首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effect of B chromosomes on chromosome pairing at meiosis was investigated in the species hybrid Lolium temulentum x L. perenne at both the diploid and tetraploid level. The presence of B chromosomes drastically reduced association of homoeologous chromosomes in both the diploids and tetraploids. This was evident from the high frequency of univalents recorded in PMC's of diploid hybrids with B's and from the predominantly bivalent association of homologous chromosomes in tetraploids of this type. In the absence of B's homoeologous pairing was extensive giving a high frequency of bivalents in the diploids and multivalents as well as bivalents and univalents in the tetraploids.  相似文献   

3.
Two diploid taxa, Grindelia procera and G. camporum, and 3 tetraploid ones, G. camporum, G. hirsutula, and G. stricta, have been studied to ascertain their interrelationships. Meiosis in diploid parental strains was regular, the common chromosome configuration being 5 rod bivalents and 1 ring bivalent. The average chiasmata frequency per chromosome was 0.60. Pollen fertility was about 90% in all strains examined. Diploid interspecific hybrids had normal meiosis with an average chiasmata frequency of 0.56 per chromosome. No heterozygosity for inversions or interchanges was detected, and pollen fertility was above 85%. Meiosis in parental tetraploid strains was characterized by the presence of quadrivalents in addition to a complementary number of bivalents. The average chiasmata frequency per chromosome was 0.59 and pollen fertility was generally about 80%. Tetraploid interspecific hybrids also had quadrivalents, normal meiosis, and high pollen fertility. Close genetic relationships between the diploids and between the tetraploids are indicated, and geographical, ecological, and seasonal barriers to gene exchange exist. Attempts to obtain hybrids between diploids and tetraploids were successful in a few cases. The hybrids were tetraploid and had normal meiosis and fertility similar to parental and F1 tetraploids. Their origin was by the union of unreduced gametes of the diploid female parent and normal pollen from the tetraploid parent. On the basis of chromosome homology, normal meiosis, plus high fertility exhibited in the diploid, tetraploid, and diploid X tetraploid interspecific hybrids, these species of Grindelia are considered to be a part of an autopolyploid complex. Gene exchange between diploids and diploids, tetraploids and tetraploids, and diploids and tetraploids is possible. Tetraploid G. camporum may have originated by hybridization between G. procera and diploid G. camporum with subsequent doubling of chromosomes and selection for the combined characteristics of the diploids.  相似文献   

4.
Allopolyploidization entailing the merger of two distinct genomes in a single hybrid organism, is an important process in plant evolution and a valuable tool in breeding programs. Newly established hybrids often experience massive genomic perturbations, including karyotype reshuffling and gene expression modifications. These phenomena may be asymmetric with respect to the two progenitors, with one of the parental genomes being “dominant.” Such “genome dominance” can manifest in several ways, including biased homoeolog gene expression and expression level dominance. Here we employed a k-mer–based approach to study gene expression in reciprocal Festuca pratensis Huds. × Lolium multiflorum Lam. allopolyploid grasses. Our study revealed significantly more genes where expression mimicked that of the Lolium parent compared with the Festuca parent. This genome dominance was heritable to successive generation and its direction was only slightly modified by environmental conditions and plant age. Our results suggest that Lolium genome dominance was at least partially caused by its more efficient trans-acting gene expression regulatory factors. Unraveling the mechanisms responsible for propagation of parent-specific traits in hybrid crops contributes to our understanding of allopolyploid genome evolution and opens a way to targeted breeding strategies.  相似文献   

5.
Summary Hybridization frequency was investigated between tetraploid perennial and Italian ryegrass (Lolium perenne X multiflorum) without emasculation by using genetic markers. The Italian phenotypes, fluorescentroots and awned florets, were dominant. About 82% of the plants in perennial X Italian and nearly 93 % of the plants in the reciprocal crosses were hybrids. The hybrids had a high multivalent frequency and involved homoeologous chromosome pairing. Aneuploids with 2n = 26, 27 and 29 chromosomes were present. The hybrids were highly fertile. The cytogenetic behaviour of these allopolyploids suggested that the genomes of the parental species have undergone little repatterning and have free genetic exchanges. The species maintained their self-incompatibility and cross-compatibility at the tetraploid level.  相似文献   

6.
Zhuang Y  Adams KL 《Genetics》2007,177(4):1987-1996
  相似文献   

7.
Many plants have undergone whole genome duplication (WGD). However, how regulatory networks underlying a particular trait are reshaped in polyploids has not been experimentally investigated. Here we show that the regulatory pathways modulating seed oil content, which involve WRINKLED1 (WRI1), LEAFY COTYLEDON1 (LEC1), and LEC2 in Arabidopsis, have been modified in the palaeopolyploid soybean. Such modifications include functional reduction of GmWRI1b of the GmWRI1a/GmWRI1b homoeologous pair relevant to WRI1, complementary non‐allelic dosage effects of the GmLEC1a/GmLEC1b homoeologous pair relevant to LEC1, pseudogenization of the singleton GmLEC2 relevant to LEC2, and the rise of the LEC2‐like function of GmABI3b, contrasting to its homoeolog GmABI3a, which maintains the ABSCISIC ACID INSENSITIVE 3 (ABI3)‐like function in modulating seed maturation and dormancy. The function of GmABI3b in modulating seed oil biosynthesis was fulfilled by direct binding to a RY (CATGCA) cis‐regulatory element in the GmWRI1a promoter, which was absent in the GmWRI1b promoter, resulting in reduction of the GmWRI1b expression. Nevertheless, the three regulators each exhibited similar intensities of purifying selection to their respective duplicates since these pairs were formed by a WGD event that is proposed to have occurred approximately 13 million years ago (mya), suggesting that the differentiation in spatiotemporal expression between the duplicated genes is more likely to be the outcome of neutral variation in regulatory sequences. This study thus exemplifies the plasticity, dynamics, and novelty of regulatory networks mediated by WGD.  相似文献   

8.
Summary The genomes of the diploid wheats Triticum boeoticum and T. urartu are closely related, giving 7II in the f1 hybrid (TbTu) and 8.4 (0–14) II + 2.5 (0–7) IV in the derived amphiploid (TbTbTuTu). The genomes of the tetraploid wheats are also closely related, giving up to 7II at the polyhaploid level (AB) in the absence of the gene Ph but 14II at the tetraploid level (AABB) in the normal presence of Ph. If the amphiploid is the progenitor of the tetraploids, one or the other homoeologue (Tb or Tu) in each of the 7 homoeologous groups (the 7 potential IV) must have differentiated with respect to pairing affinity in order to account for 14II in the tetraploid. Consequently, in tetraploid X amphiploid hybrids (TbTuAB) carrying the Ph gene from the tetraploid, the seven differentiated chromosomes (B) would be expected to give 7I while, on the basis of their observed chiasma frequency, Tb, Tu and the less differentiated A would be expected to give 4.17I + 3.57II + 3.23III), assuming homoeologous pairing. The expected chromosomal configuration freqencies at MI (11.17I + 3.57II + 3.23III) closely fit the observed values (11.22I + 3.45II + 3.19III + 0.071IV) for such hybrids (X2 = 0.0046; P>0.99). Thus diploidization of the boeoticum-urartu amphiploid clearly could account for the origin of the tetraploid wheats. Furthermore, T. aestivum X amphiploid hybrids (TbTuABD) with and without Ph indicated that B as well as A chomosomes tended to pair with their presumed TbTu homologues in the absence of Ph. Other tests showed that the tetraploid wheats could not plausibly have originated from any postulated Triticum-Sitopsis (TTSS) parental combinations with or without such chromosomal differentiation.  相似文献   

9.
The A genome of the tetraploid wheats (AABB, 2n = 28) shows 5-6 bivalents in crosses with Triticum boeoticum (2n = 14) and various Aegilops diploids (2n = 14). The B genome has never been similarly identified with any species, and is commonly thought to have been modified at the tetraploid level. Triticum boeoticum was presumably accepted as the A-genome donor because of its morphological similarity to the wild tetraploids and because it was formerly the only known wild diploid wheat. The B donor has been thought to be Ae. speltoides or another species of the Sitopsis section of Aegilops, but these diploids show pairing affinity with A rather than B. More recently, another diploid wheat, T. urartu, was found to be sympatric with T. boeoticum throughout the natural range of the tetraploids. The synthetic boeoticum-urartu amphiploid was virtually identical morphologically with the wild tetraploid wheats, whereas various boeoticum-Sitopsis amphiploids were markedly different. But the urartu genome, like those of T. boeoticum and Sitopsis, paired with A and not with B. However, cytological evidence also shows (1) that the genomes of any plausible parental combination pair with one another, (2) that the A and B genomes of the tetraploid wheats pair with one another in the absence of the gene Ph, and (3) that homoeologous chromosomes of the tetraploids have differentiated further, presumably as a result of diploidization. Consequently, chromosome pairing at Meiosis I can be expected to give ambiguous evidence regarding the identity of the tetraploid genomes with their parental prototypes. A hypothesis regarding the expected pairing affinities between tetraploid homoeologues that have differentiated from closely related parental chromosomes is advanced to explain the anomalous pairing behavior of the A and B genomes. Triticum boeoticum and T. urartu are inferred to be the parents of the tetraploid wheats.  相似文献   

10.
We studied hybridization between the diploid Centaurea pseudophrygia and the tetraploid C. jacea by performing crossing experiments and screening natural populations using flow cytometry. The experiments confirm that the studied species exhibit strong reproductive isolation. Interspecific hybrids were formed at a low frequency, including triploids (originating from reduced gametes) and tetraploids (involving unreduced gametes of the diploids). In contrast, hybrids were almost absent among seeds and adult plants of natural mixed populations and among the offspring from experimental pollinations with a mixture of pollen of both ploidy levels. We found that mixed pollination is an important mechanism for preventing hybridization between plants of different ploidy levels and sustaining the reproduction of the tetraploids. A mentor effect (induced selfing in the presence of pollen of different ploidy levels) was observed in both diploids and tetraploids, reinforcing the reproductive isolation between cytotypes. Higher ploidy levels (pentaploid, hexaploid) involving unreduced gametes of the tetraploid species were identified. Notably, pentaploids were discovered for the first time in Centaurea sect. Jacea. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 93–106.  相似文献   

11.
Lycopersicon peruvianum displays gametophytic self-incompatibility (GSI). We have isolated self-compatible (SC) tetraploids of L. peruvianum from tissue-cultured leaves and have explored the expression and inheritance of their S-related proteins. The Srelated protein profiles of styles of SC tetraploids were indistinguishable from the diploid self-incompatible (SI) explant source based on SDS-PAGE. All progeny obtained from self-fertilization of two tetraploids were SC. Cloned cDNA sequences of the S-related proteins were used to determine the inheritance of this locus in these progeny through Southern hybridization. The allelic ratio, as determined from the intensity of DNA restriction fragments, was consistent with the predicted ratio if only pollen bearing two different alleles was successful in achieving fertilization. All progeny obtained had at least one copy of each allele, and individuals fully homozygous for either allele were not found, indicating that pollen grains bearing two identical alleles were inhibited. In addition, the level of expression of the S-related proteins in the progeny correlated with the allelic dosage at the DNA level. We demonstrate that the observed self-compatibility in the tetraploids was not caused by an alteration in the expression of S-related proteins. Received: 11 September 1996 / Accepted: 21 March 1997  相似文献   

12.
Epigenetic mechanisms play a major role in heterosis, partly as a result of the remodeling of epigenetic modifications in F1 hybrids. Based on chromatin immunoprecipitation‐sequencing (ChIP‐Seq) analyses, we show that at the allele level extensive histone methylation remodeling occurred for a subset of genomic loci in reciprocal F1 hybrids of Oryza sativa (rice) cultivars Nipponbare and 93‐11, representing the two subspecies japonica and indica. Globally, the allele modification‐altered loci in leaf or root of the reciprocal F1 hybrids involved ?12–43% or more of the genomic regions carrying either of two typical histone methylation markers, H3K4me3 (>21 000 genomic regions) and H3K27me3 (>11 000 genomic regions). Nevertheless, at the total modification level, the majority (from ?43 to >90%) of the modification‐altered alleles lay within the range of parental additivity in the hybrids because of concerted alteration in opposite directions, consistent with an overall attenuation of allelic differences in the modifications. Importantly, of the genomic regions that did show non‐additivity in total modification level by either marker in the two tissues of hybrids, >80% manifested transgressivity, which involved genes enriched in specific functional categories. Extensive allele‐level alteration of H3K4me3 alone was positively correlated with genome‐wide changes in allele‐level gene expression, whereas at the total level, both H3K4me3 and H3K27me3 remodeling, although affecting just a small number of genes, contributes to the overall non‐additive gene expression to variable extents, depending on tissue/marker combinations. Our results emphasize the importance of allele‐level analysis in hybrids to assess the remodeling of epigenetic modifications and their relation to changes in gene expression.  相似文献   

13.
Hybridization can generate novel phenotypes distinct from those of parental lineages, a phenomenon known as transgressive trait variation. Transgressive phenotypes might negatively or positively affect hybrid fitness, and increase available variation. Closely related species of Heliconius butterflies regularly produce hybrids in nature, and hybridization is thought to play a role in the diversification of novel wing colour patterns despite strong stabilizing selection due to interspecific mimicry. Here, we studied wing phenotypes in first‐ and second‐generation hybrids produced by controlled crosses between either two co‐mimetic species of Heliconius or between two nonmimetic species. We quantified wing size, shape and colour pattern variation and asked whether hybrids displayed transgressive wing phenotypes. Discrete traits underlain by major‐effect loci, such as the presence or absence of colour patches, generate novel phenotypes. For quantitative traits, such as wing shape or subtle colour pattern characters, hybrids only exceed the parental range in specific dimensions of the morphological space. Overall, our study addresses some of the challenges in defining and measuring phenotypic transgression for multivariate traits and our data suggest that the extent to which transgressive trait variation in hybrids contributes to phenotypic diversity depends on the complexity and the genetic architecture of the traits.  相似文献   

14.
Detailed ecological, morphological and molecular analyses were performed in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. in Scandinavia. Comparisons were made with pure populations of either diploid ssp. fuchsii or tetraploid ssp. maculata. It was shown that mixed populations are the result of secondary contact between ssp. fuchsii and ssp. maculata. No patterns of recent and local autopolyploidization were found. Morphology and nuclear DNA markers (internal transcribed spacers of nuclear ribosomal DNA) showed that diploids and tetraploids from mixed populations have similar levels of differentiation to diploids and tetraploids from pure populations. Vegetation analyses, as well as analyses of environmental variables, revealed that diploid and tetraploid individuals in mixed populations are ecologically well differentiated on a microhabitat level. Diploids and tetraploids in pure populations have wider ecological amplitudes than they do in mixed populations. Triploid hybrids grew in intermediate microhabitats between diploids and tetraploids in the mixed populations. Plastid DNA markers indicated that both diploids and tetraploids may act as the maternal parent. Based on morphology and nuclear markers triploids are more similar to tetraploids than to diploids. There were indications of introgressive gene flow between ploidy levels. Plastid markers indicated that gene flow from diploid to tetraploid level is most common, but nuclear markers suggested that gene flow in opposite direction also may occur. Similar patterns of differentiation and gene flow appeared in localities that represented contrasting biogeographic regions. Disturbance and topography may explain why hybridization was slightly more common and the differentiation patterns somewhat less clear in the Scandinavian mountains than in the coastal lowland. An erratum to this article can be found at  相似文献   

15.
Murata Y  Oda S  Mitani H 《PloS one》2012,7(5):e36875
Variations in allele expressions between genetically distant populations are one of the most important factors which affects their morphological and physiological variations. These variations are caused by natural mutations accumulated in their habitats. It has been reported that allelic expression differences in the hybrids of genetically distant populations are different from parental strains. In that case, there is a possibility that allelic expression changes lead to novel phenotypes in hybrids. Based on genomic information of the genetically distant populations, quantification and comparison of allelic expression changes make importance of regulatory sequences (cis-acting factors) or upstream regulatory factors (trans-acting modulators) for these changes clearer. In this study, we focused on two Medaka inbred strains, Hd-rR and HNI, derived from genetically distant populations and their hybrids. They are highly polymorphic and we can utilize whole-genome information. To analyze allelic expression changes, we established a method to quantify and compare allele-specific expressions of 11 genes between the parental strains and their reciprocal hybrids. In intestines of reciprocal hybrids, allelic expression was either similar or different in comparison with the parental strains. Total expressions in Hd-rR and HNI were tissue-dependent in the case of HPRT1, with high up-regulation of Hd-rR allele expression in liver. The proportion of genes with differential allelic expression in Medaka hybrids seems to be the same as that in other animals, despite the high SNP rate in the genomes of the two inbred strains. It is suggested that each tissue of the strain difference in trans-acting modulators is more important than polymorphisms in cis-regulatory sequences in producing the allelic expression changes in reciprocal hybrids.  相似文献   

16.
Haplopappus spinulosus (Asteraceae) is a herbaceous, perennial weed common throughout the western Great Plains of North America and includes both diploid and tetraploid populations. A number of populations in southeastern Colorado were analyzed cytogenetically and morphologically for two reasons. First, initial observations during a routine population survey showed they were morphologically intermediate between the diploid subspecies glaberrimus and spinulosus, suggesting they might have arisen via hybridization. Second, cytological examination revealed that they were tetraploid. Because there was indication of hybrid origin, it was of interest to determine whether the populations were behaving as autopolyploids or segmental allopolyploids. The distinction between these two polyploid types is not easily made since both are likely to form multivalents at meiosis, but equations derived from a model proposed by Jackson and Hauber (1982) have made it possible to determine statistically whether a tetraploid individual is behaving meiotically as an autotetraploid. Meiotic configuration frequencies at diakinesis were determined for each tetraploid plant sampled, and observed frequencies were compared to those expected for an autotetraploid having the same maximum number of chiasmata per bivalent, chiasma frequency and chromosome number. In general, the meiotic behavior of the tetraploids was no different from that expected for autoploids. The initial hypothesis that the populations were derived from hybridization was tested by a detailed cytogenetic and morphological study of the presumed parental subspecies, F, hybrids, and natural putative hybrids. The evidence supports the hypothesis that the natural autotetraploids arose from the hybridization of ssp. glaberrimus and ssp. spinulosus.  相似文献   

17.
18.
Hybridization between plant species can have a number of biological consequences; interspecific hybridization has been tied to speciation events, biological invasions, and diversification at the level of genes, metabolites, and phenotypes. This study aims to provide evidence of transgressive segregation in the expression of primary and secondary metabolites in hybrids between Jacobaea vulgaris and J. aquaticus using an NMR-based metabolomic profiling approach. A number of F2 hybrid genotypes exhibited metabolomic profiles that were outside the range encompassed by parental species. Expression of a number of primary and secondary metabolites, including jacaronone analogues, chlorogenic acid, sucrose, glucose, malic acid, and two amino acids was extreme in some F2 hybrid genotypes compared to parental genotypes, and citric acid was expressed in highest concentrations in J. vulgaris. Metabolomic profiling based on NMR is a useful tool for quantifying genetically controlled differences between major primary and secondary metabolites among plant genotypes. Interspecific plant hybrids in general, and specifically hybrids between J. vulgaris and J. aquatica, will be useful for disentangling the ecological role of suites of primary and secondary metabolites in plants, because interspecific hybridization generates extreme metabolomic diversity compared to that normally observed between parental genotypes.  相似文献   

19.
Intergenomic interactions that include homoeologous recombinations and intergenomic translocations are commonly observed in plant allopolyploids. Homoeologous recombinations have recently been documented in unisexual salamanders in the genus Ambystoma and revealed exchanged chromosomal segments between A. laterale and A.jeffersonianum genomes in individual unisexuals. We discovered intergenomic translocations in two widespread unisexual triploids A.laterale--2 jeffersonianum (or LJJ) and its tetraploid derivative A.laterale--3 jeffersonianum (or LJJJ) by genomic in situ hybridization (GISH). Two different types of intergenomic translocations were observed in two unisexual populations and one contained novel chromosomes generated by an intergenomic reciprocal translocation. We also observed chromosome deletions in several individuals and these chromosome fragmentations were all derived from the A. jeffersonianum genome. These observed intergenomic reciprocal translocations are believed to be caused by non-homologous pairing during meiosis followed by breakage-rejoining events. Genomes of unisexual Ambystoma undergo complicated structural changes that include various intergenomic exchanges that offer unisexuals genetic and phenotypic complexity to escape their evolutionary demise. Unisexual Ambystoma have persisted as natural nuclear genomic hybrids for about four million years. These unisexuals provide a vertebrate model system to examine the interaction of distinct genomes and to evaluate the corresponding genetic, developmental and evolutionary implications of intergenomic exchanges. Intergenomic translocations and homoeologous recombinations appear to be frequent chromosome reconstruction events among unisexual Ambystoma.  相似文献   

20.
Summary Triticales (XTriticosecale Wittmack) at three ploidy levels (8x, 6x, 4x, x=7) were crossed with diploid rye (Secale cereale L.) to produce a solitary hypopentaploid hybrid (2n=32), and a number of tetraploid (2n=4x=28) and triploid (2n=3x=21) hybrids. The hybrids exhibited a morphology which was intermediate between the parents. The number of bivalents ranged from 1–7 (4.65 per cell) in hypopentaploid, from 2–12 (7.13 per cell) in tetraploid and from 4–9 (6.84 per cell) in triploid hybrids. In 4x and 3x hybrids, trivalents and quadrivalents were also observed at low frequencies (range 0–1; mean 0.01–0.03 per cell). Chiasmata frequency was highest in triploid hybrids (12.44 per cell), lowest in hypopentaploid (5.37 per cell) and intermediate in tetraploids (10.54 per cell). More than 711 were found in 39.7% pollen mother cells (PMC's) in the 4x hybrids and in 5.0% PMCs in 3x hybrids. It is concluded that an increase in the relative proportion of wheat chromosomes in the hybrids had a slight suppression effect on homologous as well as homoeologous pairing of rye chromosomes. Contrary to this, the relative increase in rye complement promoted homoeologous pairing between wheat chromosomes. In triploid hybrids, the chiasmata frequency as well as the c value were the highest, suggesting that in tetraploid hybrids rye chromosomes had a reduced pairing (low frequency of ring bivalents).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号