首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Young species complexes that are widespread across ecologically disparate regions offer important insights into the process of speciation because of their relevance to how local adaptation and gene flow influence diversification. We used mitochondrial DNA and up to 28 152 genomewide single nucleotide polymorphisms from polytypic barking frogs (Craugastor augusti complex) to infer phylogenetic relationships and test for the signature of introgressive hybridization among diverging lineages. Our phylogenetic reconstructions suggest (i) a rapid Pliocene–Pleistocene radiation that produced at least nine distinct lineages and (ii) that geographic features of the arid Central Mexican Plateau contributed to two independent northward expansions. Despite clear lineage differentiation (many private alleles and high between‐lineage FST scores), D‐statistic tests, which differentiate introgression from ancestral polymorphism, allowed us to identify two putative instances of reticulate gene flow. Partitioned D‐statistics provided evidence that these events occurred in the same direction between clades but at different points in time. After correcting for geographic distance, we found that lineages involved in hybrid gene flow interactions had higher levels of genetic variation than independently evolving lineages. These findings suggest that the nature of hybrid compatibility can be conserved overlong periods of evolutionary time and that hybridization between diverging lineages may contribute to standing levels of genetic variation.  相似文献   

2.
Determining the boundaries between species and deciding when to describe new species are challenging practices that are particularly difficult in groups with high levels of geographic variation. The coast horned lizards (Phrynosoma blainvillii, Phrynosoma cerroense and P. coronatum) have an extensive geographic distribution spanning many distinctive ecological regions ranging from northern California to the Cape Region of Baja California, Mexico, and populations differ substantially with respect to external morphology across much of this range. The number of taxa recognized in the group has been reevaluated by herpetologists over 20 times during the last 180 years, and typically without the aid of explicit species delimitation methods, resulting in a turbulent taxonomy containing anywhere from one to seven taxa. In this study, we evaluate taxonomic trends through time by ranking 15 of these species delimitation models (SDMs) using coalescent analyses of nuclear loci and SNPs in a Bayesian model comparison framework. Species delimitation models containing more species were generally favoured by Bayesian model selection; however, several three‐species models outperformed some four‐ and five‐species SDMs, and the top‐ranked model, which contained five species, outperformed all SDMs containing six species. Model performance peaked in the 1950s based on marginal likelihoods estimated from nuclear loci and SNPs. Not surprisingly, SDMs based on genetic data outperformed morphological taxonomies when using genetic data alone to evaluate models. The de novo estimation of population structure favours a three‐population model that matches the currently recognized integrative taxonomy containing three species. We discuss why Bayesian model selection might favour models containing more species, and why recognizing more than three species might be warranted.  相似文献   

3.
Across western North America, Mimulus guttatus exists as many local populations adapted to site‐specific environmental challenges. Gene flow between locally adapted populations will affect genetic diversity both within demes and across the larger metapopulation. Here, we analyse 34 whole‐genome sequences from the intensively studied Iron Mountain population (IM) in conjunction with sequences from 22 Mimulus individuals sampled from across western North America. Three striking features of these data address hypotheses about migration and selection in a locally adapted population. First, we find very high levels of intrapopulation polymorphism (synonymous π = 0.033). Variation outside of genes is likely even higher but difficult to estimate because excessive divergence reduces the efficiency of read mapping. Second, IM exhibits a significantly positive genomewide average for Tajima's D. This indicates allele frequencies are typically more intermediate than expected from neutrality, opposite the pattern observed in many other species. Third, IM exhibits a distinctive haplotype structure with a genomewide excess of positive associations between rarer alleles at linked loci. This suggests an important effect of gene flow from other Mimulus populations, although a residual effect of population founding might also contribute. The combination of multiple analyses, including a novel tree‐based analytic method, illustrates how the balance of local selection, limited dispersal and metapopulation dynamics manifests across the genome. The overall genomic pattern of sequence diversity suggests successful gene flow of divergent immigrant genotypes into IM. However, many loci show patterns indicative of local adaptation, particularly at SNPs associated with chromosomal inversions.  相似文献   

4.
Gene flow is thought to impede genetic divergence and speciation by homogenizing genomes. Recent theory and research suggest that sufficiently strong divergent selection can overpower gene flow, leading to loci that are highly differentiated compared to others. However, there are also alternative explanations for this pattern. Independent evidence that loci in highly differentiated regions are under divergent selection would allow these explanations to be distinguished, but such evidence is scarce. Here, we present multiple lines of evidence that many of the highly divergent SNPs in a pair of sister morning glory species, Ipomoea cordatotriloba and I. lacunosa, are the result of divergent selection in the face of gene flow. We analysed a SNP data set across the genome to assess the amount of gene flow, resistance to introgression and patterns of selection on loci resistant to introgression. We show that differentiation between the two species is much lower in sympatry than in allopatry, consistent with interspecific gene flow in sympatry. Gene flow appears to be substantially greater from I. lacunosa to I. cordatotriloba than in the reverse direction, resulting in sympatric and allopatric I. cordatotriloba being substantially more different than sympatric and allopatric I. lacunosa. Many SNPs highly differentiated in allopatry have experienced divergent selection, and, despite gene flow in sympatry, resist homogenization in sympatry. Finally, five out of eight floral and inflorescence characteristics measured exhibit asymmetric convergence in sympatry. Consistent with the pattern of gene flow, I. cordatotriloba traits become much more like those of I. lacunosa than the reverse. Our investigation reveals the complex interplay between selection and gene flow that can occur during the early stages of speciation.  相似文献   

5.
Despite its economic importance as a bioenergy crop and key role in riparian ecosystems, little is known about genetic diversity and adaptation of the eastern cottonwood (Populus deltoides). Here, we report the first population genomics study for this species, conducted on a sample of 425 unrelated individuals collected in 13 states of the southeastern United States. The trees were genotyped by targeted resequencing of 18,153 genes and 23,835 intergenic regions, followed by the identification of single nucleotide polymorphisms (SNPs). This natural P. deltoides population showed low levels of subpopulation differentiation (FST = 0.022–0.106), high genetic diversity (θW = 0.00100, π = 0.00170), a large effective population size (Ne ≈ 32,900), and low to moderate levels of linkage disequilibrium. Additionally, genomewide scans for selection (Tajima's D), subpopulation differentiation (XTX), and environmental association analyses with eleven climate variables carried out with two different methods (LFMM and BAYENV2) identified genes putatively involved in local adaptation. Interestingly, many of these genes were also identified as adaptation candidates in another poplar species, Populus trichocarpa, indicating possible convergent evolution. This study constitutes the first assessment of genetic diversity and local adaptation in P. deltoides throughout the southern part of its range, information we expect to be of use to guide management and breeding strategies for this species in future, especially in the face of climate change.  相似文献   

6.
Genomic studies of invasive species can reveal both invasive pathways and functional differences underpinning patterns of colonization success. The European green crab (Carcinus maenas) was initially introduced to eastern North America nearly 200 years ago where it expanded northwards to eastern Nova Scotia. A subsequent invasion to Nova Scotia from a northern European source allowed further range expansion, providing a unique opportunity to study the invasion genomics of a species with multiple invasions. Here, we use restriction‐site‐associated DNA sequencing‐derived SNPs to explore fine‐scale genomewide differentiation between these two invasions. We identified 9137 loci from green crab sampled from 11 locations along eastern North America and compared spatial variation to mitochondrial COI sequence variation used previously to characterize these invasions. Overall spatial divergence among invasions was high (pairwise FST ~0.001 to 0.15) and spread across many loci, with a mean FST ~0.052 and 52% of loci examined characterized by FST values >0.05. The majority of the most divergent loci (i.e., outliers, ~1.2%) displayed latitudinal clines in allele frequency highlighting extensive genomic divergence among the invasions. Discriminant analysis of principal components (both neutral and outlier loci) clearly resolved the two invasions spatially and was highly correlated with mitochondrial divergence. Our results reveal extensive cryptic intraspecific genomic diversity associated with differing patterns of colonization success and demonstrates clear utility for genomic approaches to delineating the distribution and colonization success of aquatic invasive species.  相似文献   

7.
Within the plant kingdom, many genera contain sister lineages with contrasting outcrossing and inbreeding mating systems that are known to hybridize. The evolutionary fate of these sister lineages is likely to be influenced by the extent to which they exchange genes. We measured gene flow between outcrossing Geum rivale and selfing Geum urbanum, sister species that hybridize in contemporary populations. We generated and used a draft genome of G. urbanum to develop dd‐RAD data scorable in both species. Coalescent analysis of RAD data from allopatric populations indicated that the species diverged 2–3 Mya, and that historical gene flow between them was extremely low (1 migrant every 25 generations). Comparison of genetic divergence between species in sympatry and allopatry, together with an analysis of allele frequencies in potential parental and hybrid populations, provided no evidence of contemporary introgression in sympatric populations. Cluster‐ and species‐specific marker analyses revealed that, apart from four early‐generation hybrids, individuals in sympatric populations fell into two genetically distinct groups that corresponded exactly to their morphological species classification with maximum individual admixture estimates of only 1–3%. However, we did observe joint segregation of four putatively introgressed SNPs across two scaffolds in the G. urbanum population that was associated with significant morphological variation, interpreted as tentative evidence for rare, recent interspecific gene flow. Overall, our results indicate that despite the presence of hybrids in contemporary populations, genetic exchange between G. rivale and G. urbanum has been extremely limited throughout their evolutionary history.  相似文献   

8.
As two lineages diverge from one another, mitochondrial DNA should evolve fixed differences more rapidly than nuclear DNA due to its smaller effective population size and faster mutation rate. As a consequence, molecular systematists have focused on the criteria of reciprocal monophyly in mitochondrial DNA for delimiting species boundaries. However, mitochondrial gene trees do not necessarily reflect the evolutionary history of the taxa in question, and even mitochondrial loci are not expected to be reciprocally monophyletic when the speciation event happened very recently. The goal of this study was to examine mitochondrial paraphyly within the Orchard Oriole complex, which is composed of Icterus spurius (Orchard Oriole) and Icterus fuertesi (Fuertes' Oriole). We increased the geographic sampling, added four nuclear loci, and used a range of population genetic and coalescent methods to examine the divergence between the taxa. With increased taxon sampling, we found evidence of clear structure between the taxa for mitochondrial DNA. However, nuclear loci showed little evidence of population structure, indicating a very recent divergence between Ispurius and I. fuertesi. Another goal was to examine the genetic variation within each taxon to look for evidence of a past founder event within the I. fuertesi lineage. Based on the high amounts of genetic variation for all nuclear loci, we found no evidence of such an event – thus, we found no support for the possible founding of I. fuertesi through a change in migratory behavior, followed by peripheral isolates speciation. Our results demonstrate that these two taxa are in the earliest stages of speciation, at a point when they have fixed differences in plumage color that are not reflected in monophyly of the mitochondrial or nuclear DNA markers in this study. This very recent divergence makes them ideal for continued studies of species boundaries and the earliest stages of speciation.  相似文献   

9.
Widespread species that exhibit both high gene flow and the capacity to occupy heterogeneous environments make excellent models for examining local selection processes along environmental gradients. Here we evaluate the influence of temperature and landscape variables on genetic connectivity and signatures of local adaptation in Phaulacridium vittatum, a widespread agricultural pest grasshopper, endemic to Australia. With sampling across a 900‐km latitudinal gradient, we genotyped 185 P. vittatum from 19 sites at 11,408 single nucleotide polymorphisms (SNPs) using ddRAD sequencing. Despite high gene flow across sites (pairwise FST = 0.0003–0.08), landscape genetic resistance modelling identified a positive nonlinear effect of mean annual temperature on genetic connectivity. Urban areas and water bodies had a greater influence on genetic distance among sites than pasture, agricultural areas and forest. Together, FST outlier tests and environmental association analysis (EAA) detected 242 unique SNPs under putative selection, with the highest numbers associated with latitude, mean annual temperature and body size. A combination of landscape genetic connectivity analysis together with EAA identified mean annual temperature as a key driver of both neutral gene flow and environmental selection processes. Gene annotation of putatively adaptive SNPs matched with gene functions for olfaction, metabolic detoxification and ultraviolet light shielding. Our results imply that this widespread agricultural pest has the potential to spread and adapt under shifting temperature regimes and land cover change.  相似文献   

10.
Astatotilapia burtoni is a member of the “modern haplochromines,” the most species‐rich lineage within the family of cichlid fishes. Although the species has been in use as research model in various fields of research since almost seven decades, including developmental biology, neurobiology, genetics and genomics, and behavioral biology, little is known about its spatial distribution and phylogeography. Here, we examine the population structure and phylogeographic history of A. burtoni throughout its entire distribution range in the Lake Tanganyika basin. In addition, we include several A. burtoni laboratory strains to trace back their origin from wild populations. To this end, we reconstruct phylogenetic relationships based on sequences of the mitochondrial DNA (mtDNA) control region (d‐loop) as well as thousands of genomewide single nucleotide polymorphisms (SNPs) derived from restriction‐associated DNA sequencing. Our analyses reveal high population structure and deep divergence among several lineages, however, with discordant nuclear and mtDNA phylogenetic inferences. Whereas the SNP‐based phylogenetic hypothesis uncovers an unexpectedly deep split in A. burtoni, separating the populations in the southern part of the Lake Tanganyika basin from those in the northern part, analyses of the mtDNA control region suggest deep divergence between populations from the southwestern shoreline and populations from the northern and southeastern shorelines of Lake Tanganyika. This phylogeographic pattern and mitochondrial haplotype sharing between populations from the very North and the very South of Lake Tanganyika can only partly be explained by introgression linked to lake‐level fluctuations leading to past contact zones between otherwise isolated populations and large‐scale migration events.  相似文献   

11.
Understanding the origin of new species is a central goal in evolutionary biology. Diverging lineages often evolve highly heterogeneous patterns of genetic differentiation; however, the underlying mechanisms are not well understood. We investigated evolutionary processes governing genetic differentiation between the hybridizing campions Silene dioica (L.) Clairv. and S. latifolia Poiret. Demographic modelling indicated that the two species diverged with gene flow. The best‐supported scenario with heterogeneity in both migration rate and effective population size suggested that a small proportion of the loci evolved without gene flow. Differentiation (F ST) and sequence divergence (d XY) were correlated and both tended to peak in the middle of most linkage groups, consistent with reduced gene flow at highly differentiated loci. Highly differentiated loci further exhibited signatures of selection. In between‐species population pairs, isolation by distance was stronger for genomic regions with low between‐species differentiation than for highly differentiated regions that may contain barrier loci. Moreover, differentiation landscapes within and between species were only weakly correlated, suggesting that linked selection due to shared recombination and gene density landscapes is not the dominant determinant of genetic differentiation in these lineages. Instead, our results suggest that divergent selection shaped the genomic landscape of differentiation between the two Silene species, consistent with predictions for speciation in the face of gene flow.  相似文献   

12.
Recent advances in high‐throughput sequencing technologies have offered the possibility to generate genomewide sequence data to delineate previously unidentified genetic structure, obtain more accurate estimates of demographic parameters and to evaluate potential adaptive divergence. Here, we identified 27 556 single nucleotide polymorphisms for the small yellow croaker (Larimichthys polyactis) using restriction‐site‐associated DNA (RAD) sequencing of 24 individuals from two populations. Significant sources of genetic variation were identified, with an average nucleotide diversity (π) of 0.00105 ± 0.000425 across individuals, and long‐term effective population size was thus estimated to range between 26 172 and 261 716. According to the results, no differentiation between the two populations was detected based on the SNP data set of top quality score per contig or neutral loci. However, the two analysed populations were highly differentiated based on SNP data set of both top FST value per contig and the outlier SNPs. Moreover, local adaptation was highlighted by an FST‐based outlier tests implemented in LOSITAN and a total of 538 potentially locally selected SNPs were identified. blast2go annotation of contigs containing the outlier SNPs yielded hits for 37 (66%) of 56 significant blastx matches. Candidate genes for local adaptation constituted a wide array of biological functions, including cellular response to oxidative stress, actin filament binding, ion transmembrane transport and synapse assembly. The generated SNP resources in this study provided a valuable tool for future population genetics and genomics studies of L. polyactis.  相似文献   

13.
14.
Understanding whether populations can adapt in situ or whether interventions are required is of key importance for biodiversity management under climate change. Landscape genomics is becoming an increasingly important and powerful tool for rapid assessments of climate adaptation, especially in long‐lived species such as trees. We investigated climate adaptation in Eucalyptus microcarpa using the DArTseq genomic approach. A combination of FST outlier and environmental association analyses were performed using >4200 genomewide single nucleotide polymorphisms (SNPs) from 26 populations spanning climate gradients in southeastern Australia. Eighty‐one SNPs were identified as putatively adaptive, based on significance in FST outlier tests and significant associations with one or more climate variables related to temperature (70/81), aridity (37/81) or precipitation (35/81). Adaptive SNPs were located on all 11 chromosomes, with no particular region associated with individual climate variables. Climate adaptation appeared to be characterized by subtle shifts in allele frequencies, with no consistent fixed differences identified. Based on these associations, we predict adaptation under projected changes in climate will include a suite of shifts in allele frequencies. Whether this can occur sufficiently rapidly through natural selection within populations, or would benefit from assisted gene migration, requires further evaluation. In some populations, the absence or predicted increases to near fixation of particular adaptive alleles hint at potential limits to adaptive capacity. Together, these results reinforce the importance of standing genetic variation at the geographic level for maintaining species’ evolutionary potential.  相似文献   

15.
The importance of speciation‐with‐geneflow scenarios is increasingly appreciated. However, the specific processes and the resulting genomic footprints of selection are subject to much discussion. We studied the genomics of speciation between the two panmictic, sympatrically spawning sister species; European (Anguilla anguilla) and American eel (A. rostrata). Divergence is assumed to have initiated more than 3 Ma, and although low gene flow still occurs, strong postzygotic barriers are present. Restriction‐site‐associated DNA (RAD) sequencing identified 328 300 SNPs for subsequent analysis. However, despite the presence of 3757 strongly differentiated SNPs (FST > 0.8), sliding window analyses of FST showed no larger genomic regions (i.e. hundreds of thousands to millions of bases) of elevated differentiation. Overall FST was 0.041, and linkage disequilibrium was virtually absent for SNPs separated by more than 1000 bp. We suggest this to reflect a case of genomic hitchhiking, where multiple regions are under directional selection between the species. However, low but biologically significant gene flow and high effective population sizes leading to very low genetic drift preclude accumulation of strong background differentiation. Genes containing candidate SNPs for positive selection showed significant enrichment for gene ontology (GO) terms relating to developmental processes and phosphorylation, which seems consistent with assumptions that differences in larval phase duration and migratory distances underlie speciation. Most SNPs under putative selection were found outside coding regions, lending support to emerging views that noncoding regions may be more functionally important than previously assumed. In total, the results demonstrate the necessity of interpreting genomic footprints of selection in the context of demographic parameters and life‐history features of the studied species.  相似文献   

16.
Populations are often exposed to multiple sources of gene flow, but accounts are lacking of the population genetic dynamics that result from these interactions or their effects on local evolution. Using a genomic clines framework applied to 1,195 single nucleotide polymorphisms, we documented genomewide, locus‐specific patterns of introgression between Choristoneura occidentalis biennis spruce budworms and two ecologically divergent relatives, C. o. occidentalis and Choristoneura fumiferana, that it interacts with at alternate boundaries of its range. We observe contrasting hybrid indexes between the two hybrid zones, no overlap in “gene‐flow outliers” (clines showing relatively extreme extents or rates of locus‐specific introgression) and variable linkage disequilibrium among those outliers. At the same time, correlated genomewide rates of introgression between zones suggest the presence of processes common to both boundaries. These findings highlight the contrasting population genetic dynamics that can occur at separate frontiers of a single population, while also suggesting that shared patterns may frequently accompany cases of divergence‐with‐gene‐flow that involve a lineage in common. Our results point to potentially complex evolutionary outcomes for populations experiencing multiple sources of gene flow.  相似文献   

17.
The relative roles of chance colonization and subsequent gene flow in the development of insular endemic biotas have been extensively studied in remote oceanic archipelagos, but are less well characterized on nearshore island systems. The current study investigated patterns of colonization and divergence between and within two wild buckwheat species (Polygonaceae), Eriogonum arborescens and E. giganteum, endemic to the California Channel Islands to determine whether geographical isolation is driving diversification. Using plastid and nuclear sequence data and microsatellite allele frequencies, we determined that gene flow in these Eriogonum spp. is restricted by isolation. The data suggest that successful colonization of and gene flow among the islands are infrequent. Colonization appears to have followed a stepping‐stone model that is consistent with a north‐to‐south pattern across the islands. This colonization pattern coupled with relatively little post‐colonization inter‐island gene flow, particularly among southern islands, has generated a pattern of more divergent lineages on the isolated southern islands. These results run counter to the general expectation that all islands close to a continental source should receive a high level of gene flow. Finally, management recommendations focused on protecting the lineages from loss of private alleles and the erosion of the remaining genetic diversity are offered.  相似文献   

18.
The field of population genetics is rapidly moving into population genomics as the quantity of data generated by high‐throughput sequencing platforms increases. In this study, we used restriction‐site‐associated DNA sequencing (RADSeq) to recover genomewide genotypes from 70 white‐beaked (Lagenorhynchus albirostris) and 43 Atlantic white‐sided dolphins (L. acutus) gathered throughout their north‐east Atlantic distribution range. Both species are at a high risk of being negatively affected by climate change. Here, we provide a resource of 38 240 RAD‐tags and 52 981 nuclear SNPs shared between both species. We have estimated overall higher levels of nucleotide diversity in white‐sided (π = 0.0492 ± 0.0006%) than in white‐beaked dolphins (π = 0.0300 ± 0.0004%). White‐sided dolphins sampled in the Faroe Islands, belonging to two pods (N = 7 and N = 11), showed similar levels of diversity (π = 0.0317 ± 0.0007% and 0.0267 ± 0.0006%, respectively) compared to unrelated individuals of the same species sampled elsewhere (e.g. π = 0.0285 ± 0.0007% for 11 Scottish individuals). No evidence of higher levels of kinship within pods can be derived from our analyses. When identifying the most likely number of genetic clusters among our sample set, we obtained an estimate of two to four clusters, corresponding to both species and possibly, two further clusters within each species. A higher diversity and lower population structuring was encountered in white‐sided dolphins from the north‐east Atlantic, in line with their preference for pelagic waters, as opposed to white‐beaked dolphins that have a more patchy distribution, mainly across continental shelves.  相似文献   

19.
Parallel evolution has been invoked as a forceful mechanism of ecotype and species formation in many animal taxa. However, parallelism may be difficult to separate from recently monophyletically diverged species that are likely to show complex genetic relationships as a result of considerable shared ancestral variation and secondary hybridization in local areas. Thus, species' degrees of reproductive isolation, barriers to dispersal and, in particular, limited capacities for long‐distance dispersal will affect demographical structures underlying mechanisms of divergent evolution. Here, we used nine microsatellite DNA markers to study intra‐ and interspecific genetic diversity of two recently diverged species of brown macroalgae, Fucus radicans (L. Bergström & L. Kautsky) and Fvesiculosus (Linnaeus), in the Baltic Sea. We further performed biophysical modelling to identify likely connectivity patterns influencing the species' genetic structures. For each species, we found intraspecific contrasting patterns of clonality incidence and population structure. In addition, strong genetic differentiation between the two species within each locality supported the existence of two distinct evolutionary lineages (FST = 0.15–0.41). However, overall genetic clustering analyses across both species' populations revealed that all populations from one region (Estonia) were more genetically similar to each other than to their own taxon from the other two regions (Sweden and Finland). Our data support a hypothesis of parallel speciation. Alternatively, Estonia may be the ancestral source of both species, but is presently isolated by oceanographic barriers to dispersal. Thus, a limited gene flow in combination with genetic drift could have shaped the seemingly parallel structure.  相似文献   

20.
Hybridization in ticks has been described in a handful of species and mostly as a result of laboratory experiments. We used 148 AFLP loci to describe putative hybridization events between D. andersoni and D. variabilis in sympatric populations from northwestern North America. Recently, D. variabilis has expanded its range westward into the natural range of D. andersoni. Using a sample of 235 D. andersoni and 62 D. variabilis, we identified 31 individuals as putative hybrids: four F2 individuals and 27 backcrosses to D. andersoni (as defined by NewHybrids ). We found no evidence of hybrids backcrossing into D. variabilis. Furthermore, all hybrids presented 16S mtDNA signatures characteristic of D. andersoni, which indicates the directionality of the hybrid crosses: female D. andersoni × male D. variabilis. We also discovered 13 species‐specific AFLP fragments for D. andersoni. These loci were found to have a decreased occurrence in the putative hybrids and were absent altogether in D. variabilis samples. AFLP profiles were also used to determine the levels of genetic population structure and gene flow among nine populations of D. andersoni and three of D. variabilis. Genetic structure exists in both species (D. andersoni, ΦST = 0.110; D. variabilis, ΦST = 0.304) as well as significant estimates of isolation by distance (D. andersoni, ρ = 0.066, = 0.001; D. variabilis, ρ = 0.729, = 0.001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号