首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Inferring phylogenetic relationships between closely related taxa can be hindered by three factors: (1) the lack of informative molecular variation at short evolutionary timescale; (2) the lack of established markers in poorly studied taxa; and (3) the potential phylogenetic conflicts among different genomic regions due to incomplete lineage sorting or introgression. In this context, Restriction site Associated DNA sequencing (RAD‐seq) seems promising as this technique can generate sequence data from numerous DNA fragments scattered throughout the genome, from a large number of samples, and without preliminary knowledge on the taxa under study. However, divergence beyond the within‐species level will necessarily reduce the number of conserved and non‐duplicated restriction sites, and therefore the number of loci usable for phylogenetic inference. Here, we assess the suitability of RAD‐seq for phylogeny using a simulated experiment on the 12 Drosophila genomes, with divergence times ranging from 5 to 63 million years. These simulations show that RAD‐seq allows the recovery of the known Drosophila phylogeny with strong statistical support, even for relatively ancient nodes. Notably, this conclusion is robust to the potentially confounding effects of sequencing errors, heterozygosity, and low coverage. We further show that clustering RAD‐seq data using the BLASTN and SiLiX programs significantly improves the recovery of orthologous RAD loci compared with previously proposed approaches, especially for distantly related species. This study therefore validates the view that RAD sequencing is a powerful tool for phylogenetic inference.  相似文献   

2.
3.
4.
Transposable elements and microevolutionary changes in natural populations   总被引:1,自引:0,他引:1  
Transposable elements (TEs) usually represent the most abundant and dynamic fraction of genomes in almost all living organisms. The overall capacity of such ‘junk DNA’ to induce mutations and foster the reorganization of functional genomes suggests that TE may be of central evolutionary significance. However, to what extent TE dynamics drive and is driven by the evolutionary trajectory of host taxa remains poorly known. Further work addressing the fate of TE insertions in natural populations is necessary to shed light on their impact on microevolutionary processes. Here, we highlight methodological approaches (i.e. transposon displays and high‐throughput sequencing), tracking TE insertions across large numbers of individuals and discuss their pitfalls and benefits for molecular ecology surveys.  相似文献   

5.
6.
Recent innovations in high-throughput DNA sequencing methodology (next generation sequencing technologies [NGS]) allow for the generation of large amounts of high quality data that may be particularly critical for resolving ambiguous relationships such as those resulting from rapid radiations. Application of NGS technology to bryology is limited to assembling entire nuclear or organellar genomes of selected exemplars of major lineages (e.g., classes). Here we outline how organellar genomes and the entire nuclear ribosomal DNA repeat can be obtained from minimal amounts of moss tissue via small-scale 454 GS FLX sequencing. We sampled two Funariaceae species, Funaria hygrometrica and Entosthodon obtusus, and assembled nearly complete organellar genomes and the whole nuclear ribosomal DNA repeat unit (18S-ITS1-5.8S-ITS2-26S-IGS1-5S-IGS2) for both taxa. Sequence data from these species were compared to sequences from another Funariaceae species, Physcomitrella patens, revealing low overall degrees of divergence of the organellar genomes and nrDNA genes with substitutions spread rather evenly across their length, and high divergence within the external spacers of the nrDNA repeat. Furthermore, we detected numerous microsatellites among the 454 assemblies. This study demonstrates that NGS methodology can be applied to mosses to target large genomic regions and identify microsatellites.  相似文献   

7.
Minimally invasive sampling (MIS) is widespread in wildlife studies; however, its utility for massively parallel DNA sequencing (MPS) is limited. Poor sample quality and contamination by exogenous DNA can make MIS challenging to use with modern genotyping‐by‐sequencing approaches, which have been traditionally developed for high‐quality DNA sources. Given that MIS is often more appropriate in many contexts, there is a need to make such samples practical for harnessing MPS. Here, we test the ability for Genotyping‐in‐Thousands by sequencing (GT‐seq), a multiplex amplicon sequencing approach, to effectively genotype minimally invasive cloacal DNA samples collected from the Western Rattlesnake (Crotalus oreganus), a threatened species in British Columbia, Canada. As there was no previous genetic information for this species, an optimized panel of 362 SNPs was selected for use with GT‐seq from a de novo restriction site‐associated DNA sequencing (RADseq) assembly. Comparisons of genotypes generated within and among RADseq and GT‐seq for the same individuals found low rates of genotyping error (GT‐seq: 0.50%; RADseq: 0.80%) and discordance (2.57%), the latter likely due to the different genotype calling models employed. GT‐seq mean genotype discordance between blood and cloacal swab samples collected from the same individuals was also minimal (1.37%). Estimates of population diversity parameters were similar across GT‐seq and RADseq data sets, as were inferred patterns of population structure. Overall, GT‐seq can be effectively applied to low‐quality DNA samples, minimizing the inefficiencies presented by exogenous DNA typically found in minimally invasive samples and continuing the expansion of molecular ecology and conservation genetics in the genomics era.  相似文献   

8.
Ongoing hybridization and retained ancestral polymorphism in rapidly radiating lineages could mask recent cladogenetic events. This presents a challenge for the application of molecular phylogenetic methods to resolve differences between closely related taxa. We reanalyzed published genotyping‐by‐sequencing (GBS) data to infer the phylogeny of four species within the Ophrys sphegodes complex, a recently radiated clade of orchids. We used different data filtering approaches to detect different signals contained in the dataset generated by GBS and estimated their effects on maximum likelihood trees, global FST and bootstrap support values. We obtained a maximum likelihood tree with high bootstrap support, separating the species by using a large dataset based on loci shared by at least 30% of accessions. Bootstrap and FST values progressively decreased when filtering for loci shared by a higher number of accessions. However, when filtering more stringently to retain homozygous and organellar loci, we identified two main clades. These clades group individuals independently from their a priori species assignment, but were associated with two organellar haplotype clusters. We infer that a less stringent filtering preferentially selects for rapidly evolving lineage‐specific loci, which might better delimit lineages. In contrast, when using homozygous/organellar DNA loci the signature of a putative hybridization event in the lineage prevails over the most recent phylogenetic signal. These results show that using differing filtering strategies on GBS data could dissect the organellar and nuclear DNA phylogenetic signal and yield novel insights into relationships between closely related species.  相似文献   

9.
鞘翅目昆虫线粒体基因组研究进展   总被引:2,自引:0,他引:2  
聂瑞娥  杨星科 《昆虫学报》2014,57(7):860-868
鞘翅目(Coleoptera)是世界上最具多样性的类群,具有很高的生态和形态多样性,这些多样性吸引了很多进化生物学家和分类学家的关注。随着分子生物学的发展,分子生物学技术广泛应用于鞘翅目系统学的研究,但随着研究的深入,简单的分子片段已经不能满足研究的需求,需要发掘更新的分子标记。近年来,线粒体全基因组已经成为鞘翅目分子系统学研究中很重要的分子标记之一,并广泛地应用于鞘翅目昆虫各个阶元的研究中。本文就鞘翅目线粒体全基因组的概况、研究进展及存在问题进行了总结和讨论。目前,鞘翅目线粒体基因组的研究主要包括物种线粒体基因组组成与结构、分子系统学和分子进化等方面。线粒体基因组在解决系统发育和进化方面表现出了很多的优越性,然而也存在着一些缺点,如序列难获得、基因类型单一、各基因进化速率不同、应用较局限等。  相似文献   

10.
Reconstructing a tree of life by inferring evolutionary history is an important focus of evolutionary biology. Phylogenetic reconstructions also provide useful information for a range of scientific disciplines such as botany, zoology, phylogeography, archaeology and biological anthropology. Until the development of protein and DNA sequencing techniques in the 1960s and 1970s, phylogenetic reconstructions were based on fossil records and comparative morphological/physiological analyses. Since then, progress in molecular phylogenetics has compensated for some of the shortcomings of phenotype-based comparisons. Comparisons at the molecular level increase the accuracy of phylogenetic inference because there is no environmental influence on DNA/peptide sequences and evaluation of sequence similarity is not subjective. While the number of morphological/physiological characters that are sufficiently conserved for phylogenetic inference is limited, molecular data provide a large number of datapoints and enable comparisons from diverse taxa. Over the last 20 years, developments in molecular phylogenetics have greatly contributed to our understanding of plant evolutionary relationships. Regions in the plant nuclear and organellar genomes that are optimal for phylogenetic inference have been determined and recent advances in DNA sequencing techniques have enabled comparisons at the whole genome level. Sequences from the nuclear and organellar genomes of thousands of plant species are readily available in public databases, enabling researchers without access to molecular biology tools to investigate phylogenetic relationships by sequence comparisons using the appropriate nucleotide substitution models and tree building algorithms. In the present review, the statistical models and algorithms used to reconstruct phylogenetic trees are introduced and advances in the exploration and utilization of plant genomes for molecular phylogenetic analyses are discussed.  相似文献   

11.
The origins of evolutionary radiations are often traced to the colonization of novel adaptive zones, including unoccupied habitats or unutilized resources. For herbivorous insects, the predominant mechanism of diversification is typically assumed to be a shift onto a novel lineage of host plants. However, other drivers of diversification are important in shaping evolutionary history, especially for groups residing in regions with complex geological histories. We evaluated the contributions of shifts in host plant clade, bioregion, and elevation to diversification in Eois (Lepidoptera: Geometridae), a hyper‐diverse genus of moths found throughout the Neotropics. Relationships among 107 taxa were reconstructed using one mitochondrial and two nuclear genes. In addition, we used a genotyping‐by‐sequencing approach to generate 4641 SNPs for 137 taxa. Both datasets yielded similar phylogenetic histories, with relationships structured by host plant clade, bioregion, and elevation. While diversification of basal lineages often coincided with host clade shifts, more recent speciation events were more typically associated with shifts across bioregions or elevational gradients. Overall, patterns of diversification in Eois are consistent with the perspective that shifts across multiple adaptive zones synergistically drive diversification in hyper‐diverse lineages.  相似文献   

12.
Understanding the genetics of biological diversification across micro‐ and macro‐evolutionary time scales is a vibrant field of research for molecular ecologists as rapid advances in sequencing technologies promise to overcome former limitations. In palms, an emblematic, economically and ecologically important plant family with high diversity in the tropics, studies of diversification at the population and species levels are still hampered by a lack of genomic markers suitable for the genotyping of large numbers of recently diverged taxa. To fill this gap, we used a whole genome sequencing approach to develop target sequencing for molecular markers in 4,184 genome regions, including 4,051 genes and 133 non‐genic putatively neutral regions. These markers were chosen to cover a wide range of evolutionary rates allowing future studies at the family, genus, species and population levels. Special emphasis was given to the avoidance of copy number variation during marker selection. In addition, a set of 149 well‐known sequence regions previously used as phylogenetic markers by the palm biological research community were included in the target regions, to open the possibility to combine and jointly analyse already available data sets with genomic data to be produced with this new toolkit. The bait set was effective for species belonging to all three palm sub‐families tested (Arecoideae, Ceroxyloideae and Coryphoideae), with high mapping rates, specificity and efficiency. The number of high‐quality single nucleotide polymorphisms (SNPs) detected at both the sub‐family and population levels facilitates efficient analyses of genomic diversity across micro‐ and macro‐evolutionary time scales.  相似文献   

13.
Cichlid fishes (family Cichlidae) are models for evolutionary and ecological research. Massively parallel sequencing approaches have been successfully applied to study relatively recent diversification in groups of African and Neotropical cichlids, but such technologies have yet to be used for addressing larger‐scale phylogenetic questions of cichlid evolution. Here, we describe a process for identifying putative single‐copy exons from five African cichlid genomes and sequence the targeted exons for a range of divergent (>tens of millions of years) taxa with probes designed from a single reference species (Oreochromis niloticus, Nile tilapia). Targeted sequencing of 923 exons across 10 cichlid species that represent the family's major lineages and geographic distribution resulted in a complete taxon matrix of 564 exons (649 549 bp), representing 559 genes. Maximum likelihood and Bayesian analyses in both species tree and concatenation frameworks yielded the same fully resolved and highly supported topology, which matched the expected backbone phylogeny of the major cichlid lineages. This work adds to the body of evidence that it is possible to use a relatively divergent reference genome for exon target design and successful capture across a broad phylogenetic range of species. Furthermore, our results show that the use of a third‐party laboratory coupled with accessible bioinformatics tools makes such phylogenomics projects feasible for research groups that lack direct access to genomic facilities. We expect that these resources will be used in further cichlid evolution studies and hope the protocols and identified targets will also be useful for phylogenetic studies of a wider range of organisms.  相似文献   

14.
The last two decades have seen tremendous growth in the development and application of molecular methods in the analyses of fungal species and populations. In this paper, I provide an overview of the molecular techniques and the basic analytical tools used to address various fundamental population and evolutionary genetic questions in fungi. With increasing availability and decreasing cost, DNA sequencing is becoming a mainstream data acquisition method in fungal evolutionary genetic studies. However, other methods, especially those based on the polymerase chain reaction, remain powerful in addressing specific questions for certain groups of taxa. These developments are bringing fungal population and evolutionary genetics into mainstream ecology and evolutionary biology.  相似文献   

15.
Ciliates are unicellular eukaryotes with separate germline and somatic genomes and diverse life cycles, which make them a unique model to improve our understanding of population genetics through the detection of genetic variations. However, traditional sequencing methods cannot be directly applied to ciliates because the majority are uncultivated. Single‐cell whole‐genome sequencing (WGS) is a powerful tool for studying genetic variation in microbes, but no studies have been performed in ciliates. We compared the use of single‐cell WGS and bulk DNA WGS to detect genetic variation, specifically single nucleotide polymorphisms (SNPs), in the model ciliate Tetrahymena thermophila. Our analyses showed that (i) single‐cell WGS has excellent performance regarding mapping rate and genome coverage but lower sequencing uniformity compared with bulk DNA WGS due to amplification bias (which was reproducible); (ii) false‐positive SNP sites detected by single‐cell WGS tend to occur in genomic regions with particularly high sequencing depth and high rate of C:G to T:A base changes; (iii) SNPs detected in three or more cells should be reliable (an detection efficiency of 83.4–97.4% was obtained for combined data from three cells). This analytical method could be adapted to measure genetic variation in other ciliates and broaden research into ciliate population genetics.  相似文献   

16.
Next generation sequencing (NGS) has revolutionized genomics research, making it difficult to overstate its impact on studies of Biology. NGS will immediately allow researchers working in non‐mainstream species to obtain complete genomes together with a comprehensive catalogue of variants. In addition, RNA‐seq will be a decisive way to annotate genes that cannot be predicted purely by computational or comparative approaches. Future applications include whole genome sequence association studies, as opposed to classical SNP‐based association, and implementing this new source of information into breeding programmes. For these purposes, one of the main advantages of sequencing vs. genotyping is the possibility of identifying copy number variants. Currently, experimental design is a topic of utmost interest, and here we discuss some of the options available, including pools and reduced representation libraries. Although bioinformatics is still an important bottleneck, this limitation is only transient and should not deter animal geneticists from embracing these technologies.  相似文献   

17.
Population genetic studies in nonmodel organisms are often hampered by a lack of reference genomes that are essential for whole‐genome resequencing. In the light of this, genotyping methods have been developed to effectively eliminate the need for a reference genome, such as genotyping by sequencing or restriction site‐associated DNA sequencing (RAD‐seq). However, what remains relatively poorly studied is how accurately these methods capture both average and variation in genetic diversity across an organism's genome. In this issue of Molecular Ecology Resources, Dutoit et al. (2016) use whole‐genome resequencing data from the collard flycatcher to assess what factors drive heterogeneity in nucleotide diversity across the genome. Using these data, they then simulate how well different sequencing designs, including RAD sequencing, could capture most of the variation in genetic diversity. They conclude that for evolutionary and conservation‐related studies focused on the estimating genomic diversity, researchers should emphasize the number of loci analysed over the number of individuals sequenced.  相似文献   

18.
19.
Genomic data sets are increasingly central to ecological and evolutionary biology, but far fewer resources are available for invertebrates. Powerful new computational tools and the rapidly decreasing cost of Illumina sequencing are beginning to change this, enabling rapid genome assembly and reference marker extraction. We have developed and tested a practical workflow for developing genomic resources in nonmodel groups with real‐world data on Collembola (springtails), one of the most dominant soil animals on Earth. We designed universal molecular marker sets, single‐copy orthologues (BUSCO s) and ultraconserved elements (UCEs), using three existing and 11 newly generated genomes. Both marker types were tested in silico via marker capture success and phylogenetic performance. The new genomes were assembled with Illumina short reads and 9,585?14,743 protein‐coding genes were predicted with ab initio and protein homology evidence. We identified 1,997 benchmarking universal single‐copy orthologues (BUSCO s) across 14 genomes and created and assessed a custom BUSCO data set for extracting single‐copy genes. We also developed a new UCE probe set containing 46,087 baits targeting 1,885 loci. We successfully captured 1,437?1,865 BUSCO s and 975?1,186 UCEs across 14 genomes. Phylogenomic reconstructions using these markers proved robust, giving new insight on deep‐time collembolan relationships. Our study demonstrates the feasibility of generating thousands of universal markers from highly efficient whole‐genome sequencing, providing a valuable resource for genome‐scale investigations in evolutionary biology and ecology.  相似文献   

20.
Adaptive radiations are often invoked anytime clades show significant bursts of diversification, but it is important to not simply assume that any radiating clade constitutes an adaptive radiation. In addition, several highly relevant macroevolutionary concepts including the Turnover Pulse Hypothesis, the Effect Hypothesis, exaptation, and species selection, have not been considered in the adaptive radiations literature. Here, these concepts are integrated into the theory of evolutionary radiations in general, and adaptive radiations in particular, and different types of evolutionary radiations are identified, including geographic radiations. Special emphasis is placed on considering the role that abiotic as opposed to biotic factors may play in motivating diversification during evolutionary radiations. Further, recent paleontological data suggesting that rather than organismal adaptation it may be principally abiotic factors, such as climate change and a taxon??s presence in a geographically complex region, that cause clades to diversify will be described. The fossil record, the source of the initial hallmark examples of adaptive radiation, now appears to show little concrete support for this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号