首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene-clone-library-based molecular approach was used to study the nirS-encoding bacteria–environment relationship in the sediments of the eutrophic Jiaozhou Bay. Diverse nirS sequences were recovered and most of them were related to the marine cluster I group, ubiquitous in estuarine, coastal, and marine environments. Some NirS sequences were unique to the Jiaozhou Bay, such as the marine subcluster VIIg sequences. Most of the Jiaozhou Bay NirS sequences had their closest matches originally detected in estuarine and marine sediments, especially from the Chesapeake Bay, indicating similarity of the denitrifying bacterial communities in similar coastal environments in spite of geographical distance. Multivariate statistical analyses indicated that the spatial distribution of the nirS-encoding bacterial assemblages is highly correlated with environmental factors, such as sediment silt content, NH4 + concentration, and OrgC/OrgN. The nirS-encoding bacterial assemblages in the most hypernutrified stations could be easily distinguished from that of the least eutrophic station. For the first time, the sedimentological condition was found to influence the structure and distribution of the sediment denitrifying bacterial community. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Sequence divergence in the ribosomal genes of known strains and isolates of aquatic denitrifying bacteria was investigated using restriction fragment length polymorphism (RFLP) analysis. The same cultures were characterized for their homology with antibody and gene probes for nitrite reductase (NiR), a key enzyme in the denitrification pathway, and for amplification with a set of polymerase chain reaction primers designed to amplify a portion of the NiR gene. The NiR probes were developed from Pseudomonas stutzeri (ATCC 14405) and several P. stutzeri strains were included in the analyses. The RFLP analysis clustered most of the P. stutzeri strains together, but detected considerable diversity within this group. Isolates from three aquatic environments exhibited within —and among — habitat diversity by RFLP. Hybridization with the NiR probes and amplification with the NiR primers were not correlated with the clustering of strains by rDNA RFLP analysis. The relationships among strains deduced from ribosomal DNA RFLP reflect heterogeneity within the P. stutzeri group and among other pseudomonads, and the patterns differ from those inferred from specificity of the NiR probes.Abbreviations NiR Nitrite reductase - PCR polymerase chain reaction - RFLP restriction fragment length polymorphism  相似文献   

3.
We used real-time PCR to quantify the denitrifying nitrite reductase gene (nirS), a functional gene of biogeochemical significance. The assay was tested in vitro and applied to environmental samples. The primer-probe set selected was specific for nirS sequences that corresponded approximately to the Pseudomonas stutzeri species. The assay was linear from 1 to 106 gene copies (r2 = 0.999). Variability at low gene concentrations did not allow detection of twofold differences in gene copy number at less than 100 copies. DNA spiking and cell-addition experiments gave predicted results, suggesting that this assay provides an accurate measure of P. stutzeri nirS abundance in environmental samples. Although P. stutzeri abundance was high in lake sediment and groundwater samples, we detected low or no abundance of this species in marine sediment samples from Puget Sound (Wash.) and from the Washington ocean margin. These results suggest that P. stutzeri may not be a dominant marine denitrifier.  相似文献   

4.
A marine bacterial isolate, previously identified as Vibrio WJT-1C (ATCC 55351) and used as a model for investigating the process of natural transformation in the marine environment, has been further examined to determine its taxonomic identity. API 20E test strips, phenotypic testing, and flagellar staining had previously assigned the strain to the genus Vibrio, most closely related to V. campbelli. 16S rRNA analysis indicated that WJT-1C was in the Pseudomonas subgroup of the gamma proteobacteria. Bacteriophage typing and natural transformation with chromosomal DNA indicated that it was distinct from previously described marine transforming pseudomonads including Pseudomonas stutzeri strain JM300. The importance and abundance of the Pseudomonas subgroup of the gamma proteobacteria in the environment suggest that these marine strains are well suited as model organisms for describing the process and importance of natural transformation in nature. Received: 19 February 1996 / Accepted: 29 April 1996  相似文献   

5.
Aerobic heterotrophic bacteria containing bacteriochlorophyll were isolated from specimens from a wide variety of marine environments on the west (Shark Bay, Lake Clifton, Lake Heyward, and Perth) and east (near Townsville and Brisbane) coasts of Australia. The bacteria were found in a high proportion (10 to 30%) of the total heterotrophic bacterial strains isolated from marine algae, seagrasses, stromatolites, the epiphytes on stromatolites, seawater, and sands; in some cases they constituted up to 49% of the total. This is much higher than the previous report of 6% from Japan. A high percentage, 13%, was also found in the seawater of Hamelin Pool, at Shark Bay, where the salinity was 66%. The number of these bacteria was generally low in seawater and sands, with a few exceptions. There were no aerobic bacteriochlorophyll-containing bacteria on sponges or corals. The isolated strains were orange or pink, and most had absorption maxima around 800 and 850 to 870 nm, the latter range being the absorption of bacteriochlorophyll a in vivo. The maximum bacteriochlorophyll content was 1 nmol/mg (dry weight) of bacterial cells. Most of the bacteria did not grow phototrophically under anaerobic conditions in a broth medium containing succinate. Cells and cell extracts grown under aerobic conditions had photochemical activities such as reversible photooxidations of the reaction center and cytochrome(s). Some strains showed denitrifying activity. The optimal salinity for bacterial growth varied between strains.  相似文献   

6.
A total of 17 culturable nitrogen-fixing bacterial strains associated with the roots of wheat growing in different regions of Greece were isolated and characterized for plant-growth-promoting traits such as auxin production and phosphate solubilization. The phylogenetic position of the isolates was first assessed by the analysis of the PCR-amplified 16S rRNA gene. The comparative sequence analysis and phylogenetic analysis based on 16S rRNA gene sequences show that the isolates recovered in this study are grouped with Azospirillum brasilense, Azospirillum zeae, and Pseudomonas stutzeri. The diazotrophic nature of all isolates was confirmed by amplification of partial nifH gene sequences. The phylogenetic tree based on nifH gene sequences is consistent with 16S rRNA gene phylogeny. The isolates belonging to Azospirillum species were further characterized by examining the partial dnaK gene phylogenetic tree. Furthermore, it was demonstrated that the ipdC gene was present in all Azospirillum isolates, suggesting that auxin is mainly synthesized via the indole-3-pyruvate pathway. Although members of P. stutzeri and A. zeae are known diazotrophic bacteria, to the best of our knowledge, this is the first report of isolation and characterization of strains belonging to these bacterial genera associated with wheat.  相似文献   

7.
通过高通量测序和qPCR技术对象山港4种典型生境(牡蛎养殖区OA、海带养殖区SA、自然岛礁区NR、人工鱼礁区AR)和对照区CK的沉积物反硝化细菌丰度和群落结构进行了测定分析,并探讨了反硝化细菌群落与环境因子之间的相关关系.结果表明:沉积物nirK型反硝化细菌丰度在5种生境间没有显著性差异,而沉积物nirS型反硝化细菌丰...  相似文献   

8.
Dinoflagellates (Eukaryota; Alveolata; Dinophyceae) are single-cell eukaryotic microorganisms implicated in many toxic outbreaks in the marine and estuarine environment. Co-existing with dinoflagellate communities are bacterial assemblages that undergo changes in species composition, compete for nutrients and produce bioactive compounds, including toxins. As part of an investigation to understand the role of the bacteria in dinoflagellate physiology and toxigenesis, we have characterized the bacterial community associated with laboratory cultures of four ' Pfiesteria -like' dinoflagellates isolated from 1997 fish killing events in Chesapeake Bay. A polymerase chain reaction with oligonucleotide primers specific to prokaryotic 16S rDNA gene sequences was used to characterize the total bacterial population, including culturable and non-culturable species, as well as possible endosymbiotic bacteria. The results indicate a diverse group of over 30 bacteria species co-existing in the dinoflagellate cultures. The broad phylogenetic types of dinoflagellate-associated bacteria were generally similar, although not identical, to those bacterial types found in association with other harmful algal species. Dinoflagellates were made axenic, and the culturable bacteria were added back to determine the contribution of the bacteria to dinoflagellate growth. Confocal scanning laser fluorescence microscopy with 16S rDNA probes was used to demonstrate a physical association of a subset of the bacteria and the dinoflagellate cells. These data point to a key component in the bacterial community being species in the marine alpha-proteobacteria group, most closely associated with the α-3 or SAR83 cluster.  相似文献   

9.
The actinomycetal community structures in marine and freshwater environments (the Pacific Ocean, East China Sea, Tokyo Bay, and Arakawa River) were investigated by a culture-independent molecular method to clarify spatial and seasonal distributions. Deoxyribonucleic acid (DNA) was extracted from environmental water samples, and a community analysis was carried out on polymerase chain reaction-amplified 16S ribosomal DNA. The amplified DNA fragments were analyzed by denaturing gradient gel electrophoresis (DGGE) and nonmetric multidimensional scaling analysis, followed by sequencing analysis. The actinomycetal community structures were different at each station in the Pacific Ocean, the East China Sea, Tokyo Bay, and Arakawa River, and different populations predominated in each area. There were vertical variations in actinomycetal communities in the Pacific Ocean and East China Sea between the surface and 100-m depth, but communities were similar from 200- to 1,000-m depths. There were also distinct seasonal variations in communities in Tokyo Bay. Phylogenetic analysis of DNA fragments recovered from DGGE bands revealed that most of the predominant actinomycetal strains were uncultured and were quite different from well known culturable strains, such as the Streptomyces, Micromonospora, Microbispora, Salinispora, and Actinoplanes groups. These results suggest that the marine environment is an attractive target for discovering new actinomycetal populations producing bioactive compounds and that sampling depth and season are important considerations for isolating various populations effectively.  相似文献   

10.
Both the soil isolate,Pseudomonas stutzeri JM300, and the marine isolate,Pseudomonas stutzeri strain ZoBell, have been shown previously to be naturally transformable. This study reports the detection of genetic exchange by natural transformation between these two isolates. Transformation frequency was determined by filter transformation procedures. Three independent antibiotic resistance loci were used as chromosomal markers to monitor this exchange event: resistance to rifampicin, streptomycin, and nalidixic acid. The maximum frequencies of transformation were on the order of 3.1 to 3.8×10-6 transformants per recipient; frequencies over an order of magnitude greater than those for spontaneous antibiotic resistance, although they are lower than those observed for soil: soil or marine: marine strain crosses. This exchange was inhibited by DNase I. Transformation was observed between soil and marine strains, both by filter transformation using purified DNA solutions and when transforming DNA was added in the form of viable donor cells. The results from this study support the close genetic relationship betweenP. stutzeri JM300 andP. stutzeri strain ZoBell. These results also further validate the utility ofP. stutzeri as a benchmark organism for modeling gene transfer by natural transformation in both soil and marine habitats.  相似文献   

11.
The abundance and community composition of culturable bacteria in four snow cores along the 1300 km traverse from Zhongshan Station to Dome A, East Antarctica, were investigated through the combination of liquid and solid media and small subunit 16S rRNA sequences. Under aerobic cultivation conditions, the average concentrations of bacterial colonies from each snow core varied from 0.008 to 0.32 CFU mL−1. A total of 37 and 15 isolates with different morphologic characteristics were recovered from solid and liquid media PYGV, respectively. The phylogenetic analysis of 14 representatives with different ARDRA patterns from RFLP showed that all the isolates were affiliated with five phylogenetic groups: Firmicutes, Actinobacteria, Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. Actinobacteria represented the largest cluster with 43% of strains, and these strains exhibited unique phenotypic properties. The community compositions of culturable bacteria in the four snow cores were distinctly different from each other and the concentrations and community sizes of culturable bacteria along the traverse decreased with increases of latitude, altitude and distance from coast, which likely reflected the different bacterial sources and biogeographies under the different regional climate conditions in the snow cover of East Antarctica.  相似文献   

12.
Citrobacter freundii, Paracoccus denitrificans and Pseudomonas stutzeri were grown either singly or in mixed culture in anaerobic nitrate or nitrite limited chemostats with formate and/or succinate as electron donors and carbon sources. C. freundii reduced nitrate or nitrite stoichiometrically to ammonia. Maximum molar growth yields for nitrate (nitrite) were 15.3 (9.9) g/mol for C. freundii on formate with succinate as carbon source, 15.3 (9.5) g/mol for Ps. stutzeri on succinate and 32.3 (20.4) g/mol for Pa. denitrificans on succinate. The almost identical growth yields indicate that the ATP output of the anaerobic processes in the nitrate (nitrite) ammonifying organism and Ps. stutzeri are nearly the same. In mixed cultures with either Ps. stutzeri or Pa. denitrificans, C. freundii was the best competitor for nitrate. These results show that in anaerobic environments C. freundii may compete successfully with denitrifying organisms.  相似文献   

13.
Immunofluorescence assays for marine ammonium- and nitrite-oxidizing bacteria were used to assess the diversity of nitrifying bacteria isolated from marine environments. The antisera show relatively broad specificity, in that each reacts with several strains of the same physiological type as the strain to which the antiserum was prepared. The antisera do not, however, react with any strains of differing physiological type. Seventy percent of the 30 unidentified ammonium-oxidizing isolates tested reacted with one or both of the antisera produced to marine ammonium-oxidizing strains, and 8 of the 9 unidentified nitrite-oxidizing strains tested reacted with 1 or more of the 3 nitrite oxidizer antisera used. Ammonium- and nitrite-oxidizing bacteria were enumerated in samples taken in a depth profile (to 750 m) in the Southern California Bight by immunofluorescence assays for two ammonium oxidizers and two nitrite oxidizers. Average abundances of the two types of nitrifiers were 3.5 × 105 and 2.8 × 105 cells liter−1, respectively. Nitrifiers constitute 0.1 to 0.8% of the total bacterial population in these samples.  相似文献   

14.
The novel multicopper enzyme nitrous oxide reductase from Pseudomonas perfectomarina was purified to homogeneity to study its properties and distribution in various pseudomonads and other selected denitrifying genera by immunochemical techniques. Quantitation of immunochemical crossreactivity by micro-complement fixation within the denitrifying pseudomonads of Palleroni's ribosomal ribonucleic acid group I corresponded to the taxonomic positions established by nucleic acid hybridization. The assignment of P. perfectomarina to the stutzeri-group (as strain ZoBell) was consolidated by immunochemical crossreactivity based on nitrous oxide reductase. Crossreactivity of nitrite reductase (cytochrome cd 1) with a respective P. perfectomarina rabbit antiserum was limited to strain DSM 50227 of P. stutzeri; although it could not contribute information towards broader relationships within rRNA group I, it lent further prove to the unity of these two species.  相似文献   

15.
Biology of Pseudomonas stutzeri   总被引:2,自引:0,他引:2       下载免费PDF全文
Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its particular metabolic properties: it has been proposed as a model organism for denitrification studies; many strains have natural transformation properties, making it relevant for study of the transfer of genes in the environment; several strains are able to fix dinitrogen; and others participate in the degradation of pollutants or interact with toxic metals. This review considers the history of the discovery, nomenclatural changes, and early studies, together with the relevant biological and ecological properties, of P. stutzeri.  相似文献   

16.
Three bacterial strains, two identified as Pseudomonas stutzeri and one as a strain of cucurbit yellow vine disease bacterium, isolated from a foundry soil and a tannery, respectively, in Pakistan, were resistant to up to 1 mM chromate and anaerobically reduced Cr(VI) up to 100 M. The highest removal was by P. stutzeri CMG463: 88 mol l–1 (88% of that supplied; specific rate was 3.0 nmol mg–1 protein h–1), while 58 and 76 mol l–1 (58% and 76%) were removed by P. stutzeri CMG462 and cucurbit yellow vine disease bacterium CMG480, respectively. These isolates were compared to strains isolated from an uncontaminated coastal site in the UK and designated as K2 (Pseudomonas synxantha) K3 (Bacillus sp.), and J3 (unidentified Gram-positive strain). Strain K3 was Cr-sensitive, partially lysed by Cr(VI), but had the highest removal of chromate anaerobically: 92 mol l–1 (92% of that supplied) at a specific rate of 71 nmol mg–1 protein h–1. Analysis of cell sections using transmission electron microscopy with energy dispersive X-ray analysis showed intracellular chromium in P. stutzeri but the cucurbit yellow vine disease bacterium and the Bacillus sp. precipitated chromium extracellularly. The isolates from the Cr-contaminated sites did not remove more Cr(VI), overall, than Cr-unstressed bacteria, but their tolerance to Cr(VI) is potentially useful for bioremediation, particularly since other studies have shown that the two P. stutzeri strains can bioaccumulate Cu2+.  相似文献   

17.
Within aquatic ecosystems, periphytic biofilms can be hot spots of denitrification, and previous work has suggested that algal taxa within periphyton can influence the species composition and activity of resident denitrifying bacteria. This study tested the hypothesis that algal species composition within biofilms influences the structure and function of associated denitrifying bacterial communities through the composition of organic exudates. A mixed population of bacteria was incubated with organic carbon isolated from one of seven algal species or from one of two streams that differed in anthropogenic inputs. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) revealed differences in the organic composition of algal exudates and stream waters, which, in turn, selected for distinct bacterial communities. Organic carbon source had a significant effect on potential denitrification rates (DNP) of the communities, with organics isolated from a stream with high anthropogenic inputs resulting in a bacterial community with the highest DNP. There was no correlation between DNP and numbers of denitrifiers (based on nirS copy numbers), but there was a strong relationship between the species composition of denitrifier communities (as indicated by tag pyrosequencing of nosZ genes) and DNP. Specifically, the relative abundance of Pseudomonas stutzeri-like nosZ sequences across treatments correlated significantly with DNP, and bacterial communities incubated with organic carbon from the stream with high anthropogenic inputs had the highest relative abundance of P. stutzeri-like nosZ sequences. These results demonstrate a significant relationship between bacterial community composition and function and provide evidence of the potential impacts of anthropogenic inputs on the structure and function of stream microbial communities.  相似文献   

18.
We analyzed heterotrophic, pelagic bacterial production and specific growth rate data from 57 studies conducted in fresh, marine and estuarine/coastal waters. Strong positive relationships were identified between 1) bacterial production and bacterial abundance and 2) bacterial production and algal biomass. The relationship between bacterial production and bacterial abundance was improved by also considering water temperature. The analysis of covariance model revealed consistent differences between fresh, marine and estuarine/coastal waters, with production consistently high in estuarine/coastal environments. The log-linear regression coefficient of abundance was not significantly different from 1.00, and this linear relationship permitted the use of specific growth rate (SGR in day−1) as a dependent variable. A strong relationship was identified between specific growth rate and temperature. This relationship differed slightly across the three habitats. A substantial portion of the residual variation from this relationship was accounted for by algal biomass, including the difference between marine and estuarine/coastal habitats. A small but significant difference between the fresh- and saltwater habitats remained. No significant difference between the chlorophyll effect in different habitats was identified. The model of SGR against temperature and chlorophyll was much weaker for freshwater than for marine environments. For a small subset of the data set, mean cell volume accounted for some of the residual variation in SGR. Pronounced seasonality, fluctuations in nutrient quality, and variation of the grazing environment may contribute to the unexplained variation in specific growth.  相似文献   

19.
NO reductase synthesis was investigated immunochemically and by activity assays in cells of Pseudomonas stutzeri ZoBell grown in continuous culture at discrete aeration levels, or in O2-limited batch cultures supplemented with N oxides as respiratory substrate. Under aerobic conditions, NO reductase was not expressed in P. stutzeri. Oxygen limitation in combination with the presence of nitrate or nitrite derepressed NO reductase synthesis. On transition from aerobic to anaerobic conditions in continuous culture, NO reductase was synthesized below 3% air saturation and reached maximum expression under anaerobic conditions. By use of mutant strains defective in nitrate respiration or nitrite respiration, the inducing effect of individual N oxides on NO reductase synthesis could be discriminated. Nitrite caused definite, concentration-dependent induction, while nitrate promoted moderate enzyme synthesis or amplified effects of nitrite. Exogenous nitric oxide (NO) in concentrations 25 M induced trace amounts of NO reductase; in higher concentrations it arrested cell growth. Nitrite reductase or NO reductase were not detected immunochemically under these conditions. NO generated as an intermediate appeared not to induce NO reductase significantly. Antiserum raised against the P. stutzeri NO reductase showed crossreaction with cell extracts from P. stutzeri JM300, but not with several other denitrifying pseudomonads or Paracoccus denitrificans.  相似文献   

20.
The relative abundance of gram-positive bacteria in a variety of near-shore marine samples was determined using the KOH method. Gram-positive bacteria accounted for 14%, 25%, 31 %, and 12%, respectively, of the colony-forming bacteria obtained from seawater, sediments, and the surfaces of algae and invertebrates. A total of 481 gram-positive strains were isolated representing a wide range of morphological groups including regular and irregular rods, cocci, and actinomycetes. Seventy-seven percent of the strains characterized did not form spores and were aerobic, catalase-positive rods with regular to irregular cell morphologies. Eighty-two percent of the strains tested showed an obligate requirement of seawater for growth. None of the cocci tested required seawater or sodium for growth. This is the first report documenting that gram-positive bacteria can compose a large percentage of the culturable, heterotrophic bacteria associated with the surfaces of tropical marine algae. Correspondence to: P.R. Jensen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号