首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review, we present a conceptual model which links plant communities and saprotrophic microbial communities through the reciprocal exchange of growth-limiting resources. We discuss the numerous ways human-induced environmental change has directly and indirectly impacted this relationship, and review microbial responses that have occurred to date. We argue that compositional shifts in saprotrophic microbial communities underlie functional responses to environmental change that have ecosystem-level implications. Drawing on a long-term, large-scale, field experiment, we illustrate how and why chronic atmospheric N deposition can alter saprotrophic communities in the soil of a wide-spread sugar maple (Acer saccharum) ecosystem in northeastern North America, resulting in the slowing of plant litter decay, the rapid accumulation of soil organic matter, and the accelerated production and loss of dissolved organic carbon (DOC). Compositional shifts in soil microbial communities, mediated by ecological interactions among soil saprotrophs, appear to lie at the biogeochemical heart of ecosystem response to environmental change.  相似文献   

2.
Lithified microbial structures (microbialites) have been present on Earth for billions of years. Lithification may impose unique constraints on microbes. For instance, when CaCO3 forms, phosphate may be captured via coprecipitation and/or adsorption and potentially rendered unavailable for biological uptake. Therefore, the growth of microbes associated with CaCO3 may be phosphorus‐limited. In this study, we compared the effects of resource addition on biogeochemical functions of microbial communities associated with microbialites and photoautotrophic microbial communities not associated with CaCO3 deposition in Río Mesquites, Cuatro Ciénegas, México. We also manipulated rates of CaCO3 deposition in microbialites to determine whether lithification reduces the bioavailability of phosphorus (P). We found that P additions significantly increased rates of gross primary production (F2,13 = 103.9, < 0.001), net primary production (F2,13 = 129.6, < 0.0001) and ecosystem respiration (F2,13 = 6.44, < 0.05) in the microbialites, while P addition had no effect on photoautotrophic production in the non‐CaCO3‐associated microbial communities. Growth of the non‐CaCO3‐associated phototrophs was only marginally stimulated when nitrogen and P were added simultaneously (F1,36 = 3.98, = 0.053). In the microbialites, resource additions led to some shifts in the abundance of Proteobacteria, Bacteroidetes and Cyanobacteria but mostly had little effect on bacterial community composition. Ca2+ uptake rates increased significantly with organic carbon additions (F1,13 = 8.02, < 0.05). Lowering of CaCO3 deposition by decreasing calcium concentrations in the water led to increased microbial biomass accumulation rates in terms of both organic carbon (F4,48 = 5.23, < 0.01) and P (F6,48 = 13.91, < 0.001). These results provide strong evidence in support of a role of lithification in controlling P limitation of microbialite communities.  相似文献   

3.
滩涂海岸红树林生态系统通常具有较高的土壤养分,尤其是沉积物有机碳含量。海南岛红树林种类丰富且生长较好,通过对红树林沉积物有机碳组分的基础研究有利于提高对红树林湿地固碳能力的评估精度,加深对海洋蓝碳的认识。以清澜港红树林5种典型群落类型为对象,比较分析表层土壤(0—10 cm)总有机碳(TOC)、微生物生物量碳(MBC)、易氧化有机碳(EOC)、可溶性有机碳(DOC)含量差异及其与土壤因子之间的相关性。结果表明:(1)不同群落类型间,土壤TOC、MBC、DOC和EOC含量均值分别为66.76 g/kg、177.08 mg/kg、25.49 mg/kg和2.34 g/kg。对比发现,土壤TOC在角果木群落中含量最高,但各群落间无显著差异;土壤MBC在不同群落间存在显著差异,其中角果木群落和杯萼海桑群落显著高于榄李群落;土壤DOC在不同群落间存在显著差异,其中海莲群落和角果木群落显著高于其余群落;土壤EOC在不同群落间存在显著差异,其中角果木群落显著高于海莲群落和正红树群落。(2)活性有机碳各个组分占总有机碳的比例均值大小依次为EOC>MBC>DOC。土壤EOC、MBC、DOC的...  相似文献   

4.
从2013年11月至2015年12月,通过原位试验,在华西雨屏区常绿阔叶林内设置了对照(CK)、氮沉降(N)、减雨(R)、增雨(A)、氮沉降+减雨(NR)、氮沉降+增雨(NA)6个处理水平,研究了模拟氮沉降和降雨量改变对常绿阔叶林土壤有机碳的影响。结果表明:华西雨屏区常绿阔叶林土壤各土层有机碳含量表现为夏季较高,春冬季较低,0—10 cm土层有机碳含量高于10—20 cm土层。从各处理土壤有机碳含量的平均值来看,0—10 cm土层土壤有机碳含量高低顺序表现为:RNRCKANNA;10—20 cm土层表现为:RNRACKNAN。模拟氮沉降和增雨处理促进了华西雨屏区常绿阔叶林土壤有机碳的累积,模拟减雨抑制了土壤有机碳的累积。常绿阔叶林0—10cm土层土壤C/N值显著高于10—20 cm,土壤C/N值随土层加深而呈现出增加的趋势,降雨使土壤C/N降低,增雨使土壤C/N增高。同一氮沉降条件下,增雨处理增加了土壤有机碳的含量,减雨处理减少了土壤有机碳的含量;同一降雨条件下,氮沉降增加土壤有机碳的含量。氮沉降和降雨对土壤可溶解性有机碳和微生物生物量碳含量产生显著影响(P0.05),对土壤活性碳含量影响不显著(P0.05);其交互作用对土壤有机碳、可溶解性有机碳、微生物生物量碳和活性碳含量影响不显著(P0.05)。  相似文献   

5.
Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (< 0.0001, pseudo R2 = 0.79) in soils sampled within and among five tropical forest sites. A similar pattern occurred in the absence of soil, suggesting an abiotic driver of this reaction. No phenol oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2O2) in addition to Fe(II). Reactions between Fe(II) and H2O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short‐term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests in spite of periodic O2 limitation, and may help explain the rapid turnover of complex C molecules in these soils.  相似文献   

6.
任寅榜  吕茂奎  江军  谢锦升 《生态学报》2018,38(7):2288-2298
林下植被是生态系统的重要组分。通过对比分析红壤侵蚀区植被恢复过程中,林下有无芒萁覆盖地的土壤可溶性有机碳(DOC,Dissolved Organic Carbon)含量及其与地下根系生物量、地上植被淋溶液DOC含量的关系。结果表明:林下植被芒萁覆盖增加了地上叶片和地下根系生物量,土壤DOC含量及储量也显著增加(P0.05),芒萁覆盖对表层土壤(0—20cm)DOC的影响大于深层土壤(20—100cm)(P0.05);相关分析结果表明,林下芒萁覆盖地土壤DOC储量与细根生物量的垂直变化呈显著的正相关关系(P0.05),且随植被恢复年限的增加相关性显著增加,地下根系的垂直分布直接影响各土层DOC储量。不同植被恢复时期,林下芒萁覆盖地土壤DOC与鲜叶(马尾松+芒萁)和枯落物(马尾松+芒萁)淋溶液DOC均呈显著的正相关关系(P0.01),而林下裸露地土壤DOC仅与鲜叶(马尾松)淋溶液DOC呈显著的相关性(P0.01),林下芒萁覆盖地相对于裸露地枯落物淋溶液对土壤DOC储量的影响大于鲜叶。植被恢复过程中芒萁覆盖地土壤微生物生物量碳和微生物熵显著高于林下裸露地。因此,在植被恢复进程中,芒萁能够提供更多底物参与土壤物质与养分循环,对土壤DOC的贡献较大,为侵蚀区马尾松林恢复提供了重要的养分再吸收来源;同时芒萁覆盖增加了微生物活性,促进了微生物对土壤DOC的同化作用,提高了微生物碳源的利用率,对土壤有机碳的积累起着重要的作用。  相似文献   

7.
Global rivers connect three large carbon reservoirs in the world: soil, atmosphere, and ocean. The amount and spatial pattern of riverine carbon flux are essential for the global carbon budget but are still not well understood. Therefore, three linear regression models for riverine DOC (dissolved organic carbon), POC (particulate organic carbon), and DIC (dissolved inorganic carbon) fluxes were established with related generating and transfer factors based on an updated global database. The three models then were applied to simulate the spatial distribution of riverine DOC, POC, and DIC fluxes and to estimate the total global riverine carbon flux. The major conclusions of this study are as follows: the correlation analysis showed that riverine DOC flux is significantly related to discharge (r2 = 0.93, n = 109) and soil organic carbon amount (r2 = 0.60), POC flux increases with discharge (r2 = 0.55, n = 98) and amount of soil erosion (r2 = 0.48), and DIC flux is strongly linked to CO2 consumption by rock weathering (r2 = 0.66, n = 111) and discharge (r2 = 0.63). In addition, Asia exports more DOC and POC than other continents and North America exports more DIC. The Atlantic Ocean accepts the major portion of riverine DOC, POC, and DIC fluxes of all the oceans. The highest riverine DOC flux occurs in the 0–30°S zone, and the highest riverine POC and DIC fluxes appear in the 30–60°N zone. Furthermore, re-estimation revealed that global rivers export approximately 1.06 Pg C to oceans every year, including 0.24 Pg DOC, 0.24 Pg POC, 0.41 Pg DIC, and 0.17 Pg PIC.  相似文献   

8.
马尾松林采伐迹地火烧黑炭对土壤活性碳氮库的影响   总被引:2,自引:0,他引:2  
王玉哲  刘俊第  严强  方熊  易志刚  胡亚林  刘先 《生态学报》2018,38(20):7198-7207
黑炭是火烧过程中不完全燃烧的产物,在火烧迹地的分布具有异质性。为了解黑炭输入量对土壤活性碳氮库的影响,选取中亚热带33年生马尾松人工林采伐迹地为研究对象,对比炼山1年后移除(B0)、单倍(B1)和双倍黑炭输入(B2)处理和未火烧对照土壤可溶性有机碳氮含量(DOC和DON)、矿质氮、土壤微生物量碳氮含量(MBC和MBN)之间的差异。结果表明:炼山对土壤DOC和DON含量的影响因土层而异,在0—10 cm土层,火烧土壤DOC和DON含量与对照土壤没有显著差异,而在10—20 cm土壤要显著低于对照土壤(P0.05)。火烧土壤矿质氮、土壤MBC和MBN含量均低于对照土壤,但差异未达到显著性水平(P0.05)。火烧土壤含水率、pH、全碳和全氮、铵态氮、土壤MBN含量均与黑炭输入量成正比,特别是在10—20 cm土层,B2处理土壤铵态氮含量显著高于B0和B1处理(P0.05)。对于土壤MBN,黑炭输入处理(B1和B2)火烧土壤MBN含量与对照土壤没有显著差异,而去除黑炭处理(B0)火烧土壤MBN含量则显著低于对照土壤(P0.05)。结果说明黑炭输入对火烧土壤的微生物群落恢复和N素保持具有积极意义,因此亚热带人工林管理过程中应重视黑炭的利用。  相似文献   

9.
We quantified sedimentation of organic carbon in 12 Swedish small boreal lakes (<0.48 km2), which ranged in dissolved organic carbon (DOC) from 4.4 to 21.4 mg C l−1. Stable isotope analysis suggests that most of the settling organic matter is of allochthonous origin. Annual sedimentation of allochthonous matter per m2 lake area was correlated to DOC concentration in the water (R 2 = 0.41), and the relationship was improved when sedimentation data were normalized to water depth (R 2 = 0.58). The net efflux of C as CO2 from the water to the atmosphere was likewise correlated to DOC concentration (R 2 = 0.52). The losses of organic carbon from the water column via mineralization to CO2 and via sedimentation were approximately of equal importance throughout the year. Our results imply that DOC is a precursor of the settling matter, resulting in an important pathway in the carbon cycle of boreal lakes. Thus, flocculation of DOC of terrestrial origin and subsequent sedimentation could lead to carbon sequestration by burial in lake sediments.  相似文献   

10.
微塑料因在土壤环境中广泛存在及其潜在的生态风险而受到越来越多的关注。微塑料的赋存会改变土壤理化性质,并对土壤微生物群落及其驱动的生物地球化学过程产生影响,而相关研究尚处于起步阶段。可生物降解塑料作为传统塑料的替代品,越来越多地应用于农业活动,并释放到土壤中。然而,可生物降解微塑料对土壤微生物特性产生影响的研究鲜有报道。基于此,本试验以我国三江平原水稻田土壤为研究对象,选取了2种常见的微塑料为试验材料,分别为传统型微塑料聚丙烯(Polypropylene,PP)和可降解微塑料聚乳酸(Polylactic acid,PLA),进行了为期41d的微宇宙培养实验,旨在分析不同浓度与类型的微塑料对土壤可溶性有机碳(Dissolved Organic Carbon,DOC)含量及官能团特征、温室气体排放以及微生物群落结构的差异性影响。结果表明,传统型微塑料PP与可降解微塑料PLA添加均对土壤理化性质与微生物群落产生显著影响。其中,微塑料添加大体上增加了土壤DOC含量,PLA的促进作用较为明显,且增加含量与微塑料添加量呈正相关;PP和PLA均影响土壤DOC分子结构,削弱了土壤团聚化程度并促进了大分子量DOC化合物的生成;微塑料的添加促进土壤CH4排放,而有效抑制了土壤CO2排放;微塑料显著改变了土壤细菌和真菌群落的丰富度与多样性。相关分析结果表明,土壤CO2累计排放量与芳香族化合物结构及疏水性等官能团特征、变形菌门(Proteobacteria)与放线菌门(Actinobacteria)均呈显著正相关关系。以上结果表明,微塑料添加改变了土壤DOC含量及官能团特征与微生物环境,进而影响土壤温室气体排放。本研究为今后微塑料对土壤地球化学和微生物特性的影响研究提供了科学的思路,同时也有助于评估微塑料对土壤生态系统的生态风险。  相似文献   

11.
Fine root litter is a primary source of soil organic matter (SOM), which is a globally important pool of C that is responsive to climate change. We previously established that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay and increased the storage of soil carbon (C; +18%) across a widespread northern hardwood forest ecosystem. However, the microbial mechanisms that have directly slowed fine root decay are unknown. Here, we show that experimental N deposition has decreased the relative abundance of Agaricales fungi (?31%) and increased that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover, experimental N deposition has increased the relative abundance of lignin‐derived compounds residing in SOM (+53%), and this biochemical response is significantly related to shifts in both fungal and bacterial community composition. Specifically, the accumulation of lignin‐derived compounds in SOM is negatively related to the relative abundance of ligninolytic Mycena and Kuehneromyces fungi, and positively related to Microbacteriaceae. Our findings suggest that by altering the composition of microbial communities on decaying fine roots such that their capacity for lignin degradation is reduced, experimental N deposition has slowed fine root litter decay, and increased the contribution of lignin‐derived compounds from fine roots to SOM. The microbial responses we observed may explain widespread findings that anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More broadly, our findings directly link composition to function in soil microbial communities, and implicate compositional shifts in mediating biogeochemical processes of global significance.  相似文献   

12.
Biogeochemical processes and ecosystemic functions are mostly driven by soil microbial communities. However, most methods focus on evaluating the total microbial community and fail to discriminate its active fraction which is linked to soil functionality. Precisely, the activity of the microbial community is strongly limited by the availability of organic carbon (C) in soils under arid and semi‐arid climate. Here, we provide a complementary genomic and metaproteomic approach to investigate the relationships between the diversity of the total community, the active diversity and ecosystem functionality across a dissolved organic carbon (DOC) gradient in southeast Spain. DOC correlated with the ecosystem multifunctionality index composed by soil respiration, enzyme activities (urease, alkaline phosphatase and β‐glucosidase) and microbial biomass (phospholipid fatty acids, PLFA). This study highlights that the active diversity (determined by metaprotoemics) but not the diversity of the whole microbial community (evaluated by amplicon gene sequencing) is related to the availability of organic C and it is also connected to the ecosystem multifunctionality index. We reveal that DOC shapes the activities of bacterial and fungal populations in Mediterranean semi‐arid soils and determines the compartmentalization of functional niches. For instance, Rhizobales thrived at high‐DOC sites probably fuelled by metabolism of one‐C compounds. Moreover, the analysis of proteins involved in the transport and metabolism of carbohydrates revealed that Ascomycota and Basidiomycota occupied different nutritional niches. The functional mechanisms for niche specialization were not constant across the DOC gradient.  相似文献   

13.
Abstract Sugar maple (Acer saccharum Marsh.)-dominated northern hardwood forests of the Great Lakes Region commonly receive elevated levels of atmospheric nitrate (NO3) deposition, which can alter belowground carbon (C) cycling. Past research has demonstrated that chronic experimental NO3 deposition (3 g N m−2 y−1 above ambient) elicits a threefold increase in the leaching loss of dissolved organic carbon (DOC). Here, we used DOC collected from tension-cup lysimeters to test whether increased DOC export under experimental NO3 deposition originated from forest floor or mineral soil organic matter (SOM). We used DOC radiocarbon dating to quantify C sources and colorimetric assays to measure DOC aromaticity and soluble polyphenolic content. Our results demonstrated that DOC exports are primarily derived from new C (<50-years-old) in the forest floor under both ambient and experimental NO3 deposition. Experimental NO3 deposition increased soluble polyphenolic content from 25.03 ± 4.26 to 49.19 ± 4.23 μg phenolic C mg DOC−1, and increased total aromatic content as measured by specific UV absorbance. However, increased aromatic compounds represented a small fraction (<10%) of the total observed increased DOC leaching. In combination, these findings suggest that experimental NO3 deposition has altered the production or retention as well as phenolic content of DOC formed in forest floor, however exact mechanisms are uncertain. Further elucidation of the mechanism(s) controlling enhanced DOC leaching is important for understanding long-term responses of Great Lakes forests to anthropogenic N deposition and the consequences of those responses for aquatic ecosystems.  相似文献   

14.
氮沉降对长白山森林土壤团聚体内碳、氮含量的影响   总被引:1,自引:0,他引:1  
氮沉降是影响陆地生态系统碳、氮循环的最重要因素之一.为了解土壤团聚体碳、氮组分对氮沉降的响应,本研究在长白山选取次生杨桦林(YHL)与原始阔叶红松林(HSL)两种林型进行为期6年的氮添加试验,采集土壤样品并分析氮沉降对不同粒径土壤团聚体中可溶性有机碳、氮(DOC和DON)、微生物生物量碳、氮(MBC和MBN)、颗粒有机碳、氮(POC和PON)的影响.结果表明: 除POC和PON外,两林分土壤团聚体碳、氮组分含量均随团聚体粒径的减小而增加;氮添加处理显著降低了HSL土壤团聚体中POC和PON含量,降幅分别达20.7%和22.6%,显著增加了DOC含量,增幅达11.6%;氮添加处理对YHL土壤团聚体的碳、氮组分均无显著影响,其中,对DOC和MBC的影响接近于显著(0.05<P<0.1).皮尔森相关分析结果表明,土壤团聚体中总碳或总氮与碳、氮活性组分之间有良好的相关性,其中,HSL土壤的POC与DOC之间呈极显著负相关(r=-0.503),DOC又与MBC呈显著正相关关系(r=0.462).氮添加处理降低阔叶红松林土壤团聚体中POC和PON含量、增加DOC含量的主要原因是其促进了微生物对POM的分解,进而导致DOC的释放.阔叶红松林土壤碳、氮库对氮沉降的响应比次生杨桦林更加敏感.  相似文献   

15.
Recent evidence suggests that atmospheric nitrate (NO 3 ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3 concentration on microbial C cycling in three different ecosystems: black oak–white oak (BOWO), sugar maple–red oak (SMRO), and sugar maple–basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3 would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO 3 repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO 3 concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of β-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3 significantly decreased oxidative enzyme activities (−30% to −54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (−73% lower limit) and an increase in soluble phenolic concentrations (+57% upper limit) in response to increasing NO 3 in soil solution, but there was no significant change in DOC concentration. In contrast to these patterns, increasing soil solution NO 3 in the SMBW soil resulted in significantly greater phenol oxidase activity (+700% upper limit) and a trend toward lower DOC production (−52% lower limit). Nitrate concentration had no effect on microbial respiration or β-glucosidase or N-acetyl-glucosaminidase activities. Fungal abundance and basidiomycete diversity tended to be highest in the BOWO soil and lowest in the SMBW, but neither displayed a consistent response to NO 3 additions. Taken together, our results demonstrate that oxidative enzyme production by microbial communities responds directly to NO 3 deposition, controlling extracellular enzyme activity and DOC flux. The regulation of oxidative enzymes by different microbial communities in response to NO 3 deposition highlights the fact that the composition and function of soil microbial communities directly control ecosystem-level responses to environmental change.  相似文献   

16.
苏丹  张凯  陈法霖  李睿达  郑华 《生态学报》2015,35(18):5940-5947
土壤微生物群落碳代谢功能既受土壤氮素水平的影响,也与土壤有机碳水平密切相关,但二者如何共同影响土壤微生物群落碳代谢功能的研究尚不多见。以我国南方广泛种植的桉树林为对象,采用野外控制实验比较研究了4种施氮处理(对照:0kg/hm2,低氮:84.2 kg/hm2,中氮:166.8 kg/hm2,高氮:333.7 kg/hm2)对有机碳水平差异显著的两桉树林样地土壤微生物群落碳代谢功能的影响,结果表明:(1)两种有机碳水平桉树林土壤微生物群落碳代谢强度和代谢碳源丰富度显著不同,高有机碳水平桉树林土壤微生物群落碳代谢强度和代谢碳源丰富度显著高于低有机碳水平桉树林(P0.01);(2)施氮显著改变了桉树林土壤微生物群落的碳代谢强度和代谢碳源丰富度(P0.05),随着施氮水平的升高,土壤微生物群落碳代谢强度和代谢碳源丰富度均呈现先增加后降低的变化规律,但是高、低有机碳水平桉树林土壤微生物群落碳代谢强度和代谢碳源丰富度对施氮梯度的响应各不相同,高、低有机碳水平桉树林的土壤微生物群落碳代谢指标分别在中氮、低氮处理中达到最高值;(3)施氮影响土壤微生物群落代谢的碳源类型主要是碳水化合物类、氨基酸类和羧酸类,土壤微生物生物量是影响土壤微生物碳代谢强度和代谢碳源丰富度的重要因素。由此可知,施氮对土壤微生物碳代谢功能影响,也与土壤本底中有机碳水平的调节有关,所以在研究土壤微生物群落对施氮等条件的响应时,不能忽略土壤中有机碳水平。  相似文献   

17.
Nitrogen (N) deposition is a component of global change that has considerable impact on belowground carbon (C) dynamics. Plant growth stimulation and alterations of fungal community composition and functions are the main mechanisms driving soil C gains following N deposition in N‐limited temperate forests. In N‐rich tropical forests, however, N deposition generally has minor effects on plant growth; consequently, C storage in soil may strongly depend on the microbial processes that drive litter and soil organic matter decomposition. Here, we investigated how microbial functions in old‐growth tropical forest soil responded to 13 years of N addition at four rates: 0 (Control), 50 (Low‐N), 100 (Medium‐N), and 150 (High‐N) kg N ha?1 year?1. Soil organic carbon (SOC) content increased under High‐N, corresponding to a 33% decrease in CO2 efflux, and reductions in relative abundances of bacteria as well as genes responsible for cellulose and chitin degradation. A 113% increase in N2O emission was positively correlated with soil acidification and an increase in the relative abundances of denitrification genes (narG and norB). Soil acidification induced by N addition decreased available P concentrations, and was associated with reductions in the relative abundance of phytase. The decreased relative abundance of bacteria and key functional gene groups for C degradation were related to slower SOC decomposition, indicating the key mechanisms driving SOC accumulation in the tropical forest soil subjected to High‐N addition. However, changes in microbial functional groups associated with N and P cycling led to coincidentally large increases in N2O emissions, and exacerbated soil P deficiency. These two factors partially offset the perceived beneficial effects of N addition on SOC storage in tropical forest soils. These findings suggest a potential to incorporate microbial community and functions into Earth system models considering their effects on greenhouse gas emission, biogeochemical processes, and biodiversity of tropical ecosystems.  相似文献   

18.
19.
Soil erodibility (K factor) is an important index for measuring soil susceptibility to water erosion, and an essential parameter that is needed for the prediction of soil erosion. Field investigation and laboratory analysis were conducted to study the changes of soil characteristics during long-term vegetation restoration in the hilly gullied loess area. The soil erodibility K values were calculated using the EPIC model and the physico-chemical properties as well as microbial characteristics were evaluated along a chronosequence of natural vegetation recovery (0–50 years) in abandoned land in the Zhifanggou Watershed of Ansai County, northwestern Shaanxi Province, China. The results showed that natural vegetation recovery following abandonment resulted in improvement of the soil properties and structure and these improving effects were closely related to the date of abandonment. Specifically, the K value of the surface layer (0–20 cm) was significantly reduced with time, while the total organic carbon, total nitrogen and soil microbial biomass C, microbial N and microbial P and the water-stable aggregate increased quickly. During the first 10 years of abandonment, these changes occurred relatively quickly due to a significant increase in soil organic matter, after which they gradually fluctuated for approximately 20 years, reaching their uttermost or minimum levels finally. However, these values differed greatly under Platycladus orientalis forest, which suggests that soil rehabilitation is a long-term task that requires several generations to complete.  相似文献   

20.
Temporal and spatial distributions of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), chlorophyll-a and inorganic nitrogen were investigated in two small mountainous lakes (Lake Hongfeng and Baihua), on the Southwestern China Plateau, based on almost 2 years’ field observation. DOC concentrations ranged from 163 μM to 248 μM in Lake Hongfeng and from 143 μM to 308 μM in Lake Baihua, respectively, during the study period. DON concentrations ranged from 7 μM to 26 μM in Lake Hongfeng and from 14 μM to 47 μM in Lake Baihua. DOC showed vertical heterogeneity with higher concentrations in the epilimnion than in the hypolimnion during the stratification period. The DON concentration profiles appeared to be more variable than the DOC profiles. Apparent DON maxima occurred in the upper layer of water. In Lake Hongfeng, DOC concentration in the surface water was highest at the end of spring and early summer. DON concentration was 2–5 μM higher in May 2003 and in June 2004 than in adjacent months. DOC and chlorophyll-a concentrations were significantly correlated (r = 0.79, P < 0.05). The period of highest concentrations of DOC in Lake Hongfeng was also the season of concentrated rainfall. Algae activity and allochthonous input might result in an increase of DOC and DON concentrations together. In Lake Baihua, the maximum concentrations of DOC and DON in the surface water occurred simultaneously in May 2003 and February 2004. DOC concentrations were significantly correlated with DON (r = 0.90, P < 0.01), indicating the common sources. Allochthonous input, biological processes, stratification and mixing were the most important factors controlling the distributions and cycling of dissolved organic matter (DOM) and inorganic nitrogen in these two lakes. Inference from the corresponding vertical distributions of DOM and inorganic nitrogen indicated that DOM played potential roles in the internal loading of nitrogen and metabolism in the water body in these small lakes. The carbon/nitrogen (C/N) ratio showed a potential significance for tracing the source and biogeochemical processes of DOM in the lakes. These results are of significance in the further understanding of biogeochemical cycling and environmental effects of DOM and nitrogen in lake ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号