首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic measures of inbreeding based on identical-by-descent (IBD) segments are increasingly used to measure inbreeding and mostly estimated on SNP arrays and whole-genome sequencing (WGS) data. However, some softwares recurrently used for their estimation assume that genomic positions which have not been genotyped are nonvariant. This might be true for WGS data, but not for reduced genomic representations and can lead to spurious IBD segments estimation. In this project, we simulated the outputs of WGS, two SNP arrays of different sizes and RAD-sequencing for three populations with different sizes and histories. We compare the results of IBD segments estimation with two softwares: runs of homozygosity (ROHs) estimated with PLINK and homozygous-by-descent (HBD) segments estimated with RZooRoH. We demonstrate that to obtain meaningful estimates of inbreeding, RZooRoH requires a SNPs density 11 times smaller compared to PLINK: ranks of inbreeding coefficients were conserved among individuals above 22 SNPs/Mb for PLINK and 2 SNPs/Mb for RZooRoH. We also show that in populations with simple demographic histories, distribution of ROHs and HBD segments are correctly estimated with both SNP arrays and WGS. PLINK correctly estimated distribution of ROHs with SNP densities above 22 SNPs/Mb, while RZooRoH correctly estimated distribution of HBD segments with SNPs densities above 11 SNPs/Mb. However, in a population with a more complex demographic history, RZooRoH resulted in better distribution of IBD segments estimation compared to PLINK even with WGS data. Consequently, we advise researchers to use either methods relying on excess homozygosity averaged across SNPs or model-based HBD segments calling methods for inbreeding estimations.  相似文献   

2.
This review presents a broader approach to the implementation and study of runs of homozygosity (ROH) in animal populations, focusing on identifying and characterizing ROH and their practical implications. ROH are continuous homozygous segments that are common in individuals and populations. The ability of these homozygous segments to give insight into a population's genetic events makes them a useful tool that can provide information about the demographic evolution of a population over time. Furthermore, ROH provide useful information about the genetic relatedness among individuals, helping to minimize the inbreeding rate and also helping to expose deleterious variants in the genome. The frequency, size and distribution of ROH in the genome are influenced by factors such as natural and artificial selection, recombination, linkage disequilibrium, population structure, mutation rate and inbreeding level. Calculating the inbreeding coefficient from molecular information from ROH (FROH) is more accurate for estimating autozygosity and for detecting both past and more recent inbreeding effects than are estimates from pedigree data (FPED). The better results of FROH suggest that FROH can be used to infer information about the history and inbreeding levels of a population in the absence of genealogical information. The selection of superior animals has produced large phenotypic changes and has reshaped the ROH patterns in various regions of the genome. Additionally, selection increases homozygosity around the target locus, and deleterious variants are seen to occur more frequently in ROH regions. Studies involving ROH are increasingly common and provide valuable information about how the genome's architecture can disclose a population's genetic background. By revealing the molecular changes in populations over time, genome‐wide information is crucial to understanding antecedent genome architecture and, therefore, to maintaining diversity and fitness in endangered livestock breeds.  相似文献   

3.
The interest to study the effects of inbreeding in natural populations has increased in the last years. Several microsatellite-derived metrics have recently been developed to infer inbreeding from multilocus heterozygosity data without requiring detailed pedigrees that are difficult to obtain in open populations. Internal relatedness (IR) is currently the most widespread used index and its main attribute is that allele frequency is incorporated into the measure. However, IR underestimates heterozygosity of individuals carrying rare alleles. For example, descendants of immigrants paired with natives (normally more outbred) bearing novel or rare alleles would be considered more homozygous than descendants of native parents. Thus, the analogy between homozygosity and inbreeding that generally is carried out would have no logic in those cases. We propose an alternative index, homozygosity by loci (HL) that avoids such problems by weighing the contribution of each locus to the homozygosity index depending on their allelic variability. Under a wide range of simulated scenarios, we found that our index (HL) correlated better than both IR and uncorrected homozygosity (H(O)), measured as proportion of homozygous loci) with genome-wide homozygosity and inbreeding coefficients in open populations. In these populations, which are likely to prevail in nature, the use of HL instead of IR reduced considerably the sample sizes required to achieve a given statistical power. This is likely to have important consequences on the ability to detect heterozygosity fitness correlations assuming the relationship between genome-wide heterozygosity and fitness traits.  相似文献   

4.
Whole‐genome duplications have occurred in the recent ancestors of many plants, fish, and amphibians, resulting in a pervasiveness of paralogous loci and the potential for both disomic and tetrasomic inheritance in the same genome. Paralogs can be difficult to reliably genotype and are often excluded from genotyping‐by‐sequencing (GBS) analyses; however, removal requires paralogs to be identified which is difficult without a reference genome. We present a method for identifying paralogs in natural populations by combining two properties of duplicated loci: (i) the expected frequency of heterozygotes exceeds that for singleton loci, and (ii) within heterozygotes, observed read ratios for each allele in GBS data will deviate from the 1:1 expected for singleton (diploid) loci. These deviations are often not apparent within individuals, particularly when sequence coverage is low; but, we postulated that summing allele reads for each locus over all heterozygous individuals in a population would provide sufficient power to detect deviations at those loci. We identified paralogous loci in three species: Chinook salmon (Oncorhynchus tshawytscha) which retains regions with ongoing residual tetrasomy on eight chromosome arms following a recent whole‐genome duplication, mountain barberry (Berberis alpina) which has a large proportion of paralogs that arose through an unknown mechanism, and dusky parrotfish (Scarus niger) which has largely rediploidized following an ancient whole‐genome duplication. Importantly, this approach only requires the genotype and allele‐specific read counts for each individual, information which is readily obtained from most GBS analysis pipelines.  相似文献   

5.
In the local breeds with small population size, one of the most important problems is the increase of inbreeding coefficient (F). High levels of inbreeding lead to reduced genetic diversity and inbreeding depression. The availability of high-density single nucleotide polymorphism (SNP) arrays has facilitated the quantification of F by genomic markers in farm animals. Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes and represent an estimate of the degree of autozygosity at genome-wide level. The current study aims to quantify the genomic F derived from ROH (FROH) in three local dairy cattle breeds. FROH values were compared with F estimated from the genomic relationship matrix (FGRM), based on the difference between observed v. expected number of homozygous genotypes (FHOM) and the genomic homozygosity of individual i (FMOL i). The molecular coancestry coefficient (fMOL ij) between individuals i and j was also estimated. Individuals of Cinisara (71), Modicana (72) and Reggiana (168) were genotyped with the 50K v2 Illumina BeadChip. Genotypes from 96 animals of Italian Holstein cattle breed were also included in the analysis. We used a definition of ROH as tracts of homozygous genotypes that were >4 Mb. Among breeds, 3661 ROH were identified. Modicana showed the highest mean number of ROH per individual and the highest value of FROH, whereas Reggiana showed the lowest ones. Differences among breeds existed for the ROH lengths. The individuals of Italian Holstein showed high number of short ROH segments, related to ancient consanguinity. Similar results showed the Reggiana with some extreme animals with segments covering 400 Mb and more of genome. Modicana and Cinisara showed similar results between them with the total length of ROH characterized by the presence of large segments. High correlation was found between FHOM and FROH ranged from 0.83 in Reggiana to 0.95 in Cinisara and Modicana. The correlations among FROH and other estimated F coefficients were generally lower ranged from 0.45 (FMOL iFROH) in Cinisara to 0.17 (FGRMFROH) in Modicana. On the basis of our results, recent inbreeding was observed in local breeds, considering that 16 Mb segments are expected to present inbreeding up to three generations ago. Our results showed the necessity of implementing conservation programs to control the rise of inbreeding and coancestry in the three Italian local dairy cattle breeds.  相似文献   

6.
7.
There has been remarkably little attention to using the high resolution provided by genotyping‐by‐sequencing (i.e., RADseq and similar methods) for assessing relatedness in wildlife populations. A major hurdle is the genotyping error, especially allelic dropout, often found in this type of data that could lead to downward‐biased, yet precise, estimates of relatedness. Here, we assess the applicability of genotyping‐by‐sequencing for relatedness inferences given its relatively high genotyping error rate. Individuals of known relatedness were simulated under genotyping error, allelic dropout and missing data scenarios based on an empirical ddRAD data set, and their true relatedness was compared to that estimated by seven relatedness estimators. We found that an estimator chosen through such analyses can circumvent the influence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175) shown to be unaffected by allelic dropout and to be the most accurate when there is genotyping error. We also found that the choice of estimator should not rely solely on the strength of correlation between estimated and true relatedness as a strong correlation does not necessarily mean estimates are close to true relatedness. We also demonstrated how even a large SNP data set with genotyping error (allelic dropout or otherwise) or missing data still performs better than a perfectly genotyped microsatellite data set of tens of markers. The simulation‐based approach used here can be easily implemented by others on their own genotyping‐by‐sequencing data sets to confirm the most appropriate and powerful estimator for their data.  相似文献   

8.
Inbreeding depression is usually quantified by regressing individual phenotypic values on inbreeding coefficients, implicitly assuming there is no correlation between an individual's phenotype and the kinship coefficient to its mate. If such an association between parental phenotype and parental kinship exists, and if the trait of interest is heritable, estimates of inbreeding depression can be biased. Here we first derive the expected bias as a function of the covariance between mean parental breeding value and parental kinship. Subsequently, we use simulated data to confirm the existence of this bias, and show that it can be accounted for in a quantitative genetic animal model. Finally, we use long‐term individual‐based data for white‐throated dippers (Cinclus cinclus), a bird species in which inbreeding is relatively common, to obtain an empirical estimate of this bias. We show that during part of the study period, parents of inbred birds had shorter wings than those of outbred birds, and as wing length is heritable, inbred individuals were smaller, independent of any inbreeding effects. This resulted in the overestimation of inbreeding effects. Similarly, during a period when parents of inbred birds had longer wings, we found that inbreeding effects were underestimated. We discuss how such associations may have arisen in this system, and why they are likely to occur in others, too. Overall, we demonstrate how less biased estimates of inbreeding depression can be obtained within a quantitative genetic framework, and suggest that inbreeding and additive genetic effects should be accounted for simultaneously whenever possible.  相似文献   

9.
A significant portion of plant species are polyploids, with ploidy levels sometimes varying among individuals and/or populations. Current techniques to determine the individual ploidy, e.g., flow cytometry, chromosome counting or genotyping‐by‐sequencing, are often cumbersome. Based on the genotypic probabilities for polysomic inheritance under double‐reduction, we developed a model to estimate allele frequency and infer the ploidy status of individuals from the allelic phenotypes of codominant genetic markers. The allele frequencies are estimated by an expectation‐maximization algorithm in the presence of null alleles, false alleles, negative amplifications and self‐fertilization, and the posterior probabilities are used to assign individuals into different levels of ploidy. The accuracy of this method under different conditions is evaluated. Our methods are freely available in a new software package, ploidyinfer , for use by other researchers which can be downloaded from http://github.com/huangkang1987/ploidyinfer .  相似文献   

10.
Patterns of spatial genetic structure (SGS), typically estimated by genotyping adults, integrate migration over multiple generations and measure the effective gene flow of populations. SGS results can be compared with direct ecological studies of dispersal or mating system to gain additional insights. When mismatches occur, simulations can be used to illuminate the causes of these mismatches. Here, we report a SGS and simulation‐based study of self‐fertilization in Macrocystis pyrifera, the giant kelp. We found that SGS is weaker than expected in M. pyrifera and used computer simulations to identify selfing and early mortality rates for which the individual heterozygosity distribution fits that of the observed data. Only one (of three) population showed both elevated kinship in the smallest distance class and a significant negative slope between kinship and geographical distance. All simulations had poor fit to the observed data unless mortality due to inbreeding depression was imposed. This mortality could only be imposed for selfing, as these were the only simulations to show an excess of homozygous individuals relative to the observed data. Thus, the expected data consistently achieved nonsignificant differences from the observed data only under models of selfing with mortality, with best fits between 32% and 42% selfing. Inbreeding depression ranged from 0.70 to 0.73. The results suggest that density‐dependent mortality of early life stages is a significant force in structuring Macrocystis populations, with few highly homozygous individuals surviving. The success of these results should help to validate simulation approaches even in data‐poor systems, as a means to estimate otherwise difficult‐to‐measure life cycle parameters.  相似文献   

11.
Wang J 《Heredity》2011,107(5):433-443
The inbreeding coefficient of an individual, F, is one of the central parameters in population genetics theory. It has found important applications in evolutionary biology, conservation and ecology, such as the study of inbreeding depression. In the absence of detailed and reliable pedigree records, researchers have developed quite a few estimators to estimate F or the genome-wide homozygosity from genetic marker data. The statistical properties and comparative performances of these metrics are rarely known, however, which impedes an informed choice of the most appropriate one in practical applications. In this investigation, I propose a new likelihood F estimator that makes efficient use of marker information and takes into account of allelic dropouts, null alleles and prior knowledge of inbreeding. I compare the likelihood estimator with three moment estimators of F and three metrics of genomic homozygosity (or heterozygosity) by analysing both simulated and empirical datasets. It is shown that the likelihood estimator invariably outperforms the other estimators and metrics across all datasets analysed. For a typical dataset in heterozygosity-fitness correlation studies involving 10-20 microsatellites and 50 individuals, the correlation between the likelihood estimator and F (the simulated true inbreeding coefficient) is about 8 ~ 35% higher than that between the moment estimators and F. A frequently applied metric, multilocus heterozygosity (MLH), and an F estimator based on the consideration of the proportion of alleles in homozygous conditions, [F R'), are shown to have particularly poor performances. The low correlation between MLH and fitness traits, which is widely observed in numerous empirical studies, might be partially caused by the adoption of this inefficient estimator of genomic inbreeding.  相似文献   

12.
We have analysed the transcribed immunoglobulin kappa (IGK) repertoire of peripheral blood B cells from four individuals from two genetically distinct populations, Papua New Guinean and Australian, using high-throughput DNA sequencing. The depth of sequencing data for each individual averaged 5,548 high-quality IGK reads, and permitted genotyping of the inferred IGKV and IGKJ germline gene segments for each individual. All individuals were homozygous at each IGKJ locus and had highly similar inferred IGKV genotypes. Preferential gene usage was seen at both the IGKV and IGKJ loci, but only IGKV segment usage varied significantly between individuals. Despite the differences in IGKV gene utilisation, the rearranged IGK repertoires showed extensive identity at the amino acid level. Public rearrangements (those shared by two or more individuals) made up 60.2% of the total sequenced IGK rearrangements. The total diversity of IGK rearrangements of each individual was estimated to range from just 340 to 549 unique amino acid sequences. Thus, the repertoire of unique expressed IGK rearrangements is dramatically less than previous theoretical estimates of IGK diversity, and the majority of expressed IGK rearrangements are likely to be extensively shared in individual human beings.  相似文献   

13.
Whole‐genome duplications have occurred in the recent ancestors of many plants, fish and amphibians. Signals of these whole‐genome duplications still exist in the form of paralogous loci. Recent advances have allowed reliable identification of paralogs in genotyping‐by‐sequencing (GBS) data such as that generated from restriction‐site‐associated DNA sequencing (RADSeq); however, excluding paralogs from analyses is still routine due to difficulties in genotyping. This exclusion of paralogs may filter a large fraction of loci, including loci that may be adaptively important or informative for population genetic analyses. We present a maximum‐likelihood method for inferring allele dosage in paralogs and assess its accuracy using simulated GBS, empirical RADSeq and amplicon sequencing data from Chinook salmon. We accurately infer allele dosage for some paralogs from a RADSeq data set and show how accuracy is dependent upon both read depth and allele frequency. The amplicon sequencing data set, using RADSeq‐derived markers, achieved sufficient depth to infer allele dosage for all paralogs. This study demonstrates that RADSeq locus discovery combined with amplicon sequencing of targeted loci is an effective method for incorporating paralogs into population genetic analyses.  相似文献   

14.
In non‐model organisms, evolutionary questions are frequently addressed using reduced representation sequencing techniques due to their low cost, ease of use, and because they do not require genomic resources such as a reference genome. However, evidence is accumulating that such techniques may be affected by specific biases, questioning the accuracy of obtained genotypes, and as a consequence, their usefulness in evolutionary studies. Here, we introduce three strategies to estimate genotyping error rates from such data: through the comparison to high quality genotypes obtained with a different technique, from individual replicates, or from a population sample when assuming Hardy‐Weinberg equilibrium. Applying these strategies to data obtained with Restriction site Associated DNA sequencing (RAD‐seq), arguably the most popular reduced representation sequencing technique, revealed per‐allele genotyping error rates that were much higher than sequencing error rates, particularly at heterozygous sites that were wrongly inferred as homozygous. As we exemplify through the inference of genome‐wide and local ancestry of well characterized hybrids of two Eurasian poplar (Populus) species, such high error rates may lead to wrong biological conclusions. By properly accounting for these error rates in downstream analyses, either by incorporating genotyping errors directly or by recalibrating genotype likelihoods, we were nevertheless able to use the RAD‐seq data to support biologically meaningful and robust inferences of ancestry among Populus hybrids. Based on these findings, we strongly recommend carefully assessing genotyping error rates in reduced representation sequencing experiments, and to properly account for these in downstream analyses, for instance using the tools presented here.  相似文献   

15.
畜禽育种中传统上利用系谱信息评估群体近交程度?近年来随着高通量单核苷酸多态(single nucleotide polymorphism, SNP)检测成本降低,使利用基因组信息分析真实的基因组近交程度成为可能?本研究利用牛54 K SNP 芯片数据统计了北京地区2107头荷斯坦牛基因组上的长纯合片段(runs of homozygosity, ROH)的频率和分布,计算了2种基因组近交系数,即染色体上ROH的长度占基因组总长度的比例(Froh)及个体所有标记基因型中纯合子所占比例,即基因组纯合度(Fhom),进而分析了两种基因组近交系数之间的相关性以及基因组近交与系谱近交系数之间的相关性?结果表明,共检测到44 676个ROH片段,其长度主要分布在1~10 Mb之间?不同长度的ROH散布于个体基因组内,短ROH较长ROH更为常见?ROH在染色体上并非均匀分布,ROH频率最高的区域为10号染色体中部?两种基因组近交系数之间相关性很高(91%以上),但基因组近交与系谱近交之间的相关性较低(低于50%)?系谱完整性是影响基因组近交与系谱近交结果一致的重要因素,基因组近交系数能够反映个体真实的近交,本研究为评估群体近交水平提供了有力工具?  相似文献   

16.
Characterization of highly duplicated genes, such as genes of the major histocompatibility complex (MHC), where multiple loci often co‐amplify, has until recently been hindered by insufficient read depths per amplicon. Here, we used ultra‐deep Illumina sequencing to resolve genotypes at exon 3 of MHC class I genes in the sedge warbler (Acrocephalus schoenobaenus). We sequenced 24 individuals in two replicates and used this data, as well as a simulated data set, to test the effect of amplicon coverage (range: 500–20 000 reads per amplicon) on the repeatability of genotyping using four different genotyping approaches. A third replicate employed unique barcoding to assess the extent of tag jumping, that is swapping of individual tag identifiers, which may confound genotyping. The reliability of MHC genotyping increased with coverage and approached or exceeded 90% within‐method repeatability of allele calling at coverages of >5000 reads per amplicon. We found generally high agreement between genotyping methods, especially at high coverages. High reliability of the tested genotyping approaches was further supported by our analysis of the simulated data set, although the genotyping approach relying primarily on replication of variants in independent amplicons proved sensitive to repeatable errors. According to the most repeatable genotyping method, the number of co‐amplifying variants per individual ranged from 19 to 42. Tag jumping was detectable, but at such low frequencies that it did not affect the reliability of genotyping. We thus demonstrate that gene families with many co‐amplifying genes can be reliably genotyped using HTS, provided that there is sufficient per amplicon coverage.  相似文献   

17.
High‐throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b‐RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b‐RAD protocols on non‐model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b‐RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade‐off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≥20 reads to acquire good genotyping results. Finally, we demonstrated that selective‐base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b‐RAD protocols on non‐model organisms with different genome sizes, helping decision‐making for a reliable and cost‐effective genotyping.  相似文献   

18.
Several methods have been developed to estimate the selfing rate of a population from a sample of individuals genotyped for several marker loci. These methods can be based on homozygosity excess (or inbreeding), identity disequilibrium, progeny array (PA) segregation or population assignment incorporating partial selfing. Progeny array-based method is generally the best because it is not subject to some assumptions made by other methods (such as lack of misgenotyping, absence of biparental inbreeding and presence of inbreeding equilibrium), and it can reveal other facets of a mixed-mating system such as patterns of shared paternity. However, in practice, it is often difficult to obtain PAs, especially for animal species. In this study, we propose a method to reconstruct the pedigree of a sample of individuals taken from a monoecious diploid population practicing mixed mating, using multilocus genotypic data. Selfing and outcrossing events are then detected when an individual derives from identical parents and from two distinct parents, respectively. Selfing rate is estimated by the proportion of selfed offspring in the reconstructed pedigree of a sample of individuals. The method enjoys many advantages of the PA method, but without the need of a priori family structure, although such information, if available, can be utilized to improve the inference. Furthermore, the new method accommodates genotyping errors, estimates allele frequencies jointly and is robust to the presence of biparental inbreeding and inbreeding disequilibrium. Both simulated and empirical data were analysed by the new and previous methods to compare their statistical properties and accuracies.  相似文献   

19.
Conservation programmes aim at maximizing the survival probability of populations, by minimizing the loss of genetic diversity, which allows populations to adapt to changes, and controlling inbreeding increases. The best known strategy to achieve these goals is optimizing the contributions of the parents to minimize global coancestry in their offspring. Results on neutral scenarios showed that management based on molecular coancestry could maintain more diversity than management based on genealogical coancestry when a large number of markers were available. However, if the population has deleterious mutations, managing using optimal contributions can lead to a decrease in fitness, especially using molecular coancestry, because both beneficial and harmful alleles are maintained, compromising the long‐term viability of the population. We introduce here two strategies to avoid this problem: The first one uses molecular coancestry calculated removing markers with low minor allele frequencies, as they could be linked to selected loci. The second one uses a coancestry based on segments of identity by descent, which measures the proportion of genome segments shared by two individuals because of a common ancestor. We compare these strategies under two contrasting mutational models of fitness effects, one assuming many mutations of small effect and another with few mutations of large effect. Using markers at intermediate frequencies maintains a larger fitness than using all markers, but leads to maintaining less diversity. Using the segment‐based coancestry provides a compromise solution between maintaining diversity and fitness, especially when the population has some inbreeding load.  相似文献   

20.
The use of genetic information is crucial in conservation programs for the establishment of breeding plans and for the evaluation of restocking success. Short tandem repeats (STRs) have been the most widely used molecular markers in such programs, but next‐generation sequencing approaches have prompted the transition to genome‐wide markers such as single nucleotide polymorphisms (SNPs). Until now, most sturgeon species have been monitored using STRs. The low diversity found in the critically endangered European sturgeon (Acipenser sturio), however, makes its future genetic monitoring challenging, and the current resolution needs to be increased. Here, we describe the discovery of a highly informative set of 79 SNPs using double‐digest restriction‐associated DNA (ddRAD) sequencing and its validation by genotyping using the MassARRAY system. Comparing with STRs, the SNP panel proved to be highly efficient and reproducible, allowing for more accurate parentage and kinship assignments' on 192 juveniles of known pedigree and 40 wild‐born adults. We explore the effectiveness of both markers to estimated relatedness and inbreeding, using simulated and empirical datasets. Interestingly, we found significant correlations between STRs and SNPs at individual heterozygosity and inbreeding that give support to a reasonable representation of whole genome diversity for both markers. These results are useful for the conservation program of A. sturio in building a comprehensive studbook, which will optimize conservation strategies. This approach also proves suitable for other case studies in which highly discriminatory genetic markers are needed to assess parentage and kinship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号