首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previous evidence suggests that cicadas lacking Hodgkinia may harbour the yeast-like fungal symbionts (YLS). Here, we reinforce an earlier conclusion that the pathogenic ancestor of YLS independently infected different cicada lineages instead of the common ancestor of Cicadidae. Five independent replacement events in the loss of Hodgkinia/acquisition of YLS and seven other replacement events of YLS (from an Ophiocordyceps fungus to another Ophiocordyceps fungus) are hypothesised to have occurred within the sampled cicada taxa. The divergence time of YLS lineages was later than that of corresponding cicada lineages. The rapid shift of diversification rates of YLS and related cicada-parasitizing Ophiocordyceps began at approximately 32.94 Ma, and the diversification rate reached the highest value at approximately 24.82 Ma, which corresponds to the cooling climate changes at the Eocene–Oligocene boundary and the Oligocene–Miocene transition respectively. Combined with related acquisition/replacement events of YLS occurred during the cooling-climate periods, we hypothesise that the cooling-climate changes impacted the interactions between cicadas and related Ophiocordyceps, which coupled with the unusual life cycle and the differentiation of cicadas may finally led to the diversification of YLS in Cicadidae. Our results contribute to a better understanding of the evolutionary transition of YLS from entomopathogenic fungi in insects.  相似文献   

2.
Ophiocordyceps is a fungal pathogen of ants of the tribe Camponotini. It is called zombie fungus, since it changes the host behavior, causing them to die in an exposed position, typically clinging onto and biting into the adaxial surface of shrub leaves. This study aimed to describe the occurrence of parasitic associations between Ophiocordyceps and ants of the genus Camponotus in an urban fragment of Atlantic Rainforest in southeastern Brazil and to measure the rate of hyperparasitism in Ophiocordyceps by other fungi in the same location. We found 57 individuals of four species of ants and three species of fungus. The age categories of fungi were equally distributed, and rate of hyperparasitism was 17.5% (n = 10). The sampled area was recognized as an important site of Ophiocordyceps occurrence.  相似文献   

3.
Partner fidelity through vertical symbiont transmission is thought to be the primary mechanism stabilizing cooperation in the mutualism between fungus‐farming (attine) ants and their cultivated fungal symbionts. An alternate or additional mechanism could be adaptive partner or symbiont choice mediating horizontal cultivar transmission or de novo domestication of free‐living fungi. Using microsatellite genotyping for the attine ant Mycocepurus smithii and ITS rDNA sequencing for fungal cultivars, we provide the first detailed population genetic analysis of local ant–fungus associations to test for the relative importance of vertical vs. horizontal transmission in a single attine species. M. smithii is the only known asexual attine ant, and it is furthermore exceptional because it cultivates a far greater cultivar diversity than any other attine ant. Cultivar switching could permit the ants to re‐acquire cultivars after garden loss, to purge inferior cultivars that are locally mal‐adapted or that accumulated deleterious mutations under long‐term asexuality. Compared to other attine ants, symbiont choice and local adaptation of ant–fungus combinations may play a more important role than partner‐fidelity feedback in the co‐evolutionary process of M. smithii and its fungal symbionts.  相似文献   

4.
Abstract 1. The leaf‐cutting ants practise an advanced system of mycophagy where they grow a fungus as a food source. As a consequence of parasite threats to their crops, they have evolved a system of morphological, behavioural, and chemical defences, particularly against fungal pathogens (mycopathogens). 2. Specific fungal diseases of the leaf‐cutting ants themselves have not been described, possibly because broad spectrum anti‐fungal defences against mycopathogens have reduced their susceptibility to entomopathogens. 3. Using morphological and molecular tools, the present study documents three rare infection events of Acromyrmex and Atta leaf‐cutting ants by Ophiocordyceps fungi, agenus of entomopathogens that is normally highly specific in its host choice. 4. As leaf‐cutting ants have been intensively studied, the absence of prior records of Ophiocordyceps suggests that these infections may be a novel event and that switching from one host to another is possible. To test the likelihood of this hypothesis, host switching was experimentally induced, and successfully achieved, among five distinct genera of ants, one of which was in a different sub‐family than the leaf‐cutter ants. 5. Given the substantial differences among the five host ants, the ability of Ophiocordyceps to shift between such distant hosts is remarkable; the results are discussed in the context of ant ecological immunology and fungal invasion strategies.  相似文献   

5.
Identification of the genes underlying adaptation sheds light on the biological functions targeted by natural selection. Searches for footprints of positive selection, in the form of rapid amino acid substitutions, and the identification of species‐specific genes have proved to be powerful approaches to identifying the genes involved in host specialization in plant‐pathogenic fungi. We used an evolutionary comparative genomic approach to identify genes underlying host adaptation in the ant‐infecting genus Ophiocordyceps, which manipulates ant behaviour. A comparison of the predicted genes in the genomes of species from three species complexes—O. unilateralis, O. australis and O. subramanianii—revealed an enrichment in pathogenesis‐associated functions, including heat‐labile enterotoxins, among species‐specific genes. Furthermore, these genes were overrepresented among those displaying significant footprints of positive selection. Other categories of genes suspected to be important for virulence and pathogenicity in entomopathogenic fungi (e.g., chitinases, lipases, proteases, core secondary metabolism genes) were much less represented, although a few candidate genes were found to evolve under positive selection. An analysis including orthologs from other entomopathogenic fungi in a broader context showed that positive selection on enterotoxins was specific to the ant‐infecting genus Ophiocordyceps. Together with previous studies reporting the overexpression of an enterotoxin during behavioural manipulation in diseased ants, our findings suggest that heat‐labile enterotoxins are important effectors in host adaptation and co‐evolution in the Ophiocordyceps entomopathogenic fungi.  相似文献   

6.
Symbiotic bacteria are highly diverse, play an important role in ecology and evolution, and are also of applied relevance because many pest insects rely on them for their success. However, the dynamics and regulation of symbiotic bacteria within hosts is complex and still poorly understood outside of a few model systems. One of the most intriguing symbiotic relationships is the obligate, tripartite nutritional mutualism in sap‐feeding, economically‐destructive mealybugs (Hemiptera: Sternorrhyncha: Pseudococcidae), which involves γ‐proteobacteria hosted within β‐proteobacteria hosted within the mealybugs. The present study examines whether there is population variation in symbiont density (i.e. infection intensity, or titre) in the citrus mealybug Planococcus citri (Risso) and how this impacts host life‐history. Symbiont density is found to differ significantly between populations when reared under controlled environmental conditions, indicating that the density of symbiont infections is influenced by host or symbiont genotype. However, symbiont density changes in populations over multiple generations, indicating that symbiont densities are dynamic. Surprisingly, given that the symbionts are essential nutritional mutualists, the density of the symbionts does not correlate significantly with either host fecundity or development. Higher levels of symbionts have no clear benefit to hosts and therefore appear to be superfluous, at least under constant, optimized environmental conditions. Excessive symbiont density may be an evolutionary artefact from a period of inefficient vertical transmission when the balance of conflict between host and symbiont was still being established.  相似文献   

7.
In this study, we examined the genetic structures of the ambrosia fungus isolated from mycangia of the scolytine beetle, Xylosandrus germanus to understand their co‐evolutionary relationships. We analyzed datasets of three ambrosia fungus loci (18S rDNA, 28S rDNA, and the β‐tubulin gene) and a X. germanus locus dataset (cytochrome c oxidase subunit 1 (COI) mitochondrial DNA). The ambrosia fungi were separated into three cultural morphptypes, and their haplotypes were distinguished by phylogenetic analysis on the basis of the three loci. The COI phylogenetic analysis revealed three distinct genetic lineages (clades A, B, and C) within X. germanus, each of which corresponded to specific ambrosia fungus cultural morphptypes. The fungal symbiont phylogeny was not concordant with that of the beetle. Our results suggest that X. germanus may be unable to exchange its mycangial fungi, but extraordinary horizontal transmission of symbiotic fungi between the beetle's lineages occurred at least once during the evolutionary history of this symbiosis.  相似文献   

8.
To explore landscape genomics at the range limit of an obligate mutualism, we use genotyping‐by‐sequencing (ddRADseq) to quantify population structure and the effect of host–symbiont interactions between the northernmost fungus‐farming leafcutter ant Atta texana and its two main types of cultivated fungus. Genome‐wide differentiation between ants associated with either of the two fungal types is of the same order of magnitude as differentiation associated with temperature and precipitation across the ant's entire range, suggesting that specific ant–fungus genome–genome combinations may have been favoured by selection. For the ant hosts, we found a broad cline of genetic structure across the range, and a reduction of genetic diversity along the axis of range expansion towards the range margin. This population‐genetic structure was concordant between the ants and one cultivar type (M‐fungi, concordant clines) but discordant for the other cultivar type (T‐fungi). Discordance in population‐genetic structures between ant hosts and a fungal symbiont is surprising because the ant farmers codisperse with their vertically transmitted fungal symbionts. Discordance implies that (a) the fungi disperse also through between‐nest horizontal transfer or other unknown mechanisms, and (b) genetic drift and gene flow can differ in magnitude between each partner and between different ant–fungus combinations. Together, these findings imply that variation in the strength of drift and gene flow experienced by each mutualistic partner affects adaptation to environmental stress at the range margin, and genome–genome interactions between host and symbiont influence adaptive genetic differentiation of the host during range evolution in this obligate mutualism.  相似文献   

9.
Insects that depend on microbial mutualists evolved a variety of organs to transport the microsymbionts while dispersing. The ontogeny and variability of such organs is rarely studied, and the microsymbiont*s effects on the animal tissue development remain unknown in most cases. Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae or Platypodinae) and their mutualistic fungi are an ideal system to study the animalfungus interactions. While the interspecific diversity of their fungus transport organ一 mycangia—is well-known, their developmental plasticity has been poorly described. To determine the ontogeny of the mycangium and the influence of the symbiotic fungus on the tissue development, we dissected by hand or scanned with micro-CT the mycangia in various developmental stages in five Xylosandrus ambrosia beetle species that possess a large, mesonotal mycangium: Xylosandrus amputatus. Xylosandrus compactus, Xylosandrus crassiusculus, Xylosandrus discolor, and Xylosandrus germanus. We processed 181 beetle samples from the United States and China. All five species displayed three stages of the mycangium development:(1) young teneral adults had an empty, deflated and cryptic mycangium without fungal mass;(2) in fully mature adults during dispersal, the promesonotal membrane was inflated, and most individuals developed a mycangium mostly filled with the symbiont, though size and symmetry varied;and (3) after successful establishment of their new galleries, most females discharged the bulk of the fun gal inoculum and deflated the mycangium. Experimental aposymbiotic individuals demonstrated that the pronotal membrane invaginated independently of the presence of the fungus, but the fungus was required for inflation. Mycangia are more dynamic than previously thought, and their morphological changes correspond to the phases of the symbiosis. Importantly, studies of the fungal symbionts or plant pathogen transmission in ambrosia beetles need to consider which developmental stage to sample. We provide illustrations of the different stages, including microphotography of dissections and micro-CT scans.  相似文献   

10.
Parasitoidism refers to a major form of interspecies interactions where parasitoids sterilize and/or kill their hosts typically before hosts reach reproductive age. However, relatively little is known about the evolutionary dynamics of parasitoidism. Here, we investigate the spatial patterns of genetic variation of Chinese cordyceps, including both the parasitoidal fungus Ophiocordyceps sinensis and its host insects. We sampled broadly from alpine regions on the Tibetan Plateau and obtained sequences on seven fungal and three insect DNA fragments from each of the 125 samples. Seven and five divergent lineages/cryptic species were identified within the fungus and host insects, respectively. Our analyses suggested that O. sinensis and host insects originated at similar geographic regions in southern Tibet/Yunnan, followed by range expansion to their current distributions. Cophylogenetic analyses revealed a complex evolutionary relationship between O. sinensis and its host insects. Significant congruence was found between host and parasite phylogenies and the time estimates of divergence were similar, raising the possibility of the occurrence of cospeciation events, but the incongruences suggested that host shifts were also prevalent. Interestingly, one fungal genotype was broadly distributed, consistent with recent gene flow. In contrast, the high‐frequency insect genotypes showed limited geographic distributions. The dominant genotypes from both the fungus and the insect hosts may represent ideal materials from which to develop artificial cultivation of this important Chinese traditional medicine. Our results demonstrate that both historical and contemporary events have played important roles in the phylogeography and evolution of the O. sinensis–ghost moth parasitoidism on the Tibetan Plateau.  相似文献   

11.
Leaf‐cutting ants maintain a symbiotic relationship with basidiomycetous fungi cultivated as food. Here, we profiled the non‐symbiotic filamentous fungi in laboratory nests of Atta sexdens rubropilosa submitted to treatments with different toxic bait formulations (using the insecticide sulfluramide as the active ingredient). After treatment, several filamentous fungi were found in different nest compartments. Culture‐dependent techniques recovered a total of 93 fungal isolates comprising 10 genera, 11 species and four unidentified fungi. The genus Penicillium was prevalent in both control and insecticide treatments. Overall, the majority of fungal isolates obtained in this study are commonly found in soil. Escovopsis spp., the specialized parasite of the ant‐fungus mutualism was only recorded in the fungus gardens of nests submitted to the toxic treatments. Moreover, no correlation was found regarding the presence of fungi in the different nest compartments (chi‐square, P > 0.4182). This study reveals that Escovopsis spp. is not the only fungus to overgrow the fungus garden of debilitated nests, thus adding more evidence on the possible negative impacts of such alien fungi. As suggested by previous studies, fast‐growing filamentous fungi likely overgrow the fungus garden in such conditions.  相似文献   

12.
1. If fungivorous insect diversity is maintained by host specialisation on particular fungi, it should be higher in the tropics than in temperate or boreal regions owing to high macrofungus species diversity. 2. To reveal the community and food web structure of fungivorous insects on bracket fungi, fungivorous insects were collected from 427 fruiting bodies belonging to 22 genera throughout the development and deterioration process in a 3‐ha plot of lowland dipterocarp tropical rain forest on Borneo Island. 3. Eight hundred and twenty‐nine individuals of 82 coleopteran species in 13 families from 111 fruiting bodies of 15 fungal genera were collected. Tenebrionidae and Staphylinidae were most common. Fifty‐three and 19 insect species were observed on Ganoderma and Phellinus, respectively. The numbers of insect species and individuals on a particular fungal genus were positively correlated with the abundance of that fungal genus. 4. Quantitative food web analysis revealed a high degree of specialisation at the whole‐community level. At least 65% of insect individuals were observed on Ganoderma at every stage of development and deterioration. Diverse insects coexist on one dominant fungal genus, Ganoderma, in contrast to our hypothesis. 5. The high abundance of Ganoderma fruiting bodies, which lack obvious defences against insect feeding, probably influences the bracket fungus–insect food web in this tropical rainforest.  相似文献   

13.
Fungus‐growing termites of the subfamily Macrotermitinae together with their highly specialized fungal symbionts (Termitomyces) are primary decomposers of dead plant matter in many African savanna ecosystems. The termites provide crucial ecosystem services also by modifying soil properties, translocating nutrients, and as important drivers of plant succession. Despite their obvious ecological importance, many basic features in the biology of fungus‐growing termites and especially their fungal symbionts remain poorly known, and no studies have so far focused on possible habitat‐level differences in symbiont diversity across heterogeneous landscapes. We studied the species identities of Macrotermes termites and their Termitomyces symbionts by excavating 143 termite mounds at eight study sites in the semiarid Tsavo Ecosystem of southern Kenya. Reference specimens were identified by sequencing the COI region from termites and the ITS region from symbiotic fungi. The results demonstrate that the regional Macrotermes community in Tsavo includes two sympatric species (M. subhyalinus and M. michaelseni) which cultivate and largely share three species of Termitomyces symbionts. A single species of fungus is always found in each termite mound, but even closely adjacent colonies of the same termite species often house evolutionarily divergent fungi. The species identities of both partners vary markedly between sites, suggesting hitherto unknown differences in their ecological requirements. It is apparent that both habitat heterogeneity and disturbance history can influence the regional distribution patterns of both partners in symbiosis.  相似文献   

14.
ABSTRACT

Ophiocordyceps is a genus comprised by entomopathogenic fungi known to infect ten orders of insects, including Hymenoptera. Amongst the nearly 250 species described in the genus, few are known to manipulate their hosts, which are most notably ants. These species cause their hosts to die in an exposed position high above the ground while grabbing and/or biting the abaxial surface of leaves or branches, which in turn optimizes the fungus spore production and dispersal. Herein, we report on 14 social wasp species belonging to four genera (Agelaia, Mischocyttarus Polybia, and Pseudopolybia) infected by Ophiocordyceps humbertii, a common wasp pathogen. This study broadens the geographic and host range for O. humbertii and provides the first record of its ability to manipulate its host.  相似文献   

15.
Evolution lacks foresight, and hence, key adaptations may produce major challenges over the long run. The natural world is rife with examples of long‐term ‘side effects’ associated with quick‐fix tinkering, including blind spots in vertebrate eyes. An important question is how nature compensates for imperfections once evolution has set a course. The symbioses associated with sap‐feeding insects present a fascinating opportunity to address this issue. On one hand, the substantial diversity and biomass of sap‐feeding insects are largely due to ancient acquisitions of nutrient‐provisioning bacterial symbionts. Yet, the insularity and small population sizes enforced by intracellular life and strict maternal transfer inevitably result in the degradation of symbiont genomes and, often, the beneficial services that symbionts provide. Stabilization through lateral transfer of bacterial genes into the host nucleus (often from exogenous sources) or replacement of the long‐standing symbiont with a new partner are potential solutions to this evolutionary dilemma (Bennett & Moran 2015 ). A third solution is adoption of a cosymbiont that compensates for specific losses in the original resident. Ancient ‘co‐obligate’ symbiont pairs in mealybugs, leafhoppers, cicadas and spittlebugs show colocalization, codiversification, metabolite exchange and generally nonredundant nutrient biosynthesis (Bennett & Moran 2015 ). But in this issue, Meseguer et al. ( 2017 ) report on a different flavour of cosymbiosis among conifer‐feeding Cinara aphids.  相似文献   

16.
Fungus‐farming ants (Hymenoptera: Formicidae) have become model systems for exploring questions regarding the evolution of symbiosis. However, robust phylogenetic studies of both the ant agriculturalists and their fungal cultivars are necessary for addressing whether or not observed ant–fungus associations are the result of coevolution and, if so, whether that coevolution has been strict or diffuse. Here we focus on the evolutionary relationships of the species within the ant genus Myrmicocrypta and of their fungal cultivars. The fungus‐farming ant genus Myrmicocrypta was created by Fr. Smith in 1860 based on a single alate queen. Since then, 31 species and subspecies have been described. Until now, the genus has not received any taxonomic treatment and the relationships of the species within the genus have not been tested. Our molecular analyses, using ~40 putative species and six protein‐coding (nuclear and mitochondrial) gene fragments, recover Myrmicocrypta as monophyletic and as the sister group of the genus Mycocepurus Forel. The species M. tuberculata Weber is recovered as the sister to the rest of Myrmicocrypta. The time‐calibrated phylogeny recovers the age of stem group Myrmicocrypta plus its sister group as 45 Ma, whereas the inferred age for the crown group Myrmicocrypta is recovered as 27 Ma. Ancestral character‐state analyses suggest that the ancestor of Myrmicocrypta had scale‐like or squamate hairs and that, although such hairs were once considered diagnostic for the genus, the alternative state of erect simple hairs has evolved at least seven independent times. Ancestral‐state analyses of observed fungal cultivar associations suggest that the most recent common ancestor of Myrmicocrypta cultivated clade 2 fungal species and that switches to clade 1 fungi have occurred at least five times. It is our hope that these results will encourage additional species‐level phylogenies of fungus‐farming ants and their fungal cultivars, which are necessary for understanding the evolutionary processes that gave rise to agriculture in ants and that produced the current diversity of mutualistic ant–fungus interactions.  相似文献   

17.
Wolbachia is a common heritable bacterial symbiont in insects. Its evolutionary success lies in the diverse phenotypic effects it has on its hosts coupled to its propensity to move between host species over evolutionary timescales. In a survey of natural host–symbiont associations in a range of Drosophila species, we found that 10 of 16 Wolbachia strains protected their hosts against viral infection. By moving Wolbachia strains between host species, we found that the symbiont genome had a much greater influence on the level of antiviral protection than the host genome. The reason for this was that the level of protection depended on the density of the symbiont in host tissues, and Wolbachia rather than the host‐controlled density. The finding that virus resistance and symbiont density are largely under the control of symbiont genes in this system has important implications both for the evolution of these traits and for public health programmes using Wolbachia to prevent mosquitoes from transmitting disease.  相似文献   

18.
In terrestrial ecosystems, plant species and diverse root‐associated fungi form complex networks of host–symbiont associations. Recent studies have revealed that structures of those below‐ground plant–fungus networks differ between arbuscular mycorrhizal and ectomycorrhizal symbioses. Nonetheless, we still remain ignorant of how ericaceous plant species, which dominate arctic and alpine tundra, constitute networks with their root‐associated fungi. Based on a high‐throughput DNA sequencing data set, we characterized the statistical properties of a network involving 16 ericaceous plant species and more than 500 fungal taxa in the alpine–subalpine region of Mt. Tateyama, central Japan. While all the 16 ericaceous species were associated mainly with fungi in the order Helotiales, they varied remarkably in association with fungi in other orders such as Sebacinales, Atheliales, Agaricales, Russulales and Thelephorales. The ericaceous plant–fungus network was characterized by high symbiont/host preferences. Moreover, the network had a characteristic structure called ‘anti‐nestedness’, which has been previously reported in ectomycorrhizal plant–fungus networks. The results lead to the hypothesis that ericaceous plants in harsh environments can host unexpectedly diverse root‐associated fungal taxa, constituting networks whose structures are similar to those of previously reported ectomycorrhizal networks but not to those of arbuscular mycorrhizal ones.  相似文献   

19.
The importance of symbiotic microbes to insects cannot be overstated; however, we have a poor understanding of the evolutionary processes that shape most insect–microbe interactions. Many bark beetle (Coleoptera: Curculionidae, Scolytinae) species are involved in what have been described as obligate mutualisms with symbiotic fungi. Beetles benefit through supplementing their nutrient‐poor diet with fungi and the fungi benefit through gaining transportation to resources. However, only a few beetle–fungal symbioses have been experimentally manipulated to test whether the relationship is obligate. Furthermore, none have tested for adaptation of beetles to their specific symbionts, one of the requirements for coevolution. We experimentally manipulated the western pine beetle–fungus symbiosis to determine whether the beetle is obligately dependent upon fungi and to test for fine‐scale adaptation of the beetle to one of its symbiotic fungi, Entomocorticium sp. B. We reared beetles from a single population with either a natal isolate of E. sp. B (isolated from the same population from which the beetles originated), a non‐natal isolate (a genetically divergent isolate from a geographically distant beetle population), or with no fungi. We found that fungi were crucial for the successful development of western pine beetles. We also found no significant difference in the effects of the natal and non‐natal isolate on beetle fitness parameters. However, brood adult beetles failed to incorporate the non‐natal fungus into their fungal transport structure (mycangium) indicating adaption by the beetle to particular genotypes of symbiotic fungi. Our results suggest that beetle–fungus mutualisms and symbiont fidelity may be maintained via an undescribed recognition mechanism of the beetles for particular symbionts that may promote particular associations through time.  相似文献   

20.
Like other plant sap‐sucking insects, planthoppers within the family Cixiidae (Insecta: Hemiptera: Fulgoromorpha) host a diversified microbiota. We report the identification and first molecular characterization of symbiotic bacteria in cixiid planthoppers (tribe: Pentastirini). Using universal eubacterial primers we first screened the eubacterial 16S rRNA sequences in Pentastiridius leporinus (Linnaeus) with PCR amplification, cloning, and restriction fragment analysis. We identified three main 16S rRNA sequences that corresponded to a Wolbachia bacterium, a plant pathogenic bacterium, and a novel gammaproteobacterial symbiont. A fourth bacterial species affiliated with ‘Candidatus Sulcia muelleri’ was detected in PCR assays using primers specific for the Bacteroidetes. Within females of two selected cixiid planthoppers, P. leporinus and Oliarus filicicola, fluorescence In situ hybridization analysis and transmission electron microscopy observations showed that ‘Ca. Sulcia muelleri’ and the novel gammaproteobacterial symbiont were housed in separate bacteriomes. Phylogenetic analysis revealed that both of these symbionts occurred in at least four insect genera within the tribe Pentastirini. ‘Candidatus Purcelliella pentastirinorum’ was proposed as the novel gammaproteobacterial symbiont.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号