首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:17,自引:0,他引:17  
An increasingly comprehensive assessment is being developed of the extent and potential significance of lateral gene transfer among microbial genomes. Genomic sequences can be identified as being of putatively lateral origin by their unexpected phyletic distribution, atypical sequence composition, differential presence or absence in closely related genomes, or incongruent phylogenetic trees. These complementary approaches sometimes yield inconsistent results. Not only more data but also quantitative models and simulations are needed urgently.  相似文献   

2.
Although Bacteria and Archaea reproduce by binary fission, exchange of genes among lineages has shaped the diversity of their populations and the diversification of their lineages. Gene exchange can occur by two distinct routes, each differentially impacting the recipient genome. First, homologous recombination mediates the exchange of DNA between closely related individuals (those whose sequences are sufficient similarly to allow efficient integration). As a result, homologous recombination mediates the dispersal of advantageous alleles that may rise to high frequency among genetically related individuals via periodic selection events. Second, lateral gene transfer can introduce novel DNA into a genome from completely unrelated lineages via illegitimate recombination. Gene exchange by this route serves to distribute genes throughout distantly related clades and therefore may confer complex abilities--not otherwise found among closely related lineages--onto the recipient organisms. These two mechanisms of gene exchange play complementary roles in the diversification of microbial populations into independent, ecologically distinct lineages. Although the delineation of microbial "species" then becomes difficult--if not impossible--to achieve, a cogent process of speciation can be predicted.  相似文献   

3.
    
《Trends in plant science》2015,20(4):246-255
  相似文献   

4.
The homocysteine methyltransferase encoded by mmuM is widely distributed among microbial organisms. It is the key enzyme that catalyzes the last step in methionine biosynthesis and plays an important role in the metabolism process. It also enables the microbial organisms to tolerate high concentrations of selenium in the environment. In this research, 533 mmuM gene sequences covering 70 genera of the bacteria were selected from GenBank database. The distribution frequency of mmuM is different in the investigated genera of bacteria. The mapping results of 160 mmuM reference sequences showed that the mmuM genes were found in 7 species of pathogen genomes sequenced in this work. The polymerase chain reaction products of one mmuM genotype (NC_013951 as the reference) were sequenced and the sequencing results confirmed the mapping results. Furthermore, 144 representative sequences were chosen for phylogenetic analysis and some mmuM genes from totally different genera (such as the genes between Escherichia and Klebsiella and between Enterobacter and Kosakonia) shared closer phylogenetic relationship than those from the same genus. Comparative genomic analysis of the mmuM encoding regions on plasmids and bacterial chromosomes showed that pKF3-140 and pIP1206 plasmids shared a 21 kb homology region and a 4.9 kb fragment in this region was in fact originated from the Escherichia coli chromosome. These results further suggested that mmuM gene did go through the gene horizontal transfer among different species or genera of bacteria. High-throughput sequencing combined with comparative genomics analysis would explore distribution and dissemination of the mmuM gene among bacteria and its evolution at a molecular level.  相似文献   

5.
重组工程及其应用   总被引:13,自引:1,他引:13  
周建光  洪鑫  黄翠芬 《遗传学报》2003,30(10):983-988
随着功能基因组研究的需要 ,新近建立起一项新型高效的基于体内同源重组的遗传工程技术———重组工程技术。重组工程可定义为 :基于噬菌体短同源序列重组功能的遗传工程 ,或者基于同源重组的遗传工程。λ噬菌体Red系统完全不同于传统的依赖RecA的大肠杆菌重组系统 ,特点是使用长度仅为 <5 0个碱基的同源臂高效率地催化体内同源重组反应。体内重组过程不再需要预先构建含有同源序列的质粒或噬菌体的中间产物 ,只需要简单在体外合成寡核苷酸同源序列 ,或者用PCR方法合成线性打靶序列。重组反应不依赖大肠杆菌RecA系统 ,不需要限制性内切核酸酶和连接酶 ,不需要复杂的体外重组操作 ,可在大肠杆菌体内对染色体DNA、对BAC和PAC质粒或普通质粒载体进行精确的修饰 ,包括真核或原核细胞基因组DNA的基因敲除、基因敲入、基因克隆和各种突变体的引入。由于该技术具有高效率、简单性和应用的广泛性等独特优点 ,将来完全有可能取代传统的遗传工程技术。主要介绍了λ噬菌体Red重组酶系统及重组工程在功能基因组研究方面的应用与进展  相似文献   

6.
  总被引:30,自引:0,他引:30  
The determination and analysis of complete genome sequences has led to the suggestion that horizontal gene transfer may be much more extensive than previously appreciated. Many of these studies, however, rely on evidence that could be generated by forces other than gene transfer including selection, variable evolutionary rates, and biased sampling.  相似文献   

7.
    
Lignocellulose is a major component of vascular plant biomass. Its decomposition is crucial for the terrestrial carbon cycle. Microorganisms are considered primary decomposers, but evidence increases that some invertebrates may also decompose lignocellulose. We investigated the taxonomic distribution and evolutionary origins of GH45 hydrolases, important enzymes for the decomposition of cellulose and hemicellulose, in a collection of soil invertebrate genomes. We found that these genes are common in springtails and oribatid mites. Phylogenetic analysis revealed that cellulase genes were acquired early in the evolutionary history of these groups. Domain architectures and predicted 3D enzyme structures indicate that these cellulases are functional. Patterns of presence and absence of these genes across different lineages prompt further investigation into their evolutionary and ecological benefits. The ubiquity of cellulase genes suggests that soil invertebrates may play a role in lignocellulose decomposition, independently or in synergy with microorganisms. Understanding the ecological and evolutionary implications might be crucial for understanding soil food webs and the carbon cycle.  相似文献   

8.
Corynebacterium glutamicum, which is the closest relative of Corynebacterium efficiens, is widely used for the large scale production of many kinds of amino acids, particularly glutamic acid and lysine, by fermentation. Corynebacterium diphtheriae, which is well known as a human pathogen, is also closely related to these two species of Corynebacteria, but it lacks such productivity of amino acids. It is an important and interesting question to ask how those closely related bacterial species have undergone such significant functional differentiation in amino acid biosynthesis. The main purpose of the present study is to clarify the evolutionary process of functional differentiation among the three species of Corynebacteria by conducting a comparative analysis of genome sequences. When Mycobacterium and Streptomyces were used as out groups, our comparative study suggested that the common ancestor of Corynebacteria already possessed almost all of the gene sets necessary for amino acid production. However, C. diphtheriae was found to have lost the genes responsible for amino acid production. Moreover, we found that the common ancestor of C. efficiens and C. glutamicum have acquired some of genes responsible for amino acid production by horizontal gene transfer. Thus, we conclude that the evolutionary events of gene loss and horizontal gene transfer must have been responsible for functional differentiation in amino acid biosynthesis of the three species of Corynebacteria.  相似文献   

9.
    
Aphelenchoides besseyi is a plant-parasitic nematode (PPN) in the family Aphelenchoididae capable of infecting more than 200 plant species. A. besseyi is also a species complex with strains exhibiting varying pathogenicity to plants. We present the genome and annotations of six Aphelenchoides species, four of which belonged to the A. besseyi species complex. Most Aphelenchoides genomes have a size of 44.7–47.4 Mb and are among the smallest in clade IV, with the exception of A. fujianensis, which has a size of 143.8 Mb and is one of the largest. Phylogenomic analysis successfully delimited the species complex into A. oryzae and A. pseudobesseyi and revealed a reduction of transposon elements in the last common ancestor of Aphelenchoides. Synteny analyses between reference genomes indicated that three chromosomes in A. besseyi were derived from fission and fusion events. A systematic identification of horizontal gene transfer (HGT) genes across 27 representative nematodes allowed us to identify two major episodes of acquisition corresponding to the last common ancestor of clade IV or major PPNs, respectively. These genes were mostly lost and differentially retained between clades or strains. Most HGT events were acquired from bacteria, followed by fungi, and also from plants; plant HGT was especially prevalent in Bursaphelenchus mucronatus. Our results comprehensively improve the understanding of HGT in nematodes.  相似文献   

10.
Incongruence between gene trees is the main challenge faced by phylogeneticists in the genomic era. Incongruence can occur for artefactual reasons, when we fail to recover the correct gene trees, or for biological reasons, when true gene trees are actually distinct from each other, and from the species tree. Horizontal gene transfers (HGTs) between genomes are an important process of bacterial evolution resulting in a substantial amount of phylogenetic conflicts between gene trees. We argue that the (bacterial) species tree is still a meaningful scientific concept even in the case of HGTs, and that reconstructing it is still a valid goal. We tentatively assess the amount of phylogenetic incongruence caused by HGTs in bacteria by comparing bacterial datasets to a metazoan dataset in which transfers are presumably very scarce or absent.We review existing phylogenomic methods and their ability to return to the user, both the vertical (speciation/extinction history) and horizontal (gene transfers) phylogenetic signals.  相似文献   

11.
While there is compelling evidence for the impact of endosymbiotic gene transfer (EGT; transfer from either mitochondrion or chloroplast to the nucleus) on genome evolution in eukaryotes, the role of interdomain transfer from bacteria and/or archaea (i.e. prokaryotes) is less clear. Lateral gene transfers (LGTs) have been argued to be potential sources of phylogenetic information, particularly for reconstructing deep nodes that are difficult to recover with traditional phylogenetic methods. We sought to identify interdomain LGTs by using a phylogenomic pipeline that generated 13 465 single gene trees and included up to 487 eukaryotes, 303 bacteria and 118 archaea. Our goals include searching for LGTs that unite major eukaryotic clades, and describing the relative contributions of LGT and EGT across the eukaryotic tree of life. Given the difficulties in interpreting single gene trees that aim to capture the approximately 1.8 billion years of eukaryotic evolution, we focus on presence–absence data to identify interdomain transfer events. Specifically, we identify 1138 genes found only in prokaryotes and representatives of three or fewer major clades of eukaryotes (e.g. Amoebozoa, Archaeplastida, Excavata, Opisthokonta, SAR and orphan lineages). The majority of these genes have phylogenetic patterns that are consistent with recent interdomain LGTs and, with the notable exception of EGTs involving photosynthetic eukaryotes, we detect few ancient interdomain LGTs. These analyses suggest that LGTs have probably occurred throughout the history of eukaryotes, but that ancient events are not maintained unless they are associated with endosymbiotic gene transfer among photosynthetic lineages.  相似文献   

12.
13.
运用同源重组技术破坏了一株格尔德霉素产生菌Sterptomyces rochei 4089的L基因,该基因编码氧化还原酶.以Sterptomyces rochei 4089基因组总DNA为模板,PCR扩增AHBA-KLM基因簇,采取Red/ET重组技术,构建L基因阻断质粒pKC1139-KLM-KmR.采用大肠杆菌与链霉菌的结合转移将阻断质粒含AHBA-KLM基因簇和Kan表达单元的3.0 kb线性片段转化Sterptomyces rochei 4089菌株,在卡纳霉素的平板上筛选卡纳霉素抗性转化子,经PCR检测分离到L基因阻断突变菌株.对原、变株的发酵液进行TLC和HPLC分析显示,Sterptomyces rochei 4089基因组中的L基因失活后,导致该菌株不能合成安莎类抗生素格尔德霉素.通过阻断L基因,为筛查这类放线菌产生安莎类抗生素提供了明确的组分指示作用.  相似文献   

14.
    
Highly diversified astigmatic mites comprise many medically important human household pests such as house dust mites causing ∼1–2% of all allergic diseases globally; however, their evolutionary origin and diverse lifestyles including reversible parasitism have not been illustrated at the genomic level, which hampers allergy prevention and our exploration of these household pests. Using six high-quality assembled and annotated genomes, this study not only refuted the monophyly of mites and ticks, but also thoroughly explored the divergence of Acariformes and the diversification of astigmatic mites. In monophyletic Acariformes, Prostigmata known as notorious plant pests first evolved, and then rapidly evolving Astigmata diverged from soil oribatid mites. Within astigmatic mites, a wide range of gene families rapidly expanded via tandem gene duplications, including ionotropic glutamate receptors, triacylglycerol lipases, serine proteases and UDP glucuronosyltransferases. Gene diversification after tandem duplications provides many genetic resources for adaptation to sensing environmental signals, digestion, and detoxification in rapidly changing household environments. Many gene decay events only occurred in the skin-burrowing parasitic mite Sarcoptes scabiei. Throughout the evolution of Acariformes, massive horizontal gene transfer events occurred in gene families such as UDP glucuronosyltransferases and several important fungal cell wall lytic enzymes, which enable detoxification and digestive functions and provide perfect drug targets for pest control. This comparative study sheds light on the divergent evolution and quick adaptation to human household environments of astigmatic mites and provides insights into the genetic adaptations and even control of human household pests.  相似文献   

15.
The past year has been a spectacular one for Drosophila research. The sequencing and annotation of the Drosophila melanogaster genome has allowed a comprehensive analysis of the first three eukaryotes to be sequenced—yeast, worm and fly—including an analysis of the fly's influences as a model for the study of human disease. This year has also seen the initiation of a full-length cDNA sequencing project and the first analysis of Drosophila development using high-density DNA microarrays containing several thousand Drosophila genes. For the first time homologous recombination has been demonstrated in flies and targeted gene disruptions may not be far off.  相似文献   

16.
We present evidence supporting the notion that codon usage (CU) compatibility between foreign genes and recipient genomes is an important prerequisite to assess the selective advantage of imported functions, and therefore to increase the fixation probability of horizontal gene transfer (HGT) events. This contrasts with the current tendency in research to predict recent HGTs in prokaryotes by assuming that acquired genes generally display poor CU. By looking at the CU level (poor, typical, or rich) exhibited by putative xenologs still resembling their original CU, we found that most alien genes predominantly present typical CU immediately upon introgression, thereby suggesting that the role of CU amelioration in HGT has been overemphasized. In our strategy, we first scanned a representative set of 103 complete prokaryotic genomes for all pairs of candidate xenologs (exported/imported genes) displaying similar CU. We applied additional filtering criteria, including phylogenetic validations, to enhance the reliability of our predictions. Our approach makes no assumptions about the CU of foreign genes being typical or atypical within the recipient genome, thus providing a novel unbiased framework to study the evolutionary dynamics of HGT.  相似文献   

17.
    
Analysis of microbial biodiversity is hampered by a lack of reference genomes from most bacteria, viruses, and algae. This necessitates either the cultivation of a restricted number of species for standard sequencing projects or the analysis of highly complex environmental DNA metagenome data. Single‐cell genomics (SCG) offers a solution to this problem by constraining the studied DNA sample to an individual cell and its associated symbionts, prey, and pathogens. We used SCG to study marine heterotrophic amoebae related to Paulinella ovalis (A. Wulff) P.W. Johnson, P.E. Hargraves & J.M. Sieburth (Rhizaria). The genus Paulinella is best known for its photosynthetic members such as P. chromatophora Lauterborn that is the only case of plastid primary endosymbiosis known outside of algae and plants. Here, we studied the phagotrophic sister taxa of P. chromatophora that are related to P. ovalis and found one SCG assembly to contain α‐cyanobacterial DNA. These cyanobacterial contigs are presumably derived from prey. We also uncovered an associated cyanophage lineage (provisionally named phage PoL_MC2). Phylogenomic analysis of the fragmented genome assembly suggested a minimum genome size of 200 Kbp for phage PoL_MC2 that encodes 179 proteins and is most closely related to Synechococcus phage S‐SM2. For this phage, gene network analysis demonstrates a highly modular genome structure typical of other cyanophages. Our work demonstrates that SCG is a powerful approach for discovering algal and protist biodiversity and for elucidating biotic interactions in natural samples.  相似文献   

18.
  总被引:1,自引:0,他引:1  
Many genes are involved in mammalian cell apoptosis pathway. These apoptosis genes often contain characteristic functional domains, and can be classified into at least 15 functional groups, according to previous reports. Using an integrated bioinformatics platform for motif or domain search from three public mammalian proteomes (International Protein Index database for human, mouse, and rat), we systematically cataloged all of the proteins involved in mammalian apoptosis pathway. By localizing those proteins onto the genomes, we obtained a gene locus centric apoptosis gene catalog for human, mouse and rat.Further phylogenetic analysis showed that most of the apoptosis related gene loci are conserved among these three mammals. Interestingly, about one-third of apoptosis gene loci form gene clusters on mammal chromosomes, and exist in the three species, which indicated that mammalian apoptosis gene orders are also conserved. In addition, some tandem duplicated gene loci were revealed by comparing gene loci clusters in the three species. All data produced in this work were stored in a relational database and may be viewed at http://pcas.cbi.pku.edu.cn/database/apd.php.  相似文献   

19.
    
Abstract More than 190 plastid genomes have been completely sequenced during the past two decades due to advances in DNA sequencing technologies. Based on this unprecedented abundance of data, extensive genomic changes have been revealed in the plastid genomes. Inversion is the most common mechanism that leads to gene order changes. Several inversion events have been recognized as informative phylogenetic markers, such as a 30‐kb inversion found in all living vascular plants minus lycopsids and two short inversions putatively shared by all ferns. Gene loss is a common event throughout plastid genome evolution. Many genes were independently lost or transferred to the nuclear genome in multiple plant lineages. The trnR‐CCG gene was lost in some clades of lycophytes, ferns, and seed plants, and all the ndh genes were absent in parasitic plants, gnetophytes, Pinaceae, and the Taiwan moth orchid. Certain parasitic plants have, in particular, lost plastid genes related to photosynthesis because of the relaxation of functional constraint. The dramatic growth of plastid genome sequences has also promoted the use of whole plastid sequences and genomic features to solve phylogenetic problems. Chloroplast phylogenomics has provided additional evidence for deep‐level phylogenetic relationships as well as increased phylogenetic resolutions at low taxonomic levels. However, chloroplast phylogenomics is still in its infant stage and rigorous analysis methodology has yet to be developed.  相似文献   

20.
More than 190 plastid genomes have been completely sequenced during the past two decades due to advances in DNA sequencing technologies.Based on this unprecedented abundance of data,extensive genomic changes have been revealed in the plastid genomes.Inversion is the most common mechanism that leads to gene order changes.Several inversion events have been recognized as informative phylogenetic markers,such as a 30-kb inversion found in all living vascular plants minus lycopsids and two short inversions putat...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号