共查询到20条相似文献,搜索用时 0 毫秒
1.
Biao-Feng Zhou Yong Shi Xue-Yan Chen Shuai Yuan Yi-Ye Liang Baosheng Wang 《植物分类学报:英文版》2022,60(6):1344-1357
Multiple evolutionary forces contribute to heterogeneous genomic landscapes; however, disentangling their relative contributions is challenging. We sampled nine populations across the distribution of Quercus dentata, a dominant forest tree in East Asia, and used whole-genome sequencing data to investigate mechanisms underlying divergence. We identified two genetic groups (north and south) that diverged ~1.84 million years ago, consistent with the uplift of the Qinling Mountains during the Pleistocene. The north group experienced a bottleneck during the middle–late Pleistocene and expanded from multiple refugia. The south group experienced a more severe bottleneck and showed high population differentiation, probably due to long-term isolation and habitat fragmentation. We detected genomic islands with elevated relative differentiation (FST) scattered across the genome. Among these, 65.9% showed reduced absolute divergence (dXY) consistent with linked selection, while the remaining (34.1%) showed elevated dXY suggestive of divergent sorting of ancient polymorphisms. The recombination rate in genomic islands was lower than background, suggesting the importance of genome structure in shaping the genomic landscape. We detected 108 single nucleotide polymorphisms significantly associated with environmental factors, 12 of which clustered in a region of ~500 kb. This region showed multiple signals of positive selection in the north group, including the enrichment of XP-extended haplotype homozygosity scores, an elevated population branch statistic, and an excess of high-frequency derived alleles. In addition, we found that linkage disequilibrium was low and derived haplotypes declined rapidly in this region, indicating selection on standing variation. Our results clarify the evolutionary processes driving genomic divergence in Q. dentata. 相似文献
2.
Erik Roger Mohlhenrich Rachel Lockridge Mueller 《Evolution; international journal of organic evolution》2016,70(12):2865-2878
Salamanders have the largest nuclear genomes among tetrapods and, excepting lungfishes, among vertebrates as a whole. Lynch and Conery (2003) have proposed the mutational‐hazard hypothesis to explain variation in genome size and complexity. Under this hypothesis, noncoding DNA imposes a selective cost by increasing the target for degenerative mutations (i.e., the mutational hazard). Expansion of noncoding DNA, and thus genome size, is driven by increased levels of genetic drift and/or decreased mutation rates; the former determines the efficiency with which purifying selection can remove excess DNA, whereas the latter determines the level of mutational hazard. Here, we test the hypothesis that salamanders have experienced stronger long‐term, persistent genetic drift than frogs, a related clade with more typically sized vertebrate genomes. To test this hypothesis, we compared dN/dS and Kr/Kc values of protein‐coding genes between these clades. Our results do not support this hypothesis; we find that salamanders have not experienced stronger genetic drift than frogs. Additionally, we find evidence consistent with a lower nucleotide substitution rate in salamanders. This result, along with previous work showing lower rates of small deletion and ectopic recombination in salamanders, suggests that a lower mutational hazard may contribute to genomic gigantism in this clade. 相似文献
3.
The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of noncrossover recombination in genomes and for determining the identity and micro‐evolutionary selective pressures on noncoding regulatory elements. 相似文献
4.
5.
Moyer GR Winemiller KO McPhee MV Turner TF 《Evolution; international journal of organic evolution》2005,59(3):599-610
Fishes of the genus Prochilodus are ecologically and commercially important, ubiquitous constituents of large river biota in South America. Recent ecologic and demographic studies indicate that these fishes exist in large, stable populations with adult census numbers exceeding one million individuals. Abundance data present a stark contrast to very low levels of genetic diversity (theta) and small effective population sizes (Ne) observed in a mitochondrial (mt) DNA dataset obtained for two species, Prochilodus mariae, and its putative sister taxon, Prochilodus rubrotaeniatus. Both species occupy major river drainages (Orinoco, Essequibo, and Negro) of northeastern South America. Disparity between expectations based on current abundance and life history information and observed genetic data in these lineages could result from historical demographic bottlenecks, or alternatively, natural selection (i.e., a mtDNA selective sweep). To ascertain underlying processes that affect mtDNA diversity in these species we compared theta and Ne estimates obtained from two, unlinked nuclear loci (calmodulin intron-4 and elongation factor-1alpha intron-6) using an approach based on coalescent theory. Genetic diversity and Ne estimated from mtDNA and nuclear sequences were uniformly low in P. rubrotaeniatus from the Rio Negro, suggesting that this population has encountered a historical bottleneck. For all P. mariae populations, theta and Ne based on nuclear sequences were comparable to expectations based on current adult census numbers and were significantly greater than mtDNA estimates, suggesting that a selective mtDNA sweep has occurred in this species. Comparative genetic analysis indicates that a suite of evolutionary processes involving historical demography and natural selection have influenced patterns of genetic variation and speciation in this important Neotropical fish group. 相似文献
6.
Based on nearly complete genome sequences from a variety of organisms data on naturally occurring genetic variation on the scale of hundreds of loci to entire genomes have been collected in recent years. In parallel, new statistical tests have been developed to infer evidence of recent positive selection from these data and to localize the target regions of selection in the genome. These methods have now been successfully applied to Drosophila melanogaster , humans, mice and a few plant species. In genomic regions of normal recombination rates, the targets of positive selection have been mapped down to the level of individual genes. 相似文献
7.
8.
Genomic levels of variation can help reveal the selective and demographic forces that have affected a species during its history. The relative amount of genetic diversity observed on the sex chromosomes as compared to the autosomes is predicted to differ among monogamous and polygynous species. Many species show departures from the expectation for monogamy, but it can be difficult to conclude that this pattern results from variation in mating system because forces other than sexual selection can act upon sex chromosome genetic diversity. As a critical test of the role of mating system, we compared levels of genetic diversity on the Z chromosome and autosomes of phylogenetically independent pairs of shorebirds that differed in their mating systems. We found general support for sexual selection shaping sex chromosome diversity because most polygynous species showed relatively reduced genetic variation on their Z chromosomes as compared to monogamous species. Differences in levels of genetic diversity between the sex chromosomes and autosomes may therefore contribute to understanding the long-term history of sexual selection experienced by a species. 相似文献
9.
Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow 下载免费PDF全文
M. Ravinet R. Faria R. K. Butlin J. Galindo N. Bierne M. Rafajlović M. A. F. Noor B. Mehlig A. M. Westram 《Journal of evolutionary biology》2017,30(8):1450-1477
Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation. 相似文献
10.
K Zeng 《Heredity》2013,110(4):363-371
There is increasing evidence that background selection, the effects of the elimination of recurring deleterious mutations by natural selection on variability at linked sites, may be a major factor shaping genome-wide patterns of genetic diversity. To accurately quantify the importance of background selection, it is vital to have computationally efficient models that include essential biological features. To this end, a structured coalescent procedure is used to construct a model of background selection that takes into account the effects of recombination, recent changes in population size and variation in selection coefficients against deleterious mutations across sites. Furthermore, this model allows a flexible organization of selected and neutral sites in the region concerned, and has the ability to generate sequence variability at both selected and neutral sites, allowing the correlation between these two types of sites to be studied. The accuracy of the model is verified by checking against the results of forward simulations. These simulations also reveal several patterns of diversity that are in qualitative agreement with observations reported in recent studies of DNA sequence polymorphisms. These results suggest that the model should be useful for data analysis. 相似文献
11.
Via S 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1587):451-460
In allopatric populations, geographical separation simultaneously isolates the entire genome, allowing genetic divergence to accumulate virtually anywhere in the genome. In sympatric populations, however, the strong divergent selection required to overcome migration produces a genetic mosaic of divergent and non-divergent genomic regions. In some recent genome scans, each divergent genomic region has been interpreted as an independent incidence of migration/selection balance, such that the reduction of gene exchange is restricted to a few kilobases around each divergently selected gene. I propose an alternative mechanism, 'divergence hitchhiking' (DH), in which divergent selection can reduce gene exchange for several megabases around a gene under strong divergent selection. Not all genes/markers within a DH region are divergently selected, yet the entire region is protected to some degree from gene exchange, permitting genetic divergence from mechanisms other than divergent selection to accumulate secondarily. After contrasting DH and multilocus migration/selection balance (MM/SB), I outline a model in which genomic isolation at a given genomic location is jointly determined by DH and genome-wide effects of the progressive reduction in realized migration, then illustrate DH using data from several pairs of incipient species in the wild. 相似文献
12.
Stephan W 《Molecular ecology resources》2010,10(5):863-872
New statistical tests have been developed in the past decade that enable us to infer evidence of recent strong positive selection from genome-wide data on single-nucleotide polymorphism and to localize the targets of selection in the genome. Based on these tests, past demographic events that led to distortions of the site-frequency spectrum of variation can be distinguished from selection, in particular if linkage disequilibrium is taken into account. These methods have been successfully applied to species from which complete sequence information and polymorphism data are available, including Drosophila melanogaster, humans, and several plant species. To make full use of the available data, however, the tests that were primarily designed for panmictic populations need to be extended to spatially structured populations. 相似文献
13.
ARMANDO GERALDES PATRICK BASSET BARBARA GIBSON KIMBERLY L. SMITH BETTINA HARR HON‐TSEN YU NINA BULATOVA YARON ZIV MICHAEL W. NACHMAN 《Molecular ecology》2008,17(24):5349-5363
Patterns of genetic differentiation among taxa at early stages of divergence provide an opportunity to make inferences about the history of speciation. Here, we conduct a survey of DNA‐sequence polymorphism and divergence at loci on the autosomes, X chromosome, Y chromosome and mitochondrial DNA in samples of Mus domesticus, M. musculus and M. castaneus. We analyzed our data under a divergence with gene flow model and estimate that the effective population size of M. castaneus is 200 000–400 000, of M. domesticus is 100 000–200 000 and of M. musculus is 60 000–120 000. These data also suggest that these species started to diverge approximately 500 000 years ago. Consistent with this recent divergence, we observed considerable variation in the genealogical patterns among loci. For some loci, all alleles within each species formed a monophyletic group, while at other loci, species were intermingled on the phylogeny of alleles. This intermingling probably reflects both incomplete lineage sorting and gene flow after divergence. Likelihood ratio tests rejected a strict allopatric model with no gene flow in comparisons between each pair of species. Gene flow was asymmetric: no gene flow was detected into M. domesticus, while significant gene flow was detected into both M. castaneus and M. musculus. Finally, most of the gene flow occurred at autosomal loci, resulting in a significantly higher ratio of fixed differences to polymorphisms at the X and Y chromosomes relative to autosomes in some comparisons, or just the X chromosome in others, emphasizing the important role of the sex chromosomes in general and the X chromosome in particular in speciation. 相似文献
14.
Pfrender ME 《Molecular ecology》2012,21(9):2051-2053
Understanding how natural populations adapt to their local environments is a major research theme for ecological genomics. This endeavour begins by sleuthing for shared genetic similarities among unrelated natural populations sharing adaptive traits to documented selective pressures. When the selective pressures have low dimensionality, and the genetic response is localized to a few genes of major effect, this detective work is relatively straightforward. However, in the real world, populations face a complex mixture of selective pressures and many adaptive responses are the result of changes in quantitative traits that have a polygenic genetic basis. This complex relationship between environment and adaptation presents a significant challenge. How can we begin to identify drivers of adaptation in natural settings? In this issue of Molecular Ecology, Orsini et al. (2012) take advantage of the biological attributes of the freshwater microcrustacean Daphnia ( Fig. 1 ) to disentangle multidimensional selection’s signature on the genome of populations that have repeatedly evolved adaptive responses to isolated selective pressures including predation, parasitism and anthropogenic changes in land use. Orsini et al. (2012) leverage a powerful combination of spatially structured populations in a geographic mosaic of environmental stressors, the historical archive of past genotypes preserved in lake‐bottom sediments and selection experiments to identify sets of candidate genomic regions associated with adaptation in response to these three environmental stressors. This study provides a template for future investigation in ecological genomics, combining multiple experimental approaches with the genomic investigation of a well‐studied ecological model species.
15.
Kevin Caye Timo M. Deist Helena Martins Olivier Michel Olivier François 《Molecular ecology resources》2016,16(2):540-548
Geography and landscape are important determinants of genetic variation in natural populations, and several ancestry estimation methods have been proposed to investigate population structure using genetic and geographic data simultaneously. Those approaches are often based on computer‐intensive stochastic simulations and do not scale with the dimensions of the data sets generated by high‐throughput sequencing technologies. There is a growing demand for faster algorithms able to analyse genomewide patterns of population genetic variation in their geographic context. In this study, we present TESS3 , a major update of the spatial ancestry estimation program TESS . By combining matrix factorization and spatial statistical methods, TESS3 provides estimates of ancestry coefficients with accuracy comparable to TESS and with run‐times much faster than the Bayesian version. In addition, the TESS3 program can be used to perform genome scans for selection, and separate adaptive from nonadaptive genetic variation using ancestral allele frequency differentiation tests. The main features of TESS3 are illustrated using simulated data and analysing genomic data from European lines of the plant species Arabidopsis thaliana. 相似文献
16.
Onishi-Seebacher M Korbel JO 《BioEssays : news and reviews in molecular, cellular and developmental biology》2011,33(11):840-850
Next-generation sequencing (NGS) technologies have revolutionised the analysis of genomic structural variants (SVs), providing significant insights into SV de novo formation based on analyses of rearrangement breakpoint junctions. The short DNA reads generated by NGS, however, have also created novel obstacles by biasing the ascertainment of SVs, an aspect that we refer to as the 'short-read dilemma'. For example, recent studies have found that SVs are often complex, with SV formation generating large numbers of breakpoints in a single event (multi-breakpoint SVs) or structurally polymorphic loci having multiple allelic states (multi-allelic SVs). This complexity may be obscured in short reads, unless the data is analysed and interpreted within its wider genomic context. We discuss how novel approaches will help to overcome the short-read dilemma, and how integration of other sources of information, including the structure of chromatin, may help in the future to deepen the understanding of SV formation processes. 相似文献
17.
18.
Martin C. Fischer Christian Rellstab Andrew Tedder Stefan Zoller Felix Gugerli Kentaro K. Shimizu Rolf Holderegger Alex Widmer 《Molecular ecology》2013,22(22):5594-5607
Natural genetic variation is essential for the adaptation of organisms to their local environment and to changing environmental conditions. Here, we examine genomewide patterns of nucleotide variation in natural populations of the outcrossing herb Arabidopsis halleri and associations with climatic variation among populations in the Alps. Using a pooled population sequencing (Pool‐Seq) approach, we discovered more than two million SNPs in five natural populations and identified highly differentiated genomic regions and SNPs using FST‐based analyses. We tested only the most strongly differentiated SNPs for associations with a nonredundant set of environmental factors using partial Mantel tests to identify topo‐climatic factors that may underlie the observed footprints of selection. Possible functions of genes showing signatures of selection were identified by Gene Ontology analysis. We found 175 genes to be highly associated with one or more of the five tested topo‐climatic factors. Of these, 23.4% had unknown functions. Genetic variation in four candidate genes was strongly associated with site water balance and solar radiation, and functional annotations were congruent with these environmental factors. Our results provide a genomewide perspective on the distribution of adaptive genetic variation in natural plant populations from a highly diverse and heterogeneous alpine environment. 相似文献
19.
Compared with populations near the core of aspecies' range, edge populations tend to becharacterized by low density and high temporalvariation. Based on empirical studiesquantifying this pattern, we show thateffective population size (N
e)could be 2 to 30 times greater near the coreof the species' range than near the edge ofthe range. Hence, the rate of genetic driftmay be 2 to 30 times greater near the edge ofthe range. Despite these strong spatialpatterns in N
e, empirical findingsindicate that peripheral populations sometimeshave less but sometimes have more geneticdiversity than core populations. Our analysisindicates that this variation can be explainedby uncertainty in spatial patterns ofmigration rates. Nevertheless, our analysis:(1) provides a framework or null hypothesis forempirically assessing how spatial patterns ofmigration or selection influence large-scalespatial patterns of genetic diversity, (2)highlights the potential importance ofcontemporary processes, such as spatialpatterns in N
e (cf. historicalphenomena, such as range expansion) in thedevelopment and maintenance of large-scalespatial patterns in genetic diversity, and (3) provides new context for understanding the conservation value and vulnerability of peripheralpopulations. The conservation ofecological/evolutionary processes requiresunderstanding large scale spatial patterns ofdemographic and genetic processes such as thatdescribed here. 相似文献
20.
Co-evolution between phenotypic variation and other traits is of paramount importance for our understanding of the origin and maintenance of polymorphism in natural populations. We tested whether the evolution of plumage polymorphism in birds of prey and owls was supported by the apostatic selection hypothesis using ecological and life-history variables in birds of prey and owls and performing both cross taxa and independent contrast analyses. For both bird groups, we did not find any support for the apostatic selection hypothesis being the maintaining factor for the polymorphism: plumage polymorphism was not more common in taxa hunting avian or mammalian prey, nor in migratory species. In contrast, we found that polymorphism was related to variables such as sexual plumage dimorphism, population size and range size, as well as breeding altitude and breeding latitude. These results imply that the most likely evolutionary correlate of polymorphism in both bird groups is population size, different plumage morphs might simply arise in larger populations most likely because of a higher probability of mutations and then be maintained by sexual selection. 相似文献