱的总长度为2625.9 cM,雄性连锁图谱的总长度为2259.7 cM,二者比率为1.16 :1;除了1号和14号染色体以外,其余染色体的雌性连锁图谱的长度均比雄性连锁图谱长。1、3、5、6、7、8、10、11、12、13、14、16、17、18号染色体的雌雄连锁图谱的长度差异极显著(P<0.01);9号染色体的雌雄连锁图谱的长度差异为显著(P<0.05);2、4、12、15号染色体的雌雄图谱的长度差异不显著。 Abstract:The difference between the length of female- and male-linkage map, which was created with a reference pedigree based on a commercial porcine population and using 163 microsatellite markers as well as 3 type-I markers (RYR1, PRKAG3, PIT1), was statistic analyzed. The results showed that the total length of female linkage map of autosomes is 2625.9 cM and the total length of the male linkage map is 2259.7 cM; the ratio between the total length of the female- and male-linkage maps is 1.16 :1; except for the chromosomes 1 and 14, the female linkage maps of the other chromosomes are longer than the male linkage maps. The difference between the length of female- and male-linkage maps of chromosomes 1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17 and 18 is very significant (P<0.01) and the difference of chromosome 9 is significant (P<0.05); but there is no significance on chromosomes 2, 4, 12 and 15. 相似文献
16.
Sirviö A Gadau J Rueppell O Lamatsch D Boomsma JJ Pamilo P Page RE 《Journal of evolutionary biology》2006,19(5):1475-1485
Honeybees are known to have genetically diverse colonies because queens mate with many males and the recombination rate is extremely high. Genetic diversity among social insect workers has been hypothesized to improve general performance of large and complex colonies, but this idea has not been tested in other social insects. Here, we present a linkage map and an estimate of the recombination rate for Acromyrmex echinatior, a leaf-cutting ant that resembles the honeybee in having multiple mating of queens and colonies of approximately the same size. A map of 145 AFLP markers in 22 linkage groups yielded a total recombinational size of 2076 cM and an inferred recombination rate of 161 kb cM(-1) (or 6.2 cM Mb(-1)). This estimate is lower than in the honeybee but, as far as the mapping criteria can be compared, higher than in any other insect mapped so far. Earlier studies on A. echinatior have demonstrated that variation in division of labour and pathogen resistance has a genetic component and that genotypic diversity among workers may thus give colonies of this leaf-cutting ant a functional advantage. The present result is therefore consistent with the hypothesis that complex social life can select for an increased recombination rate through effects on genotypic diversity and colony performance. 相似文献
17.
A comprehensive linkage map of the pig based on a wild pig - Large White intercross 总被引:14,自引:0,他引:14
L. Marklund M Johansson Moller R. K. Juneja P. Mariani H. Ellegren L. Andersson B. Høyheim W. Davies M. Fredholm W. Coppieters 《Animal genetics》1996,27(4):255-269
A comprehensive linkage map, including 236 linked markers with a total sex-average map length of about 2300 cM, covering nearly all parts of the pig genome has been established. Linkage groups were assigned to all 18 autosomes, the X chromosome and the X/Y pseudoautosomal region. Several new gene assignments were made including the assignment of linkage group U1 (EAK-HPX) to chromosome 9. The linkage map includes 77 type I loci informative for comparative mapping and 72 in situ mapped markers physically anchoring the linkage groups on chromosomes. A highly significant heterogeneity in recombination rates between sexes was observed with a general tendency towards an excess of female recombination. The average ratio of female to male recombination was estimated at 1–4:1 but this parameter varied between chromosomes as well as between regions within chromosomes. An intriguing finding was that blood group loci were overrepresented at the distal ends of linkage groups. 相似文献
18.
Burrell AM Taylor KG Williams RJ Cantrell RT Menz MA Pepper AE 《Molecular ecology》2011,20(4):784-798
Adaptation to environment is the cornerstone of ecological genetics. The subject of this study is a wild relative of the sequenced and annotated model plant species, Arabidopsis thaliana. Caulanthus amplexicaulis var. barbarae lives on serpentine soils, known for high concentrations of heavy metals and low concentrations of essential plant macronutrients, and provides a compelling example of an organism’s adaptation to environment. We constructed an F2 linkage map, using a cross to the nonserpentine sister taxon, C. amplexicaulis var. amplexicaulis. C. amplexicaulis is a member of a highly diverse set of taxa (within the tribe Thelypodieae), described here as the ‘Streptanthoid Complex’ that are adapted to a broad range of environments, yet share a common n = 14 chromosome number and likely arose by a recent radiation. The linkage map consists of 97 polymorphic microsatellite markers, and 40 exon‐primed intron‐crossing markers based on A. thaliana exon sequences and Brassica ESTs. The map covers 14 linkage groups and has a total length of 1513 cM. Both the patterns of marker segregation and the comparative map indicate that C. amplexicaulis is a diploid organism with a compact genome. All exon‐primed intron‐crossing markers, and an unexpectedly large number of microsatellite markers (83%), had significant similarity to the A. thaliana genome, facilitating the development of a comparative genome map. As a proof of principle, we used the comparative map to identify candidate genes underlying differences in sepal colour between the two parent taxa. We demonstrate that the genomic tools developed here will be portable throughout the Streptanthoid Complex. 相似文献
19.
Wicker T Zimmermann W Perovic D Paterson AH Ganal M Graner A Stein N 《The Plant journal : for cell and molecular biology》2005,41(2):184-194
Six overlapping BAC clones covering the Hv-eIF4E gene region in barley were sequenced in their entire length, resulting in a 439.7 kb contiguous sequence. The contig contains only two genes, Hv-eIF4E and Hv-MLL, which are located in a small gene island and more than 88% of the sequence is composed of transposable elements. A detailed analysis of the repetitive component revealed that this chromosomal region was affected by multiple major duplication and deletion events as well as the insertion of numerous transposable elements, resulting in a complete reshuffling of genomic DNA. Resolving this highly complex pattern resulted in a model unraveling evolutionary events that shaped this region over an estimated 7 million years. Duplications and deletions caused by illegitimate recombination and unequal crossing over were major driving forces in the evolution of the Hv-eIF4E region, equaling or exceeding the effects of transposable element activities. In addition to a dramatic reshuffling of the repetitive portion of the sequence, we also found evidence for important contributions of illegitimate recombination and transposable elements to the sequence organization of the gene island containing Hv-eIF4E and Hv-MLL. 相似文献
20.
Linkage disequilibrium for different scales and applications 总被引:2,自引:0,他引:2
Mueller JC 《Briefings in bioinformatics》2004,5(4):355-364
Assessing the patterns of linkage disequilibrium (LD) has become an important issue in both evolutionary biology and medical genetics since the rapid accumulation of densely spaced DNA sequence variation data in several organisms. LD deals with the correlation of genetic variation at two or more loci or sites in the genome within a given population. There are a variety of LD measures which range from traditional pairwise LD measures such as D' or r2 to entropy-based multi-locus measures or haplotype-specific approaches. Understanding the evolutionary forces (in particular recombination) that generate the observed variation of LD patterns across genomic regions is addressed by model-based LD analysis. Marker type and its allelic composition also influence the observed LD pattern, microsatellites having a greater power to detect LD in population isolates than SNPs. This review aims to explain basic LD measures and their application properties. 相似文献