首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blue whales (Balaenoptera musculus) were among the most intensively exploited species of whales in the world. As a consequence of this intense exploitation, blue whale sightings off the coast of Chile were uncommon by the end of the 20th century. In 2004, a feeding and nursing ground was reported in southern Chile (SCh). With the aim to investigate the genetic identity and relationship of these Chilean blue whales to those in other Southern Hemisphere areas, 60 biopsy samples were collected from blue whales in SCh between 2003 and 2009. These samples were genotyped at seven microsatellite loci and the mitochondrial control region was sequenced, allowing us to identify 52 individuals. To investigate the genetic identity of this suspected remnant population, we compared these 52 individuals to blue whales from Antarctica (ANT, n = 96), Northern Chile (NCh, n = 19) and the eastern tropical Pacific (ETP, n = 31). No significant differentiation in haplotype frequencies (mtDNA) or among genotypes (nDNA) was found between SCh, NCh and ETP, while significant differences were found between those three areas and Antarctica for both the mitochondrial and microsatellite analyses. Our results suggest at least two breeding population units or subspecies exist, which is also supported by other lines of evidence such as morphometrics and acoustics. The lack of differences detected between SCh/NCh/ETP areas supports the hypothesis that eastern South Pacific blue whales are using the ETP area as a possible breeding area. Considering the small population sizes previously reported for the SCh area, additional conservation measures and monitoring of this population should be developed and prioritized.  相似文献   

2.
In the Southern Hemisphere, blue whales are currently divided into two subspecies, Antarctic blue whales (Balaenoptera musculus intermedia) and pygmy blue whales (B. m. brevicauda), but there is some debate about whether Chilean blue whales should also be considered as a separate subspecies. Here, we provide novel morphometric data to directly address this taxonomic question from a biological survey of 60 blue whales taken during the 1965/1966 Chilean whaling season. The data show that maximum body length and mean body length of both sexually mature females and males for Chilean blue whales are intermediate between pygmy and Antarctic blue whales; and that fluke-anus lengths of Chilean blue whales are significantly different from pygmy blue whales, but not necessarily from Antarctic blue whales. There is also some support from the data that snout-eye measurements are different among all three groups. These data provide further confirmation that Chilean blue whales are a distinct population requiring separate management from other blue whale populations, and are also consistent with suggestions that Chilean blue whales are not the same subspecies as pygmy blue whales.  相似文献   

3.
The satellite-acquired locations of 10 blue whales (Balaenoptera musculus) tagged off southern California with Argos radio tags were used to identify (1) their movements during the late summer feeding season; (2) the routes and rate of travel for individuals on their southern fall migration; and (3) a possible winter calving/breeding area. Whales were tracked from 5.1 to 78.1 d and from 393 to 8,668 km. While in the Southern California Bight, most of the locations for individual whales were either clumped or zigzagged in pattern, suggesting feeding or foraging (searching for prey). Average speeds ranged from 2.4 to 7.2 km/h. One whale moved north to Cape Mendocino, and four migrated south along the Baja California, Mexico coast, two passing south of Cabo San Lucas on the same day. One of the latter whales traveled an additional 2,959 km south in 30.5 d to within 450 km of the Costa Rican Dome (CRD), an upwelling feature. The timing of this migration suggests the CRD may be a calving/breeding area for North Pacific blue whales. Although blue whales have previously been sighted in the Eastern Tropical Pacific (ETP), this is the first evidence that whales from the feeding aggregation off California range that far south. The productivity of the CRD may allow blue whales to feed during their winter calving/breeding season, unlike gray whales (Eschrichtius robustus) and humpbacks (Megaptera novaeangliae) which fast during that period.  相似文献   

4.
It is generally assumed that species with low population sizes have lower genetic diversities than larger populations and vice versa. However, this would not be the case for long‐lived species with long generation times, and which populations have declined due to anthropogenic effects, such as the blue whale (Balaenoptera musculus). This species was intensively decimated globally to near extinction during the 20th century. Along the Chilean coast, it is estimated that at least 4288 blue whales were hunted from an apparently pre‐exploitation population size (k) of a maximum of 6200 individuals (Southeastern Pacific). Thus, here, we describe the mtDNA (control region) and nDNA (microsatellites) diversities of the Chilean blue whale aggregation site in order to verify the expectation of low genetic diversity in small populations. We then compare our findings with other blue whale aggregations in the Southern Hemisphere. Interestingly, although the estimated population size is small compared with the pre‐whaling era, there is still considerable genetic diversity, even after the population crash, both in mitochondrial (N = 46) and nuclear (N = 52) markers (Hd = 0.890 and Ho = 0.692, respectively). Our results suggest that this diversity could be a consequence of the long generation times and the relatively short period of time elapsed since the end of whaling, which has been observed in other heavily‐exploited whale populations. The genetic variability of blue whales on their southern Chile feeding grounds was similar to that found in other Southern Hemisphere blue whale feeding grounds. Our phylogenetic analysis of mtDNA haplotypes does not show extensive differentiation of populations among Southern Hemisphere blue whale feeding grounds. The present study suggests that although levels of genetic diversity are frequently used as estimators of population health, these parameters depend on the biology of the species and should be taken into account in a monitoring framework study to obtain a more complete picture of the conservation status of a population.  相似文献   

5.
Blue whale calls in the eastern North Pacific Ocean consist of a two-part call often termed the A-B call. This call has been described for regions offshore of Oregon, Washington, and California, USA and the Sea of Cortez, Mexico (reviewed in Rivers 1997). Data collected from moored hydrophones in the eastern tropical Pacific (ETP) indicate that the A-B pattern is common in this region as well. There is consistency in this call type throughout the eastern North Pacific and throughout the year. This acoustic evidence indicates continuity between blue whales in the ETP and those found west of North America. The acoustic data suggest that the population of blue whales generally referred to as the “Californi/Mexico” stock might better be termed the “northeast Pacific” stock of blue whales.  相似文献   

6.
Understanding the degree of genetic exchange between subspecies and populations is vital for the appropriate management of endangered species. Blue whales (Balaenoptera musculus) have two recognized Southern Hemisphere subspecies that show differences in geographic distribution, morphology, vocalizations and genetics. During the austral summer feeding season, the Antarctic blue whale (B. m. intermedia) is found in polar waters and the pygmy blue whale (B. m. brevicauda) in temperate waters. Here, we genetically analyzed samples collected during the feeding season to report on several cases of hybridization between the two recognized blue whale Southern Hemisphere subspecies in a previously unconfirmed sympatric area off Antarctica. This means the pygmy blue whales using waters off Antarctica may migrate and then breed during the austral winter with the Antarctic subspecies. Alternatively, the subspecies may interbreed off Antarctica outside the expected austral winter breeding season. The genetically estimated recent migration rates from the pygmy to Antarctic subspecies were greater than estimates of evolutionary migration rates and previous estimates based on morphology of whaling catches. This discrepancy may be due to differences in the methods or an increase in the proportion of pygmy blue whales off Antarctica within the last four decades. Potential causes for the latter are whaling, anthropogenic climate change or a combination of these and may have led to hybridization between the subspecies. Our findings challenge the current knowledge about the breeding behaviour of the world's largest animal and provide key information that can be incorporated into management and conservation practices for this endangered species.  相似文献   

7.
The distribution of blue whales, Balaenoptera musculus , in the eastern tropical Pacific (ETP) was analyzed from 211 sightings of 355 whales recorded during research vessel sighting surveys or by biologists aboard fishing vessels. Over 90% of the sightings were made in just two areas: along Baja California, and in the vicinity of the Costa Rica Dome (a large, stationary eddy centered near 9°N, 89°W), with the rest made along the equator near the Galapagos islands, the coasts of Ecuador and northern Peru. All sightings occurred in relatively cool, upwelling-modified waters. Because these areas are the most productive parts of the ETP, and have relatively large standing stocks of euphausiids, it seems possible that blue whales select low latitude habitats which permit foraging. The waters off western Baja California were occupied seasonally, with a peak in sightings coinciding with the spring peak in upwelling and biological production. The Costa Rica Dome area was occupied year round, suggesting either a resident population, or that both northern and southern hemisphere whales visit, with temporal overlap. The modal group size was one for all areas and seasons, but the frequency of groups with two or more whales was significantly higher in sightings made near the Galapagos Islands and the coast of Ecuador and northern Peru.  相似文献   

8.
Killer whales, Orcinus orca, are top predators occupying key ecological roles in a variety of ecosystems and are one of the most widely distributed mammals on the planet. In consequence, there has been significant interest in understanding their basic biology and ecology. Long‐term studies of Northern Hemisphere killer whales, particularly in the eastern North Pacific (ENP), have identified three ecologically distinct communities or ecotypes in that region. The success of these prominent ENP studies has led to similar efforts at clarifying the role of killer whale ecology in other regions, including Antarctica. In the Southern Hemisphere, killer whales present a range of behavioural, social and morphological characteristics to biologists, who often interpret this as evidence to categorize individuals or groups, and draw general ecological conclusions about these super‐predators. Morphologically distinct forms (Type A, B, C, and D) occur in the Southern Ocean and studies of these different forms are often presented in conjunction with evidence for specialised ecology and behaviours. Here we review current knowledge of killer whale ecology and ecotyping globally and present a synthesis of existing knowledge. In particular, we highlight the complexity of killer whale ecology in the Southern Hemisphere and examine this in the context of comparatively well‐studied Northern Hemisphere populations. We suggest that assigning erroneous or prefatory ecotypic status in the Southern Hemisphere could be detrimental to subsequent killer whale studies, because unsubstantiated characteristics may be assumed as a result of such classification. On this basis, we also recommend that ecotypic status classification for Southern Ocean killer whale morphotypes be reserved until more evidence‐based ecological and taxonomic data are obtained.  相似文献   

9.
Passive acoustic data were collected January 2012 to April 2013 at four sites in the Chiloense Ecoregion (CER) in southern Chile (≈43°S–44°S, 71°W–73°W) and 1996–2002 from one site in the eastern tropical Pacific (ETP) (8°S, 95°W). Automatic detectors were used to detect the two songs (SEP1 and SEP2) described for southeast Pacific (SEP) blue whales. There was a strong seasonal pattern of occurrence of SEP songs in the CER from December to August, peaking March to May. In the ETP, the occurrence of songs was an order of magnitude lower but songs were present year‐round, with a peak around June. These findings support austral summer/autumn seasonal residency in the CER and a seasonal movement of blue whales towards the ETP during June/July, returning in December. Interannual differences in the ETP were possibly linked to the 1997–1998 El Niño event. At both study sites, SEP2 was significantly more common than SEP1; both songs largely followed the same temporal trends. These findings contribute to our understanding of the seasonal movements of endangered SEP blue whales and can inform conservation strategies, particularly in the CER coastal feeding ground. We recommend future year‐round passive acoustic studies in the CER and the ETP (e.g., near the Galapagos Islands), ideally coupled with oceanographic data.  相似文献   

10.
From 2003 to 2009, we surveyed Las Perlas Archipelago off the Pacific coast of Panama 53 times between the months of August and October to estimate abundance of humpback whales and to test for a migratory connection with populations from the southern hemisphere. We identified 295 individuals using photo‐identification of dorsal fins, including 58 calves, and the population estimate for a single season was 100–300 solitary adults plus 25–50 mothers with calves; the estimated population of animals across all seasons using a mark and recapture model was over 1,000. Eight of the 139 fluke identifications were matched to whales in photograph catalogues from the Antarctic Peninsula and a ninth was matched to a whale sighted in Chilean waters; four of these nine individuals have also been sighted in Colombia. We conclude that Panama (Las Perlas Archipelago in particular) is an important calving area for humpback whales in the Southern Hemisphere. These data should provide a foundation for monitoring of population change and to increase awareness in Panama about the need to manage vessel traffic and tourism related to the whales at Las Perlas.  相似文献   

11.
Blue whales were widely distributed in the North Pacific prior to the primary period of modern commercial whaling in the early 1900s. Despite concentrations of blue whale catches off British Columbia and in the Gulf of Alaska, there had been few documented sightings in these areas since whaling for blue whales ended in 1965. In contrast, large concentrations of blue whales have been documented off California and Baja California and in the eastern tropical Pacific since the 1970s, but it was not known if these animals were part of the same population that previously ranged into Alaskan waters. We document 15 blue whale sightings off British Columbia and in the Gulf of Alaska made since 1997, and use identification photographs to show that whales in these areas are currently part of the California feeding population. We speculate that this may represent a return to a migration pattern that has existed for earlier periods for eastern North Pacific blue whale population. One possible explanation for a shift in blue whale use is changes in prey driven by changes in oceanographic conditions, including the Pacific Decadal Oscillation (PDO), which coincides with some of the observed shifts in blue whale occurrence.  相似文献   

12.
Historical harvesting pushed many whale species to the brink of extinction. Although most Southern Hemisphere populations are slowly recovering, the influence of future climate change on their recovery remains unknown. We investigate the impacts of two anthropogenic pressures—historical commercial whaling and future climate change—on populations of baleen whales (blue, fin, humpback, Antarctic minke, southern right) and their prey (krill and copepods) in the Southern Ocean. We use a climate–biological coupled “Model of Intermediate Complexity for Ecosystem Assessments” (MICE) that links krill and whale population dynamics with climate change drivers, including changes in ocean temperature, primary productivity and sea ice. Models predict negative future impacts of climate change on krill and all whale species, although the magnitude of impacts on whales differs among populations. Despite initial recovery from historical whaling, models predict concerning declines under climate change, even local extinctions by 2100, for Pacific populations of blue, fin and southern right whales, and Atlantic/Indian fin and humpback whales. Predicted declines were a consequence of reduced prey (copepods/krill) from warming and increasing interspecific competition between whale species. We model whale population recovery under an alternative scenario whereby whales adapt their migratory patterns to accommodate changing sea ice in the Antarctic and a shifting prey base. Plasticity in range size and migration was predicted to improve recovery for ice‐associated blue and minke whales. Our study highlights the need for ongoing protection to help depleted whale populations recover, as well as local management to ensure the krill prey base remains viable, but this may have limited success without immediate action to reduce emissions.  相似文献   

13.
  • 1 Blue whale locations in the Southern Hemisphere and northern Indian Ocean were obtained from catches (303 239), sightings (4383 records of ≥8058 whales), strandings (103), Discovery marks (2191) and recoveries (95), and acoustic recordings.
  • 2 Sighting surveys included 7 480 450 km of effort plus 14 676 days with unmeasured effort. Groups usually consisted of solitary whales (65.2%) or pairs (24.6%); larger feeding aggregations of unassociated individuals were only rarely observed. Sighting rates (groups per 1000 km from many platform types) varied by four orders of magnitude and were lowest in the waters of Brazil, South Africa, the eastern tropical Pacific, Antarctica and South Georgia; higher in the Subantarctic and Peru; and highest around Indonesia, Sri Lanka, Chile, southern Australia and south of Madagascar.
  • 3 Blue whales avoid the oligotrophic central gyres of the Indian, Pacific and Atlantic Oceans, but are more common where phytoplankton densities are high, and where there are dynamic oceanographic processes like upwelling and frontal meandering.
  • 4 Compared with historical catches, the Antarctic (‘true’) subspecies is exceedingly rare and usually concentrated closer to the summer pack ice. In summer they are found throughout the Antarctic; in winter they migrate to southern Africa (although recent sightings there are rare) and to other northerly locations (based on acoustics), although some overwinter in the Antarctic.
  • 5 Pygmy blue whales are found around the Indian Ocean and from southern Australia to New Zealand. At least four groupings are evident: northern Indian Ocean, from Madagascar to the Subantarctic, Indonesia to western and southern Australia, and from New Zealand northwards to the equator. Sighting rates are typically much higher than for Antarctic blue whales.
  • 6 South‐east Pacific blue whales have a discrete distribution and high sighting rates compared with the Antarctic. Further work is needed to clarify their subspecific status given their distinctive genetics, acoustics and length frequencies.
  • 7 Antarctic blue whales numbered 1700 (95% Bayesian interval 860–2900) in 1996 (less than 1% of original levels), but are increasing at 7.3% per annum (95% Bayesian interval 1.4–11.6%). The status of other populations in the Southern Hemisphere and northern Indian Ocean is unknown because few abundance estimates are available, but higher recent sighting rates suggest that they are less depleted than Antarctic blue whales.
  相似文献   

14.
New blue whale ovarian corpora data from illegal Soviet catches in the Southern Hemisphere and northern Indian Ocean were recovered from the original logbooks. Catches north of 52°S were assumed to be pygmy blue whales ( Balaenoptera musculus brevicauda , n = 1,272); those south of 56°S were assumed to be Antarctic (true) blue whales ( B. m. intermedia , n = 153). Three probable Antarctic blue whales north of 52°S were excluded. Lengths at which 50% and 95% of females become sexually mature ( L 50 and L 95) were estimated from a Bayesian logistic model. These estimates are more precise than previous Japanese estimates because Soviet catches below the legal minimum of 70 ft (21.3 m) were 32 times greater. For pygmy blue whales L 50 was 19.2 m (95% interval 19.1–19.3 m) and L 95 was 20.5 m (95% interval 20.4–20.7 m). Antarctic L 50 (23.4 m, 95% interval 22.9–23.9 m) was much longer than L 50 for pygmy blue whale regions (18.4–19.9 m). The median L 50 for the northern Indian Ocean was 0.5–0.6 m shorter than for pygmy blue whales from other regions; although statistically significant, these small length differences provide little support for northern Indian Ocean blue whales being a separate subspecies, B. m. indica .  相似文献   

15.
Fin whale (Balaenoptera physalus) song consists of down-swept pulses arranged into stereotypic sequences that can be characterized according to the interval between successive pulses. As in blue (B. musculus) and humpback whales (Megaptera novaeangliae), these song sequences may be geographically distinct and may correlate with population boundaries in some regions. We measured inter-pulse intervals of fin whale songs within year-round acoustic datasets collected between 2000 and 2006 in three regions of the eastern North Pacific: Southern California, the Bering Sea, and Hawaii. A distinctive song type that was recorded in all three regions is characterized by singlet and doublet inter-pulse intervals that increase seasonally, then annually reset to the same shorter intervals at the beginning of each season. This song type was recorded in the Bering Sea and off Southern California from September through May and off Hawaii from December through April, with the song interval generally synchronized across all monitoring locations. The broad geographic and seasonal occurrence of this particular fin whale song type may represent a single population broadly distributed throughout the eastern Pacific with no clear seasonal migratory pattern. Previous studies attempting to infer population structure of fin whales in the North Pacific using synchronous individual song samples have been unsuccessful, likely because they did not account for the seasonal lengthening in song intervals observed here.  相似文献   

16.
After the extensive exploitation that reduced the Southern Hemisphere blue whale (Balaenoptera musculus) populations to less than 3% of its original numbers, studies on its recovery have been compounded by the inaccessibility of most populations and the extensive migrations between low and high latitudes, thus ensuring that knowledge about blue whale ecology and status remains limited. We report the recent discovery of, arguably, the most important blue whale feeding and nursing ground known to date in the Southern Hemisphere, which is located near the fjords off southern Chile. Through aerial and marine surveys (n = 7) 47 groups, comprising 153 blue whales including at least 11 mother-calf pairs, were sighted during the austral summer and early autumn of 2003. The implications of this discovery on the biological understanding and conservation of this endangered species are discussed.  相似文献   

17.
We report on a wintering area off the Pacific coast of Central America for humpback whales (Megaptera novaeangliae) migrating from feeding areas off Antarctica. We document seven individuals, including a mother/calf pair, that made this migration (approx. 8300km), the longest movement undertaken by any mammal. Whales were observed as far north as 11 degrees N off Costa Rica, in an area also used by a boreal population during the opposite winter season, resulting in unique spatial overlap between Northern and Southern Hemisphere populations. The occurrence of such a northerly wintering area is coincident with the development of an equatorial tongue of cold water in the eastern South Pacific, a pattern that is repeated in the eastern South Atlantic. A survey of location and water temperature at the wintering areas worldwide indicates that they are found in warm waters (21.1-28.3 degrees C), irrespective of latitude. We contend that while availability of suitable reproductive habitat in the wintering areas is important at the fine scale, water temperature influences whale distribution at the basin scale. Calf development in warm water may lead to larger adult size and increased reproductive success, a strategy that supports the energy conservation hypothesis as a reason for migration.  相似文献   

18.
To explore the spatio-temporal dynamics of endangered fin whales (Balaenoptera physalus) within the baleen whale (Mysticeti) lineages, we analyzed 148 published mitochondrial genome sequences of baleen whales. We used a Bayesian coalescent approach as well as Bayesian inferences and maximum likelihood methods. The results showed that the fin whales had a single maternal origin, and that there is a significant correlation between geographic location and evolution of global fin whales. The most recent common female ancestor of this species lived approximately 9.88 million years ago (Mya). Here, North Pacific fin whales first appeared about 7.48 Mya, followed by a subsequent divergence in Southern Hemisphere approximately 6.63 Mya and North Atlantic about 4.42 Mya. Relatively recently, approximately 1.76 and 1.42 Mya, there were two additional occurrences of North Pacific populations; one originated from the Southern Hemisphere and the other from an uncertain location. The evolutionary rate of this species was 1.002?×?10?3 substitutions/site/My. Our Bayesian skyline plot illustrates that the fin whale population has the rapid expansion event since ~?2.5 Mya, during the Quaternary glaciation stage. Additionally, this study indicates that the fin whale has a sister group relationship with humpback whale (Meganoptera novaeangliae) within the baleen whale lineages. Of the 16 genomic regions, NADH5 showed the most powerful signal for baleen whale phylogenetics. Interestingly, fin whales have 16 species-specific amino acid residues in eight mitochondrial genes: NADH2, COX2, COX3, ATPase6, ATPase8, NADH4, NADH5, and Cytb.  相似文献   

19.
No global synthesis of the status of baleen whales has been published since the 2008 IUCN Red List assessments. Many populations remain at low numbers from historical commercial whaling, which had ceased for all but a few by 1989. Fishing gear entanglement and ship strikes are the most severe current threats. The acute and long‐term effects of anthropogenic noise and the cumulative effects of multiple stressors are of concern but poorly understood. The looming consequences of climate change and ocean acidification remain difficult to characterize. North Atlantic and North Pacific right whales are among the species listed as Endangered. Southern right, bowhead, and gray whales have been assessed as Least Concern but some subpopulations of these species ‐ western North Pacific gray whales, Chile‐Peru right whales, and Svalbard/Barents Sea and Sea of Okhotsk bowhead whales ‐ remain at low levels and are either Endangered or Critically Endangered. Eastern North Pacific blue whales have reportedly recovered, but Antarctic blue whales remain at about 1% of pre‐exploitation levels. Small isolated subspecies or subpopulations, such as northern Indian Ocean blue whales, Arabian Sea humpback whales, and Mediterranean Sea fin whales are threatened while most subpopulations of sei, Bryde's, and Omura's whales are inadequately monitored and difficult to assess.  相似文献   

20.
Understanding the seasonal movements and distribution patterns of migratory species over ocean basin scales is vital for appropriate conservation and management measures. However, assessing populations over remote regions is challenging, particularly if they are rare. Blue whales (Balaenoptera musculus spp) are an endangered species found in the Southern and Indian Oceans. Here two recognized subspecies of blue whales and, based on passive acoustic monitoring, four “acoustic populations” occur. Three of these are pygmy blue whale (B.m. brevicauda) populations while the fourth is the Antarctic blue whale (B.m. intermedia). Past whaling catches have dramatically reduced their numbers but recent acoustic recordings show that these oceans are still important habitat for blue whales. Presently little is known about the seasonal movements and degree of overlap of these four populations, particularly in the central Indian Ocean. We examined the geographic and seasonal occurrence of different blue whale acoustic populations using one year of passive acoustic recording from three sites located at different latitudes in the Indian Ocean. The vocalizations of the different blue whale subspecies and acoustic populations were recorded seasonally in different regions. For some call types and locations, there was spatial and temporal overlap, particularly between Antarctic and different pygmy blue whale acoustic populations. Except on the southernmost hydrophone, all three pygmy blue whale acoustic populations were found at different sites or during different seasons, which further suggests that these populations are generally geographically distinct. This unusual blue whale diversity in sub-Antarctic and sub-tropical waters indicates the importance of the area for blue whales in these former whaling grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号