首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acacia‐ant mutualists in the genus Pseudomyrmex nest obligately in acacia plants and, as we show through stable isotope analysis, feed at a remarkably low trophic level. Insects with diets such as these sometimes depend on bacterial symbionts for nutritional enrichment. We, therefore, examine the bacterial communities associated with acacia‐ants in order to determine whether they host bacterial partners likely to contribute to their nutrition. Despite large differences in trophic position, acacia‐ants and related species with generalized diets do not host distinct bacterial taxa. However, we find that a small number of previously undescribed bacterial taxa do differ in relative abundance between acacia‐ants and generalists, including several Acetobacteraceae and Nocardiaceae lineages related to common insect associates. Comparisons with an herbivorous generalist, a parasite that feeds on acacias and a mutualistic species with a generalized diet show that trophic level is likely responsible for these small differences in bacterial community structure. While we did not experimentally test for a nutritional benefit to hosts of these bacterial lineages, metagenomic analysis reveals a Bartonella relative with an intact nitrogen‐recycling pathway widespread across Pseudomyrmex mutualists and generalists. This taxon may be contributing to nitrogen enrichment of its ant hosts through urease activity and, concordant with an obligately host‐associated lifestyle, appears to be experiencing genomewide relaxed selection. The lack of distinctiveness in bacterial communities across trophic level in this group of ants shows a remarkable ability to adjust to varied diets, possibly with assistance from these diverse ant‐specific bacterial lineages.  相似文献   

2.
Complex processes related to biotic and abiotic forces can impose limitations to assembly and composition of plant communities. Quantifying the effects of these constraints on plant functional traits across environmental gradients, and among communities, remains challenging. We define ecological constraint (Ci) as the combined, limiting effect of biotic interactions and environmental filtering on trait expression (i.e., the mean value and range of functional traits). Here, we propose a set of novel parameters to quantify this constraint by extending the trait‐gradient analysis (TGA) methodology. The key parameter is ecological constraint, which is dimensionless and can be measured at various scales, for example, on population and community levels. It facilitates comparing the effects of ecological constraints on trait expressions across environmental gradients, as well as within and among communities. We illustrate the implementation of the proposed parameters using the bark thickness of 14 woody species along an aridity gradient on granite outcrops in southwestern Australia. We found a positive correlation between increasing environmental stress and strength of ecological constraint on bark thickness expression. Also, plants from more stressful habitats (shrublands on shallow soils and in sun‐exposed locations) displayed higher ecological constraint for bark thickness than plants in more benign habitats (woodlands on deep soils and in sheltered locations). The relative ease of calculation and dimensionless nature of Ci allow it to be readily implemented at various scales and make it widely applicable. It therefore has the potential to advance the mechanistic understanding of the ecological processes shaping trait expression. Some future applications of the new parameters could be investigating the patterns of ecological constraints (1) among communities from different regions, (2) on different traits across similar environmental gradients, and (3) for the same trait across different gradient types.  相似文献   

3.
1. Both the physiological efficiency (PE) hypothesis and the preference–performance (PP) hypothesis address the complex interactions between herbivores and host plants, albeit from different perspectives. The PE hypothesis contends that specialists are better physiologically adapted to their host plants than generalists. The PP hypothesis predicts that larvae perform best on the host plant preferred by ovipositing females. 2. This study tests components of both hypotheses using the specialist checkerspot, Euphydryas anicia, the generalist salt marsh caterpillar, Estigmene acrea, and host plants in the genus Penstemon, which are defended by iridoid glycosides. 3. In laboratory experiments, the generalist preferred and performed significantly better on the less well defended host plant species. This is consistent with results from a common garden experiment where the less well defended Penstemon species received more damage from the local community of generalists. Larvae of the specialist checkerspot preferred the more chemically defended species in the laboratory, but performed equally well on both hosts. However, field experiments demonstrated that adult checkerspot females preferred to oviposit on the less well defended host plant. 4. Components of the physiological efficiency hypothesis were supported in this system, as the specialist outperformed the generalist on the more iridoid glycoside‐rich host plant species. There was no support for the PP hypothesis, however, as there was no clear relationship between female preference in the field and offspring performance in the laboratory.  相似文献   

4.
Evidence from insects and vertebrates suggests that cooperation may have enabled species to expand their niches, becoming ecological generalists and dominating the ecosystems in which they occur. Consistent with this idea, eusocial species of sponge‐dwelling Synalpheus shrimps from Belize are ecological generalists with a broader host breadth and higher abundance than non‐eusocial species. We evaluate whether sociality promotes ecological generalism (social conquest hypothesis) or whether ecological generalism facilitates the transition to sociality (social transition hypothesis) in 38 Synalpheus shrimp species. We find that sociality evolves primarily from host generalists, and almost exclusively so for transitions to eusociality. Additionally, sponge volume is more important for explaining social transitions towards communal breeding than to eusociality, suggesting that different ecological factors may influence the independent evolutionary origins of sociality in Synalpheus shrimps. Ultimately, our results are consistent with the social transition hypothesis and the idea that ecological generalism facilitates the transition to sociality.  相似文献   

5.
We tested the hypothesis that increased telencephalon size has evolved in threespine stickleback fish (Gasterosteus aculeatus) from structurally complex habitats using field‐caught samples from one sea‐run (ancestral) and 18 ecologically diverse freshwater (descendant) populations. Freshwater habitats ranged from shallow, structurally complex lakes with benthic‐foraging stickleback (benthics), to deeper, structurally simple lakes in which stickleback depend more heavily on plankton for prey (generalists). Contrary to our expectations, benthics had smaller telencephala than generalists, but the shape of the telencephalon of the sea‐run and benthic populations were more convex laterally. Convex telencephalon shape may indicate enlargement of the dorsolateral region, which is homologous with the tetrapod hippocampus. Telencephalon morphology is also sexually dimorphic, with larger, less convex telencephala in males. Freshwater stickleback from structurally complex habitats have retained the ancestral telencephalon morphology, but populations that feed more in open habitats on plankton have evolved larger, laterally concave telencephala.  相似文献   

6.
The pine weevil (Hylobius abietis, Coleoptera: Curculionidae) is an important pest of conifer seedlings in Europe. Despite its economic importance, little is known about the composition of its gut microbial community and the role it plays in mediating the weevil's ability to utilize conifers as a food source. Here, we characterized the gut bacterial communities of different populations of H. abietis across Europe and compared them to those of other beetles that occupy similar ecological niches. We demonstrate that the microbial community of H. abietis is similar at higher taxonomic levels (family and genus) across locations in Europe, with Wolbachia as the dominant microbe, followed by Enterobacteria and Firmicutes. Despite this similarity, we observed consistent differences between countries and locations, but not sexes. Our meta‐analysis demonstrates that the gut bacterial community of the pine weevil is very similar to that of bark beetles that also exploit conifers as a food source. The Enterobacteriaceae symbionts of both host taxa are especially closely related phylogenetically. Conversely, the microbiota of H. abietis is distinct from that of closely related weevils feeding on nonconifer food sources, suggesting that the microbial community of the pine weevil is determined by the environment and may be relevant to host ecology. Furthermore, several H. abietis‐associated members of the Enterobacteriaceae family are known to contain genes involved in terpenoid degradation. As such, we hypothesize that the gut microbial community is important for the utilization of conifer seedlings as a food source, either through the detoxification of plant secondary metabolites or through the supplementation of essential nutrients.  相似文献   

7.
Colonization of novel habitats is often associated with differences in ecological community composition. For small diurnal animals, differences in predator diversity and abundance can lead to behavioural shifts in the novel habitat. The eastern fence lizard Sceloporus undulatus (Bosc and Daudin, 1801) recently colonized the gypsum dunes of White Sands, a predator‐poor community relative to the predator‐rich community of the surrounding Chihuahuan dark‐soil habitat. We used field experiments to assess S. undulatus anti‐predator behaviour in white‐sand versus dark‐soil habitats, and used laboratory assays to determine whether behavioural differences could be mediated by hormonal regulation. Overall, we found that white‐sand lizards were less vigilant but more wary than their dark‐soil counterparts; it took them longer to detect a simulated predator, but once detected they were more likely to retreat from their perches than dark‐soil lizards. At the proximate level, differences in anti‐predator behaviour could not be explained by differences in plasma hormone levels (corticosterone and testosterone); we detected elevated corticosterone for lizards in our stress treatment relative to control treatment, but found no differences between habitats in baseline or acute corticosterone levels. At the evolutionary level, we suggest that differences in anti‐predator behaviour may be explained by differences across habitats in predation environment, habituation, and/or the cost of retreating. Our study implicates changes in predator community composition in mediating ecological divergence in behaviour. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 657–667.  相似文献   

8.
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak‐dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal‐root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root‐associated fungal community was dominated by root‐endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root‐associated fungal communities of oak‐dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.  相似文献   

9.
The broad range in physiological variation displayed by Symbiodinium spp. has proven imperative during periods of environmental change and contribute to the survival of their coral host. Characterizing how host and Symbiodinium community assemblages differ across environmentally distinct habitats provides useful information to predict how corals will respond to major environmental change. Despite the extensive characterizations of Symbiodinium diversity found amongst reef cnidarians on the Great Barrier Reef (GBR) substantial biogeographic gaps exist, especially across inshore habitats. Here, we investigate Symbiodinium community patterns in invertebrates from inshore and mid‐shelf reefs on the southern GBR, Australia. Dominant Symbiodinium types were characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Twenty one genetically distinct Symbiodinium types including four novel types were identified from 321 reef‐invertebrate samples comprising three sub‐generic clades (A, C, and D). A range of host genera harbored C22a, which is normally rare or absent from inshore or low latitude reefs in the GBR. Multivariate analysis showed that host identity and sea surface temperature best explained the variation in symbiont communities across sites. Patterns of changes in Symbiodinium community assemblage over small geographic distances (100s of kilometers or less) indicate the likelihood that shifts in Symbiodinium distributions and associated host populations, may occur in response to future climate change impacting the GBR.  相似文献   

10.
1. Entomopathogenic nematodes (EPN) are currently being used as introduced biological control agents against the larvae of the native European forestry pest Hylobius abietis L. which develop under the bark of stumps and roots of newly dead conifer trees. 2. The potential for resource competition between gregarious ectoparasitoid Bracon hylobii Ratz and EPN by recording oviposition and related behaviours of B. hylobii females on EPN‐infected H. abietis larvae was investigated. Wasps did not parasitise EPN‐infected host larvae that were dead when presented, but naÏve and experienced wasps parasitised live EPN‐infected hosts. NaÏve wasps parasitised live EPN‐infected hosts significantly less frequently than healthy hosts only when the infected larvae were close to death (i.e. died during 24‐h trial). Parasitism by experienced wasps was unaffected by host infection. 3. Wasp probing and oviposition were positively associated with the amount of host movement. Preventing H. abietis larvae from chewing on bark significantly reduced parasitism by naÏve, but not experienced wasps. 4. The number of eggs per clutch was not affected by bark chewing or EPN‐infection of H. abietis larvae. 5. NaÏve and experienced B. hylobii parasitised two abnormal hosts (larvae of coleopteran Rhagium bifasciatum Fabricius and lepidopteran Galleria mellonella L.), both of which moved and chewed on bark during trials. 6. It was concluded that B. hylobii can use vibrational cues generated by host movement and feeding to locate hosts at short range and accepts unsuitable (EPN‐infected or abnormal) hosts as long as these create such cues. The implications for competition between B. hylobii and EPN and possible ways of minimising it when applying EPN are discussed.  相似文献   

11.
Abstract 1 When searching for suitable hosts in flight, especially in mixed forests, conifer‐inhabiting bark beetles will encounter not only suitable host trees and their odours, but also unsuitable hosts and nonhost trees. Rejection of these trees could be based on an imbalance of certain host characteristics and/or a negative response to some nonhost stimuli, such as nonhost volatiles (NHV). 2 Recent electrophysiological and behavioural studies clearly indicate that conifer‐inhabiting bark beetles are not only able to recognize, but also to avoid, nonhost habitats or trees by olfactory means. Green leaf volatiles (GLV), especially C6‐alcohols, from the leaves (and partly from bark) of nonhost angiosperm trees, may represent nonhost odour signals at the habitat level. Specific bark volatiles such as trans‐conophthorin, C8‐alcohols, and some aromatic compounds, may indicate nonhosts at the tree species level. Flying bark beetles are also capable of determining whether a possible host is unsuitable by reacting to signals from conspecifics or sympatric heterospecifics that indicate old or colonized host tree individuals. 3 Combined NHV signals in blends showed both redundancy and synergism in their inhibitory effects. The coexistence of redundancy and synergism in negative NHV signals may indicate different functional levels (nonhost habitats, species, and unsuitable hosts) in the host selection process. Combinations of NHV and verbenone significantly reduced the number of mass attacked host trees or logs on several economically important species (e.g. Dendroctonus ponderosae, Ips typographus, and I. sexdentatus). 4 We suggest a semiochemical‐diversity hypothesis, based on the inhibition by NHV of bark beetle host‐location, which might partly explain the lower outbreak rates of forest insects in mixed forests. This ‘semiochemical‐diversity hypothesis’ would provide new support to the general ‘stability‐diversity hypothesis’. 5 Natural selection appears to have caused conifer‐inhabiting bark beetles to evolve several olfactory mechanisms for finding their hosts and avoiding unsuitable hosts and nonhost species. NHV and unsuitable host signals have potential for use in protecting trees from attack. The use of these signals may be facilitated by the fact that their combination has an active inhibition radius of several metres in trap test, and by the observation of area effects for several trees near inhibitor soruces in tree protection experiments. Furthermore, incorporation of negative signals (such as NHV and verbenone) and pheromone‐based mass‐trapping in a ‘push–pull’ fashion may significantly increase the options for control against outbreaks of conifer‐inhabiting bark beetles, especially in high risk areas.  相似文献   

12.
Patterns associated with the evolution of parasite diversity, speciation and diversification were analysed using Dactylogyrus species (gill monogeneans) and their cyprinid hosts as a model. The aim of this study was to use this highly specific host–parasite systems to review: (1) the diversity and distribution of Dactylogyrus species, (2) the patterns of organization and structure of Dactylogyrus communities, (3) the evolution and determinants of host specificity and (4) the mode of Dactylogyrus speciation and co‐evolutionary patterns in this Dactylogyrus–cyprinid systems. Dactylogyrus are a highly diverse group of parasites, with their biogeography and distribution clearly linked to the evolutionary history of their cyprinid hosts. The coexistence of several Dactylogyrus species on one host is facilitated by increasing niche distances and the differing morphology of their reproductive organs. The positive interspecific and intraspecific interactions seem to be the most important factors determining the structure of Dactylogyrus communities. Host specificity is partially constrained by parasite phylogeny. Being a strict specialist is an ancestral character for Dactylogyrus, being the intermediate specialists or generalists are the derived characters. The evolution of attachment organ morphology is associated with both parasite phylogeny and host specificity. Considering larger and long‐lived hosts or hosts with several ecological characters as the measures of resource predictability, specialists with larger anchors occurred on larger or longer‐living fish species. Intra‐host speciation, a mode of speciation not often recorded in parasites, was observed in Dactylogyrus infecting sympatric cyprinids. Sister parasite species coexisting on the same host occupied niches that differed in at least one niche variable. Intra‐host speciation, however, was not observed in Dactylogyrus species of congeneric hosts from geographically isolated areas, which suggested association by descent and host‐switching events.  相似文献   

13.
Mycorrhizosphere microbes enhance functioning of the plant–soil interface, but little is known of their ecology. This study aims to characterize the ascomycete communities associated with ectomycorrhizas in two Tasmanian wet sclerophyll forests. We hypothesize that both the phyto‐ and mycobiont, mantle type, soil microbiotope and geographical distance affect the diversity and occurrence of the associated ascomycetes. Using the culture‐independent rDNA sequence analysis, we demonstrate a high diversity of these fungi on different hosts and habitats. Plant host has the strongest effect on the occurrence of the dominant species and community composition of ectomycorrhiza‐associated fungi. Root endophytes, soil saprobes, myco‐, phyto‐ and entomopathogens contribute to the ectomycorrhiza‐associated ascomycete community. Taxonomically these Ascomycota mostly belong to the orders Helotiales, Hypocreales, Chaetothyriales and Sordariales. Members of Helotiales from both Tasmania and the Northern Hemisphere are phylogenetically closely related to root endophytes and ericoid mycorrhizal fungi, suggesting their strong ecological and evolutionary links. Ectomycorrhizal mycobionts from Australia and the Northern Hemisphere are taxonomically unrelated to each other and phylogenetically distant to other helotialean root‐associated fungi, indicating independent evolution. The ubiquity and diversity of the secondary root‐associated fungi should be considered in studies of mycorrhizal communities to avoid overestimating the richness of true symbionts.  相似文献   

14.
Although spiders are a very diverse group on vegetation, their associations with plants are poorly known. Some salticid species specifically use Bromeliaceae as host plants in some regions of South America. In this study, I report the geographic range of these spider‐bromeliad associations, and whether the spiders inhabit particular bromeliad species and vegetation types, as well as open areas or interior of forests. Nine salticid species were found to be associated with up to 23 bromeliad species in cerrados (savanna‐like vegetation), semideciduous and seasonal forests, coastal sand dune vegetation, restingas, inselbergs, highland forests, chacos, and rain forests at 47 localities in Brazil, Paraguay, Bolivia, and Argentina. Some species were typically specialists, inhabiting almost exclusively one bromeliad species over a large geographic range (e.g., Psecas chapoda on Bromelia balansae), whereas others were generalists, occurring on up to 7–8 bromeliad species (e.g., Psecas sp., Eustiromastix nativo, and Coryphasia sp. 1). The regional availability of bromeliad species among habitats may explain this pattern of host plant use. More jumping spiders were found on bromeliads in open areas than on bromeliads in the interior of forests. These results show that several jumping spider species may be strictly associated with the Bromeliaceae in the Neotropics. This is one of the few studies to show host‐specific associations for spiders on a particular plant type over a wide geographic range.  相似文献   

15.
Abstract. 1. Seventy‐seven individual last‐instar caterpillars foraging in the field were examined for 6 h each. They represented four species of Arctiidae of similar size and habitat use. Two, Hypocrisias minima and Pygarctia roseicapitis, are specialists restricted to particular plant genera. The other two, Grammia geneura and Estigmene acrea, are extreme generalists that use many host plant species from multiple plant families. 2. Parameters of behavioural efficiency were monitored. Generalists spent more time walking, rejected more potential host plants, took longer to decide to feed after inspecting a plant, and took relatively more small feeding bouts compared with specialists. 3. This is the first test of differential foraging efficiency in the field in relation to diet breadth of insects and the data indicate that generalists are less efficient in their foraging activities and may suffer from divided attention. The need for attentiveness to enhance efficiency and thereby reduce ecological risk is discussed.  相似文献   

16.
The significance of bacteria for eukaryotic functioning is increasingly recognized. Coral reef ecosystems critically rely on the relationship between coral hosts and their intracellular photosynthetic dinoflagellates, but the role of the associated bacteria remains largely theoretical. Here, we set out to relate coral‐associated bacterial communities of the fungid host species Ctenactis echinata to environmental settings (geographic location, substrate cover, summer/winter, nutrient and suspended matter concentrations) and coral host abundance. We show that bacterial diversity of C. echinata aligns with ecological differences between sites and that coral colonies sampled at the species’ preferred habitats are primarily structured by one bacterial taxon (genus Endozoicomonas) representing more than 60% of all bacteria. In contrast, host microbiomes from lower populated coral habitats are less structured and more diverse. Our study demonstrates that the content and structure of the coral microbiome aligns with environmental differences and denotes habitat adequacy. Availability of a range of coral host habitats might be important for the conservation of distinct microbiome structures and diversity.  相似文献   

17.
Canopy‐forming algae play a key role in temperate coastal ecosystems sustaining complex habitats that provide food and refuge for rich associated biotic communities. These macroalgae are in decline in many coastal areas, where overgrazing by herbivores can lead to the loss of these highly structured and diverse habitats toward less complex sea urchin barren grounds. Once established, low productive barren grounds are considered stable states maintained by several positive feedback mechanisms that prevent the recovery of marine forests. To revert this global decline, restoration efforts and measures are being encouraged by EU regulations and local actions. Here, we tested the success of active revegetation techniques as a tool to promote functional and productive Treptacantha elegans forests in sea urchin barren grounds under different restoration strategies (active, and combined active with passive strategies). Active revegetation was performed in 6 barren grounds, 3 located inside a Mediterranean No‐Take marine reserve (active and passive strategy) and 3 outside (active strategy alone), following a three‐step protocol: (1) sea urchin population eradication, (2) seeding with Treptacantha elegans, and (3) enhancement of T. elegans recruitment. Revegetation success was assessed 1 year later in the six barren grounds, but was only achieved after combining active with passive restoration strategies. Our results encourage revegetation of barren grounds to shift from less productive habitats to complex T. elegans forests, highlight the potential of the combined passive and active restoration strategies, as well as the important role of marine reserves not only in conservation but also in ecological restoration.  相似文献   

18.
Warming climate is allowing tree‐killing bark beetles to expand their ranges and access naïve and semi‐naïve conifers. Conifers respond to attack using complex mixtures of chemical defences that can impede beetle success, but beetles exploit some compounds for host location and communication. Outcomes of changing relationships will depend on concentrations and compositions of multiple host compounds, which are largely unknown. We analysed constitutive and induced chemistries of Dendroctonus ponderosae's primary historical host, Pinus contorta, and Pinus albicaulis, a high‐elevation species whose encounters with this beetle are transitioning from intermittent to continuous. We quantified multiple classes of terpenes, phenolics, carbohydrates and minerals. Pinus contorta had higher constitutive allocation to, and generally stronger inducibility of, compounds that resist these beetle–fungal complexes. Pinus albicaulis contained higher proportions of specific monoterpenes that enhance pheromone communication, and lower induction of pheromone inhibitors. Induced P. contorta increased insecticidal and fungicidal compounds simultaneously, whereas P. albicaulis responses against these agents were inverse. Induced terpene accumulation was accompanied by decreased non‐structural carbohydrates, primarily sugars, in P. contorta, but not P. albicaulis, which contained primarily starches. These results show some host species with continuous exposure to bark beetles have more thoroughly integrated defence syndromes than less‐continuously exposed host species.  相似文献   

19.
The green algal genus Cladophora forms conspicuous nearshore populations in marine and freshwaters worldwide, commonly dominating peri‐phyton communities. As the result of human activities, including the nutrient pollution of nearshore waters, Cladophora‐dominated periphyton can form nuisance blooms. On the other hand, Cladophora has ecological functions that are beneficial, but less well appreciated. For example, Cladophora has previously been characterized as an ecological engineer because its complex structure fosters functional and taxonomic diversity of benthic microfauna. Here, we review classic and recent literature concerning taxonomy, cell biology, morphology, reproductive biology, and ecology of the genus Cladophora, to examine how this alga functions to modify habitats and influence littoral biogeochemistry. We review the evidence that Cladophora supports large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements, and that the high production of cellulose and hydrocarbons by Cladophora‐dominated periphyton has the potential for diverse technological applications, including wastewater remediation coupled to renewable biofuel production. We postulate that well‐known aspects of Cladophora morphology, hydrodynamically stable and perennial holdfasts, distinctively branched architecture, unusually large cell and sporangial size and robust cell wall construction, are major factors contributing to the multiple roles of this organism as an ecological engineer.  相似文献   

20.
  1. To adapt to ecological and environmental conditions, species can change their ecological niche (e.g., interactions among species) and function (e.g., prey‐predation, diet competition, and habitat segregation) at the species and guild levels. Stable isotope analysis of bulk carbon and nitrogen of organisms has conventionally been used to evaluate such adaptabilities in the scenopoetic and bionomic views as the isotopic niche width.
  2. Compound‐specific stable isotope analysis (CSIA) of nitrogen within amino acids provides trophic information without any disruption of scenopoetic views in the isotope ratios, unlike conventional bulk isotope analysis provides both information and therefore frequently hinders its usefulness for trophic information.
  3. We performed CSIA of amino acids to understand the trophic variability of the pike gudgeon Pseudogobio esocinus and largemouth bass Micropterus salmoides as representative specialist and generalist fish species, respectively, from 16 ecologically variable habitats in the four major rivers of Korea.
  4. There was little variation (1σ) in the trophic position (TP) among habitats for P. esocinus (± 0.2); however, there was considerably large variation for M. salmoides (± 0.6). The TP of M. salmoides was negatively correlated with the benthic invertebrate indices of the habitats, whereas the TP of P. esocinus showed no significant correlation with any indices. Thus, these two representative fish species have different trophic responses to ecological conditions, which is related to known differences in the trophic niche between specialists (i.e., small niche width) and generalists (i.e., large niche width).
  5. Over the past four decades, the conventional bulk isotope analysis has not been capable of deconvoluting “scenopoetic” and “bionomic” information. However, in the present study, we demonstrated that the CSIA of amino acids could isolate trophic niches from the traditional ecological niche composed of trophic and habitat information and evaluated how biological and ecological indices influence the trophic response of specialists and generalists.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号