首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial DNA remains one of the most widely used molecular markers to reconstruct the phylogeny and phylogeography of closely related birds. It has been proposed that bird mitochondrial genomes evolve at a constant rate of ~0.01 substitution per site per million years, that is that they evolve according to a strict molecular clock. This molecular clock is often used in studies of bird mitochondrial phylogeny and molecular dating. However, rates of mitochondrial genome evolution vary among bird species and correlate with life history traits such as body mass and generation time. These correlations could cause systematic biases in molecular dating studies that assume a strict molecular clock. In this study, we overcome this issue by estimating corrected molecular rates for birds. Using complete or nearly complete mitochondrial genomes of 475 species, we show that there are strong relationships between body mass and substitution rates across birds. We use this information to build models that use bird species’ body mass to estimate their substitution rates across a wide range of common mitochondrial markers. We demonstrate the use of these corrected molecular rates on two recently published data sets. In one case, we obtained molecular dates that are twice as old as the estimates obtained using the strict molecular clock. We hope that this method to estimate molecular rates will increase the accuracy of future molecular dating studies in birds.  相似文献   

2.
Aim To evaluate how spatial variation of species richness in different bird orders responds to environmental gradients and determine which order level trait best predicts these relationships. Location South America. Methods A canonical correlation analysis was performed between the species richness in each of 17 bird orders and eight environmental variables in 374, 220 × 220 km cells. Loadings associated with the first two canonical variables were regressed against six order‐level predictors, including diversification level (number of species in each order), body size, median geographical range size and characteristics included in the model to control Type I error rates (the phylogenetic relationship among orders and levels of local‐scale spatial autocorrelation). Results Richness patterns of 14 bird orders were highly correlated with the first canonical axis, indicating that most orders respond similarly to energy‐water gradients (primarily actual evapotranspiration, minimum temperature and potential evapotranspiration). In contrast, species richness within Trochiliformes, Apodiformes and Galliformes were also correlated with the second canonical variable, representing measures of mesoscale climatic variation (range in elevation within cells, minimum temperature, and the interaction term between them) and landcover (habitat diversity). We also found that total diversification within orders was the best predictor of the loadings associated with the first canonical axis, whereas body size of each order best predicted loadings on the second axis. Conclusion Our results broadly support climatic‐related hypotheses as explanations for spatial variation in species richness of different orders. However, both historical (order‐specific variation in speciation rates) and ecological (dispersal of species that evolved by independent processes into areas amenable to birds) processes can explain the relationship between order level traits, such as body size and diversification level, and magnitude of response to current environment, furnishing then guidelines for a further and deeper understanding of broad‐scale diversity gradients.  相似文献   

3.
Secondary forest habitats are increasingly recognized for their potential to conserve biodiversity in the tropics. However, the development of faunal assemblages in secondary forest systems varies according to habitat quality and species‐specific traits. In this study, we predicted that the recovery of bird assemblages is dependent on secondary forest age and level of isolation, the forest stratum examined, and the species’ traits of feeding guild and body mass. This study was undertaken in secondary forests in central Panama; spanning a chronosequence of 60‐, 90‐, and 120‐year‐old forests, and in neighboring old‐growth forest. To give equal attention to all forest strata, we employed a novel method that paired simultaneous surveys in canopy and understory. This survey method provides a more nuanced picture than ground‐based studies, which are biased toward understory assemblages. Bird reassembly varied according to both habitat age and isolation, although it was challenging to separate these effects, as the older sites were also more isolated than the younger sites. In combination, habitat age and isolation impacted understory birds more than canopy‐dwelling birds. Proportions of dietary guilds did not vary with habitat age, but were significantly different between strata. Body mass distributions were similar across forest ages for small‐bodied birds, but older forest supported more large‐bodied birds, probably due to control of poaching at these sites. Canopy assemblages were characterized by higher species richness, and greater variation in both dietary breadth and body mass, relative to understory assemblages. The results highlight that secondary forests may offer critical refugia for many bird species, particularly specialist canopy‐dwellers. However, understory bird species may be less able to adapt to novel and isolated habitats and should be the focus of conservation efforts encouraging bird colonization of secondary forests.  相似文献   

4.
Theory suggests that body size is an important factor in determining interspecific competition and, ultimately, in structuring ecological communities. However, there is a lack of pragmatic studies linking body size and interspecific competition to patterns in ecological communities. The objective of the present study was to determine the effect of body size (mass) on competitive interactions between bird pairs and to investigate the influence of food guilds. Point-counts were carried out in nine sites every month from November 2002 to November 2003 in the Cuetzalan Region, Mexico, and we used presence/absence and abundance data for the analyses. To calculate the strength of competition we used the Angle Frequency Method to extract form factors from 20 pairwise interactions. A prototype competition interaction and random pairs were also constructed. We used clustering techniques (PCA) to calculate the dissimilarity scores (distances, D) of each of the pairwise interactions to the prototype competition and random pairs and one-way ANOVA to test for differences between the means of the random and competitive pairs. The ratio in body mass (lnBM) for each of the interacting pairs was calculated, and the association between the lnBM ratio and the strength of competition (D) was tested using a Pearson product-moment correlation coefficient. To test for the influence of foraging guilds we used a univariate general linear model. Our results demonstrate a significant negative relationship between bird body mass ratio and competition strength – i.e. competition strength increased when the body masses of the birds became more similar. We did not find a significant influence of foraging guild on the relationship between body mass ratio and competition strength. On the basis of these results, we suggest that high variation in body sizes amongst sympatric species promotes coexistence in communities.  相似文献   

5.
Aim To assess the relative importance of environmental (climate, habitat heterogeneity and topography), human (population density, economic prosperity and land transformation) and spatial (autocorrelation) influences, and the interactions between these predictor groups, on species richness patterns of various avifaunal orders. Location South Africa. Methods Generalized linear models were used to determine the amount of variation in species richness, for each order, attributable to each of the different predictor groups. To assess the relationships between species richness and the various predictor groups, a deviance statistic (a measure of goodness of fit for each model) and the percentage deviation explained for the best fitting model were calculated. Results Of the 12 avifaunal orders examined, spatially structured environmental deviance accounted for most of the variation in species richness in 11 orders (averaging 28%), and 50% or more in seven orders. However, orders comprising mostly water birds (Charadriiformes, Anseriformes, Ciconiformes) had a relatively large component of purely spatial deviance compared with spatially structured environmental deviance, and much of this spatial deviance was due to higher‐order spatial effects such as patchiness, as opposed to linear gradients in species richness. Although human activity, in general, offered little explanatory power to species richness patterns, it was an important correlate of spatial variation in species of Charadriiformes and Anseriformes. The species richness of these water birds was positively related to the presence of artificial water bodies. Main conclusions Not all bird orders showed similar trends when assessing, simultaneously, the relative importance of environmental, human and spatial influences in affecting bird species richness patterns. Although spatially structured environmental deviance described most of the variation in bird species richness, the explanatory power of purely spatial deviance, mostly due to nonlinear geographical effects such as patchiness, became more apparent in orders representing water birds. This was especially true for Charadriiformes, where the strong anthropogenic relationship has negative implications for the successful conservation of this group.  相似文献   

6.
The optimum body mass of passerine birds typically represents a trade‐off between starvation risk, which promotes fat gain, and predation pressure, which promotes fat loss to maintain maneuvrability. Changes in ecological factors that affect either of these variables will therefore change the optimum body masses of populations of passerine birds. This study sought to identify and quantify the effects of changing temperatures and predation pressures on the body masses and wing lengths of populations of passerine birds throughout Britain and Ireland over the last 50 years. We analyzed over 900,000 individual measurements of body mass and wing length of blue tits Cyanistes caeruleus, coal tits Periparus ater, and great tits Parus major collected by licenced bird ringers throughout Britain and Ireland from 1965 to 2017 and correlated these with publicly available temperature data and published, UK‐wide data on the abundance of a key predator, the sparrowhawk Accipiter nisus. We found highly significant, long‐term, UK‐wide decreases in winter body masses of adults and juveniles of all three species. We also found highly significant negative correlations between winter body mass and winter temperature, and between winter body mass and sparrowhawk abundance. Independent of these effects, body mass further correlated negatively with calendar year, suggesting that less well understood dynamic factors, such as supplementary feeding levels, may play a major role in determining population optimum body masses. Wing lengths of these birds also decreased, suggesting a hitherto unobserved large‐scale evolutionary adjustment of wing loading to the lower body mass. These findings provide crucial evidence of the ways in which species are adapting to climate change and other anthropogenic factors throughout Britain and Ireland. Such processes are likely to have widespread implications as the equilibria controlling evolutionary optima in species worldwide are upset by rapid, anthropogenic ecological changes.  相似文献   

7.
The effectiveness of anti‐predator traits, such as warning signals and camouflage, has rarely been quantified from a phylogenetic community ecology perspective. Here we use a phylogenetic comparative analysis to test the association between several putative anti‐predator traits and bird predation risk in an assemblage of caterpillar species. We synthesize eight years of field and laboratory study of a temperate forest community, including a four‐year bird exclusion experiment that provided comparative measures of bird predation risk for 38 caterpillar species from a phylogenetic community. We then conducted a phylogenetic generalized least‐squares and information‐theoretic model selection analysis of warning signals (aposematism or mimicry), camouflage (crypsis or masquerade), and behavioral responses to physical attack as predictors of bird predation, while also accounting for putatively important effects of the abundance, mean body size, and phenology of caterpillar species. The most behaviorally specialized caterpillar species possessing warning signals experienced the lowest bird predation risk, supporting aposematism theory and highlighting the role of prey behavior in the visual signaling of predators. Among the camouflaged caterpillar species, those with the greatest latency to detection by human proxy predators experienced the lowest bird predation risk, supporting camouflage theory. Caterpillar behavioral responses to physical attack, however, predicted increased bird predation risk among camouflaged caterpillars. Although caterpillar abundance, body size, and phenology were expected to be important based on inference from optimal foraging theory and previous field observations, these factors had limited predictive power. This study provides methodologically unique evidence for the importance of morphological and behavioral components of primary, visual defenses of caterpillars against their avian predators in a natural community.  相似文献   

8.
Few studies have covered both the effects of climate and land‐use change on animal populations under a single framework. Besides, the scarce multi‐species studies conducted have focused on breeding data, and there is little information published on changes in wintering populations. Here, we relate the pattern of long‐term temporal trends of wintering bird populations in Finland, north Europe, to covariates associated with climate and land‐use change. Finnish wintering populations have been monitored using ca 10 km winter bird census routes (> 420 routes counted annually) during 1959–2012. Population trends of 63 species were related to migratory strategy, urbanity, and thermal niche measured as species‐specific centre of gravity of the wintering distribution. Waterbird trends have shown a marked increase compared to landbirds. Among landbirds, forest species have suffered severe declines, whereas urban species have considerably increased in their wintering numbers. To follow up these results, we produced three multi‐species indices (for waterbirds, forest and urban species, respectively), which can improve our ability to detect and monitor the specific consequences of climate change and changes in land‐use, but at the same time act as a feedback to track the conservation status of the species. Our results suggest that waterbirds are responding to climate change, given their dependence on open water and the correlation with early‐winter temperature over the last decades. On the other hand, we believe trends of landbirds have been mainly driven by human‐induced land‐use changes. While urban species have likely benefited from the increase of supplementary feeding, forest species have probably suffered from the loss of native habitats.  相似文献   

9.
Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species‐specific responses are resulting in community‐wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm‐adapted species. To do this, we quantified changes in community composition using a functional index – the Community Temperature Index (CTI) – which measures the balance between low‐ and high‐temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (= 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22‐year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm‐adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America.  相似文献   

10.
To identify the factors that influence the availability of data on the negative impacts of alien bird species, in order to understand why more than 70% are currently classified as Data Deficient (DD) by the Environmental Impact Classification of Alien Taxa (EICAT) protocol. Information on factors hypothesised to influence the availability of impact data were collated for 344 alien bird species (107 with impact data and 237 DD). These data were analysed using mixed effects models accounting for phylogenetic non‐independence of species (MCMCglmm). Data deficiency in the negative impacts of alien birds is not randomly distributed. Residence time, relative brain size and alien range size were found to be strongly related to the availability of data on impacts. The availability of data on the negative impacts of alien birds is mainly influenced by the spatial and temporal extents of their alien ranges. The results of this study suggest that the impacts of some DD alien birds are likely to be minor (e.g. species with comparatively long residence times as aliens, such as the common waxbill Estrilda astrild and the Java sparrow Padda oryzivora). However, the results also suggest that some DD alien birds may have damaging impacts (e.g. species from orders of alien birds known for their impacts to biodiversity but with comparatively small alien ranges, such as the New Caledonian crow Corvus moneduloides). This implies that at least some DD alien birds may have impacts that are being overlooked. Studies examining the traits that influence the severity of alien bird impacts are needed to help to predict which DD species are more likely to impact upon biodiversity.  相似文献   

11.
It has been proposed that immune functioning in wild animals is shaped by the trade‐off between a probability of encountering pathogens and an availability of resources for maintaining immune system in active state. Due to resources’ seasonality one can expect that immune functioning, e.g. absolute and relative counts of white blood cells, WBC (leukocyte profile) also follows an annual cycle. However, dynamics of the seasonal changes of leukocyte profile are controversial and specific inquiries so far addressed only a portion of annual cycle. To study the seasonal dynamics of the leukocyte profile and to test its possible endogenous basis we experimentally simulated annual cycle in a migratory passerine bird, chiffchaff Phylloscopus collybita abietinus. We report here a clear seasonal pattern of leukocyte profile in that species. The highest WBC counts were observed during pre‐alternate moult and the lowest during the subsequent spring migration; the seasonal dynamics of HL ratio showed the opposite tendency. Surprisingly, HL ratios during autumn migration were relatively low, indicating little to no stress. Observed seasonal changes in controlled experimental conditions suggest an existence of time‐keeping programme underlying these variations. Additionally we found negative relationship between the body condition index and WBC counts and positive relationship with HL (heterophil to lymphocyte) ratio; these findings are controversial with the data obtained with other bird species in wild populations. Understanding the origins of variation of leukocyte profile per se and in relation with other parameters of physiological condition can be a useful tool in studying physiological response to environmental changes.  相似文献   

12.
Metabolism constitutes a fundamental property of all organisms. Metabolic rate is commonly described to scale as a power function of body size and exponentially with temperature, thereby treating the effects of body size and temperature independently. Mounting evidence shows that the scaling of metabolic rate with body mass itself depends on temperature. Across‐species analyses in fishes suggest that the mass‐scaling exponent decreases with increasing temperature. However, whether this relationship holds at the within‐species level has rarely been tested. Here, we re‐analyse data on the metabolic rates of four freshwater fish species, two coregonids and two cyprinids, that cover wide ranges of body masses and their naturally experienced temperatures. We show that the standard metabolic rate of the coregonids is best fit when accounting for a linear temperature dependence of the scaling of metabolic rate with body mass, whereas a constant mass‐scaling exponent is supported in case of the cyprinids. Our study shows that phenotypic responses to temperature can result in temperature‐dependent scaling relationships at the species level and that these responses differ between taxa. Together with previous findings, these results indicate that evolutionarily adaptive and phenotypically plastic responses to temperature affect the scaling of metabolic rate with body mass in fishes.  相似文献   

13.
Herbivory is rare among birds and is usually thought to have evolved predominately among large, flightless birds due to energetic constraints or an association with increased body mass. Nearly all members of the bird order Anseriformes, which includes ducks, geese, and swans, are flighted and many are predominately herbivorous. However, it is unknown whether herbivory represents a derived state for the order and how many times a predominately herbivorous diet may have evolved. Compiling data from over 200 published diet studies to create a continuous character for herbivory, models of trait evolution support at least five independent transitions toward a predominately herbivorous diet in Anseriformes. Although a nonphylogenetic correlation test recovers a significant positive correlation between herbivory and body mass, this correlation is not significant when accounting for phylogeny. These results indicate a lack of support for the hypothesis that a larger body mass confers an advantage in the digestion of low‐quality diets but does not exclude the possibility that shifts to a more abundant food source have driven shifts toward herbivory in other bird lineages. The exceptional number of transitions toward a more herbivorous diet in Anseriformes and lack of correlation with body mass prompts a reinterpretation of the relatively infrequent origination of herbivory among flighted birds.  相似文献   

14.
The dynamics of body mass growth were studied in nestlings of 22 semialtricial and altricial bird species based on materials collected in seven regions of Russia in the years 1976–2013. The bird species belong to four orders and 13 families. The results of the study indicate the nonuniform growth of nestlings in different bird species. Of the species investigated, only seven were found to reach or exceed the mass of adult birds. Over the nestling period, the nestlings of open-nesting species, such as the hooded crow (Corvus cornix), rook (Corvus frugilegus), magpie (Pica pica), fieldfare (Turdus pilaris), song thrush (Turdus philomelos), and goldfinch (Carduelis carduelis), do not reach the weight of adult birds and their growth continues after they leave the nest. In closed-nesting species, only the nestlings of the barn swallow (Hirundo rustica) reach or exceed the definitive mass, whereas the nestlings of the jackdaw (Corvus monedula), starling (Sturnus vulgaris), wryneck (Jynx torquilla), tree sparrow (Passer montanus), and great tit (Parus major) continue to grow after leaving the nest. The body mass of birds on the day of their hatching and before their departure from the nests and the mass of adult birds depend on the nesting type, duration of the nestling period, size groups of species, and their definitive size. The average specific growth rate of body mass and its maximum values for different species are also associated with these factors. The maximum specific growth rate in small-sized and medium-sized bird species was observed on the 0–1st days of life; in large bird species, on the 2nd–4th days. The specific growth rate did not depend on the type of nesting, but it was inversely related to the duration of the nestling period and the definitive sizes of birds.  相似文献   

15.
Native bird species show latitudinal gradients in body size across species (Bergmann's rule), but whether or not such gradients are recapitulated in the alien distributions of bird species are unknown. Here, we test for the existence of Bergmann's rule in alien bird species worldwide, and investigate the causes of the observed patterns. Published databases were used to obtain the worldwide distributions of established alien bird populations, the locations of alien bird introductions, and bird body masses. Randomisation tests and linear models were used to assess latitudinal patterns in the body masses of introduced and established alien bird populations. Established alien bird species exhibit Bergmann's rule, but this is largely explained by where alien bird species have been introduced: latitudinal variation in the body masses of established alien bird species simply reflects latitudinal variation in the body masses of introduced species. There is some evidence that body mass is implicated in whether or not established species’ alien ranges spread towards or contract away from the Equator following establishment. However, most alien bird ranges are encompassed by the latitudinal band(s) to which the species was introduced. Bergmann's rule in alien birds is therefore a consequence of where humans have introduced different species, rather than of natural processes operating after population introduction.  相似文献   

16.
Species distribution models (SDMs) are numerical tools that combine species occurrence/density or species richness with environmental data in order to predict particular species’ distribution. In most cases only abiotic environmental parameters are used as predictors, while biotic interactions which control distribution of species and influence the goodness of fit of the SDM, such as predator–prey systems, have been broadly neglected. For this reason, we tested the usefulness of easy to detect predators, such as the Common Buzzard and the Common Raven, as positive and negative predictors, respectively, of farmland bird species richness. We analyzed factors affecting the density of both predators and farmland bird species using data from 958 1 × 1 km2 study plots in Poland and a set of 22 environmental variables. Next, we also included these predators’ densities as additional predictors of farmland bird species. Habitat and climatological predictors were aggregated using the Principal Components Analysis and then related to the Common Raven's and the Common Buzzard's densities as well as farmland bird species richness using General Additive Models. Finally, completed models were assessed according to information – theoretic criteria. Our results showed that all the analyzed groups occurred in open areas; the Common Buzzard and passerine bird species preferred traditional farmland, while the Common Raven reached its highest density in modern intensive farmland. Importantly, we documented a significant increase in the goodness of fit of SDMs for farmland bird species, having added the density of predators as negative (Common Raven) and positive (Common Buzzard) predictors. Consequently, our findings suggest that species’ specific models can improve the predictive power of SDMs and can be used as an effective tool for predicting bird diversity with higher accuracy.  相似文献   

17.
In several higher animal taxa, such as mammals and birds, the distribution of species body sizes is heavily skewed towards small size. Previous studies have suggested that small‐bodied organisms are less prone to extinction than large‐bodied species. If small body size is favourable during mass extinction events, a post mass extinction excess of small‐bodied species may proliferate and maintain skewed body size distributions sometime after. Here, we modelled mass extinctions and found that even unrealistically strong body mass selection has little effect on the skew of interspecific body size distributions. Moreover, selection against large body size may, counter intuitively, skew size distributions towards large body size. In any case, subsequent evolutionary diversification rapidly erases these rather small effects mass extinctions may have on size distributions. Next, we used body masses of extant species and phylogenetic methods to investigate possible changes in body size distributions across the Cretaceous–Paleogene (K‐Pg) mass extinction. Body size distributions of extant clades that originated during the Cretaceous are on average more skewed than their subclades that originated during the Paleogene, but the difference is only minor in mammals, and in birds, it can be explained by a positive relationship between species richness and skewness that is also present in clades that originated after the transition. Hence, we cannot infer from extant species whether the K‐Pg mass extinctions were size‐selective, but they are not the reason why most extant bird and mammal species are small‐bodied.  相似文献   

18.
Body mass has been considered one of the most critical organismal traits, and its role in many ecological processes has been widely studied. In hummingbirds, body mass has been linked to ecological features such as foraging performance, metabolic rates, and cost of flying, among others. We used an evolutionary approach to test whether body mass is a good predictor of two of the main ecological features of hummingbirds: their abundances and behavioral dominance. To determine whether a species was abundant and/or behaviorally dominant, we used information from the literature on 249 hummingbird species. For abundance, we classified a species as “plentiful” if it was described as the most abundant species in at least part of its geographic distribution, while we deemed a species to be “behaviorally dominant” when it was described as pugnacious (notably aggressive). We found that plentiful hummingbird species had intermediate body masses and were more phylogenetically related to each other than expected by chance. Conversely, behaviorally dominant species tended to have larger body masses and showed a random pattern of distribution in the phylogeny. Additionally, small‐bodied hummingbird species were not considered plentiful by our definition and did not exhibit behavioral dominance. These results suggest a link between body mass, abundance, and behavioral dominance in hummingbirds. Our findings indicate the existence of a body mass range associated with the capacity of hummingbird species to be plentiful, behaviorally dominant, or to show both traits. The mechanisms behind these relationships are still unclear; however, our results provide support for the hypothesis that body mass is a supertrait that explains abundance and behavioral dominance in hummingbirds.  相似文献   

19.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

20.
Body size trends in a Holocene island bird assemblage   总被引:1,自引:0,他引:1  
Despite the robust observation in macroecology that there are many small-bodied species, recent comparative studies have found little evidence for elevated net rates of diversification among small-bodied species within taxa. Here we examine the relationship between body size and species richness using the New Zealand land bird fauna, a well resolved palaeoecological Holocene assemblage. We test whether there is any evidence that net cladogenesis depended on body size in an assemblage prior to the impact of human-induced extinction. We also test whether net cladogenesis depends on the level at which taxa are endemic to New Zealand, to see whether there is evidence for bursts of cladogenesis following taxon establishment, and examine how the body sizes of New Zealand land birds relate to those in Australia, the most likely source pool for colonising taxa. Most New Zealand land bird species are small-bodied. We find no evidence, however, that this is due to higher net cladogenesis in small-bodied taxa. The body mass distributions of endemic and recent colonist species do not differ statistically, but recent colonists tend to be smaller-bodied than their closest endemic relative. This tendency is more marked for small-bodied than large-bodied taxa. More endemic taxa do not tend to be more species rich in New Zealand, although there is a positive relationship between level of endemism and species richness for forest taxa. The body mass distribution of New Zealand birds is very similar to that for Australia. Body mass does not dictate the likelihood that a family has colonised New Zealand from Australia, but the number of species in the family does: it is the species rich Australian families that have successfully colonised. We discuss the implications of these results for the evolution of body size distributions, and for the "island rule" of body size evolution on islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号