首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Experimental research on the orientation of migratory songbirds is traditionally conducted using orientation funnels or automatic registration cages that record the directional activity of individual birds on paper or a computer. Most traditionally used funnel and cage designs do not permit investigators to observe detailed behavior of the birds and, therefore, we have gained little insight into the actual behavior of birds while they are exhibiting migratory restlessness and making directional choices. Such behavior can only be studied by direct observation or by video filming. Here, we present BirdOriTrack, a video‐tracking program for extracting time‐resolved, positional data of birds (and potentially other animal species) to determine their orientation relative to the center of a circular cage/funnel. With relatively inexpensive cameras, recording equipment, and cages, orientation experiments can easily be conducted and analyzed using BirdOriTrack. The program is designed to be flexible, allowing analysis of orientation behavior of birds of any size in different cage designs and in both controlled laboratory settings and field‐based studies. To demonstrate the program's utility, we show the results of preliminary field experiments on several species of migratory birds captured at a migration monitoring station. BirdOriTrack is freely available at http://canmove.lu.se/birdoritrack .  相似文献   

4.
5.
Aim We studied how local and regional abundance of a migratory passerine (the blackcap Sylvia atricapilla) track resource availability in breeding and wintering grounds, in an attempt to understand the processes underlying the distribution and regulation of migratory bird populations in summer and in winter. Location Our study was conducted in Spain. In summer, we sampled five localities representing the diversity of environmental conditions met by breeding Spanish blackcaps. In winter, we sampled eight localities in the wintering range of the species including different habitat types (forests and shrublands). Methods Our approach was based on the matching rule, a model that predicts that any local variation in resource abundance between two adjacent habitat patches should be tracked by animals through a similar variation in population abundance. Eventually, this local process should conform to abundance distributions at regional scales. We sampled two habitat patches in each locality, each one including three to five line transects, 500‐m long and 50‐m wide, where we counted blackcaps and measured vegetation structure and fruit abundance. Results During the breeding season, the abundance of blackcaps was strongly correlated with the ground cover of brambles (Rubus spp.), a bush which grows in moist sectors in Mediterranean forests and is the commonest nesting substrate of Spanish blackcaps. Both local and regional changes in bramble cover were tracked by variations in blackcap abundance. However, the rate of increase in blackcap abundance with increasing bramble cover along the Spanish gradient was lower than the one predicted under resource matching. In winter, abundance of fruiting shrubs was the best predictor of blackcap abundance, although local abundance of blackcaps not always fitted local abundance of fruits. Notwithstanding this effect, the regional pattern of abundance tracked changes in fruit availability according to the matching rule. Main conclusions Our results support the strong effect of habitat quality on the abundance distribution of blackcaps and the tracking of different key resources along the year. Together with the different degrees of resource tracking by blackcaps at local and regional scales, these results also support the view that both breeding and wintering processes have to be studied, and studies have to be conducted at the appropriate spatial scales, if we are to understand the processes underlying the abundance distribution of migratory birds.  相似文献   

6.
In migratory species breeding in temperate zones and wintering in tropical areas, the prevalence of blood parasites may be affected by migratory strategies and winter habitat choice. We explored whether African winter habitat was linked to the probability of haemosporidian infection in the House Martin Delichon urbicum breeding in Spain, and tested for potential differences between age‐classes. As a proxy for winter habitat features, we analysed stable isotope (δ2H, δ13C and δ15N) values of winter‐grown feathers moulted in tropical Africa. Rainfall at the African winter grounds was related to the probability of being infected with haemosporidians and this effect differed among age‐classes. We found that haemosporidian prevalence was similar for young and experienced birds wintering in habitats of higher rainfall (2H‐depleted), whereas there were great differences in winter habitats of lower rainfall (2H‐enriched), with young having a much higher prevalence compared with experienced birds. Likewise, experienced birds wintering in habitats of higher rainfall had a higher probability of haemosporidian infection compared with experienced birds wintering in habitats of lower rainfall. By contrast, young birds wintering in habitats of lower rainfall had a higher probability of haemosporidian infection compared with young birds wintering in habitats of higher rainfall. These outcomes highlight the interaction of age with haemosporidian infection in the migratory ecology of the House Martin, which may drive carry‐over effects in this long‐distance aerial insectivore.  相似文献   

7.
Accurately delimiting species boundaries is a nontrivial undertaking that can have significant effects on downstream inferences. We compared the efficacy of commonly used species delimitation methods (SDMs) and a population genomics approach based on genomewide single‐nucleotide polymorphisms (SNPs) to assess lineage separation in the Malaysian Torrent Frog Complex currently recognized as a single species (Amolops larutensis). First, we used morphological, mitochondrial DNA and genomewide SNPs to identify putative species boundaries by implementing noncoalescent and coalescent‐based SDMs (mPTP, iBPP, BFD*). We then tested the validity of putative boundaries by estimating spatiotemporal gene flow (fastsimcoal2 , ABBA‐BABA) to assess the extent of genetic isolation among putative species. Our results show that the A. larutensis complex runs the gamut of the speciation continuum from highly divergent, genetically isolated lineages (mean Fst = 0.9) to differentiating populations involving recent gene flow (mean Fst = 0.05; Nm > 5). As expected, SDMs were effective at delimiting divergent lineages in the absence of gene flow but overestimated species in the presence of marked population structure and gene flow. However, using a population genomics approach and the concept of species as separately evolving metapopulation lineages as the only necessary property of a species, we were able to objectively elucidate cryptic species boundaries in the presence of past and present gene flow. This study does not discount the utility of SDMs but highlights the danger of violating model assumptions and the importance of carefully considering methods that appropriately fit the diversification history of a particular system.  相似文献   

8.
9.
10.
Migratory behaviour is controlled by endogenous circannual rhythms that are synchronized by external cues, such as photoperiod. Investigations on the genetic basis of circannual rhythmicity in vertebrates have highlighted that variation at candidate ‘circadian clock’ genes may play a major role in regulating photoperiodic responses and timing of life cycle events, such as reproduction and migration. In this comparative study of 23 trans‐Saharan migratory bird species, we investigated the relationships between species‐level genetic variation at two candidate genes, Clock and Adcyap1, and species’ traits related to migration and geographic distribution, including timing of spring migration across the Mediterranean Sea, migration distance and breeding latitude. Consistently with previous evidence showing latitudinal clines in ‘circadian clock’ genotype frequencies, Clock allele size increased with breeding latitude across species. However, early‐ and late‐migrating species had similar Clock allele size. Species migrating over longer distances, showing delayed spring migration and smaller phenotypic variance in spring migration timing, had significantly reduced Clock (but not Adcyap1) gene diversity. Phylogenetic confirmatory path analysis suggested that migration date and distance were the most important variables directly affecting Clock gene diversity. Hence, our study supports the hypothesis that Clock allele size increases poleward as a consequence of adaptation to the photoperiodic regime of the breeding areas. Moreover, we show that long‐distance migration is associated with lower Clock diversity, coherently with strong stabilizing selection acting on timing of life cycle events in long‐distance migratory species, likely resulting from the time constraints imposed by late spring migration.  相似文献   

11.
12.
13.
14.
15.
Effective management and conservation of migratory bird populations require knowledge and incorporation of their movement patterns and space use throughout the annual cycle. To investigate the little‐known migratory patterns of two grassland bird species, we deployed 180 light‐level geolocators on Grasshopper Sparrows (Ammodramus savannarum) and 29 Argos‐GPS tags on Eastern Meadowlarks (Sturnella magna) at Konza Prairie, Kansas, USA, and six US Department of Defense (DoD) installations distributed across the species' breeding ranges. We analyzed location data from 34 light‐level geolocators and five Argos‐GPS tags attached for 1 year to Grasshopper Sparrows and Eastern Meadowlarks, respectively. Grasshopper Sparrows were present on the breeding grounds from mid‐April through early October, substantially longer than previously estimated, and migrated on average ~2,500 km over ~30 days. Grasshopper Sparrows exhibited strong migratory connectivity only at a continental scale. The North American Great Lakes region likely serves as a migratory divide for Midwest and East Coast Grasshopper Sparrows; Midwest populations (Kansas, Wisconsin, and North Dakota; n = 13) largely wintered in Texas or Mexico, whereas East Coast populations (Maryland and Massachusetts, n = 20) wintered in the northern Caribbean or Florida. Our data from Eastern Meadowlarks provided evidence for a diversity of stationary and short‐ and long‐distance migration strategies. By providing the most extensive examination of the nonbreeding movement ecology for these two North American grassland bird species to date, we refine information gaps and provide key insight for their management and conservation.  相似文献   

16.
17.
18.
Shifts in reproductive phenology due to climate change have been well documented in many species but how, within the same species, other annual cycle stages (e.g. moult, migration) shift relative to the timing of breeding has rarely been studied. When stages shift at different rates, the interval between stages may change resulting in overlaps, and as each stage is energetically demanding, these overlaps may have negative fitness consequences. We used long‐term data of a population of European pied flycatchers (Ficedula hypoleuca) to investigate phenological shifts in three annual cycle stages: spring migration (arrival dates), breeding (egg‐laying and hatching dates) and the onset of postbreeding moult. We found different advancements in the timing of breeding compared with moult (moult advances faster) and no advancement in arrival dates. To understand these differential shifts, we explored which temperatures best explain the year‐to‐year variation in the timing of these stages, and show that they respond differently to temperature increases in the Netherlands, causing the intervals between arrival and breeding and between breeding and moult to decrease. Next, we tested the fitness consequences of these shortened intervals. We found no effect on clutch size, but the probability of a fledged chick to recruit increased with a shorter arrival‐breeding interval (earlier breeding). Finally, mark–recapture analyses did not detect an effect of shortened intervals on adult survival. Our results suggest that the advancement of breeding allows more time for fledgling development, increasing their probability to recruit. This may incur costs to other parts of the annual cycle, but, despite the shorter intervals, there was no effect on adult survival. Our results show that to fully understand the consequences of climate change, it is necessary to look carefully at different annual cycle stages, especially for organisms with complex cycles, such as migratory birds.  相似文献   

19.
20.
Current climate models project changes in both temperature and precipitation patterns across the globe in the coming years. Migratory species, which move to take advantage of seasonal climate patterns, are likely to be affected by these changes, and indeed, a number of studies have shown a relationship between changing climate and the migration timing of various species. However, these studies have almost exclusively focused on the effects of temperature change on species that inhabit temperate zones. Here, we explore the relationship between rainfall and migration timing in a tropical species, Gecarcoidea natalis (Christmas Island red crab). We find that the timing of the annual crab breeding migration is closely related to the amount of rain that falls during a ‘migration window’ period prior to potential egg release dates, which is in turn related to the Southern Oscillation Index, an atmospheric El Niño‐ Southern Oscillation Index. As reproduction in this species is conditional on successful migration, major changes in migration patterns could have detrimental consequences for the survival of the species. This study serves to broaden our understanding of the effects of climate change on migratory species and will hopefully inspire future work on rainfall and tropical migrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号