共查询到20条相似文献,搜索用时 0 毫秒
1.
《The Journal of general physiology》1994,104(5):985-996
We have examined the ability of BI (class A) Ca2+ channels, cloned from rabbit brain, to mediate excitation-contraction (E-C) coupling in skeletal muscle. Expression plasmids carrying cDNA encoding BI channels were microinjected into the nuclei of dysgenic mouse myotubes grown in primary culture. Ionic currents and intramembrane charge movements produced by the BI channels were recorded using the whole-cell patch- clamp technique. Injected myotubes expressed high densities of ionic BI Ca2+ channel current (average 31 pA/pF) but did not display spontaneous contractions, and only very rarely displayed evoked contractions. The expressed ionic current was pharmacologically distinguished from the endogenous L-type current of dysgenic skeletal muscle (Idys) by its insensitivity to the dihydropyridine antagonist (+)-PN 200-110. Peak BI Ca2+ currents activated with a time constant (tau a) of approximately 2 ms and inactivated with a time constant (tau h) of approximately 260 ms (20-23 degrees C). The time constant of inactivation (tau h) was not increased by substituting Ba2+ for Ca2+ as charge carrier, demonstrating that BI channels expressed in dysgenic myotubes do not undergo Ca(2+)-dependent inactivation. The average maximal Ca2+ conductance (Gmax) produced by the BI channels was quite large (approximately 534 S/F). In contrast, the average maximal charge movement (Qmax) produced in the same myotubes (approximately 2.7 nC/microF) was quite small, being barely larger than Qmax in control dysgenic myotubes (approximately 2.3 nC/microF). Thus, the ratio Gmax/Qmax for the BI channels was considerably higher than previously found for cardiac or skeletal muscle L-type Ca2+ channels expressed in the same system, indicating that neuronal BI Ca2+ channels exhibit a much higher open probability than these L-type Ca2+ channels. 相似文献
2.
Rem inhibits skeletal muscle EC coupling by reducing the number of functional L-type Ca2+ channels 下载免费PDF全文
In skeletal muscle, the L-type voltage-gated Ca2+ channel (1,4-dihydropyridine receptor) serves as the voltage sensor for excitation-contraction (EC) coupling. In this study, we examined the effects of Rem, a member of the RGK family of Ras-related monomeric GTP-binding proteins, on the function of the skeletal muscle L-type Ca2+ channel. EC coupling was found to be weakened in myotubes expressing Rem tagged with enhanced yellow fluorescent protein (YFP-Rem), as assayed by electrically evoked contractions and myoplasmic Ca2+ transients. This impaired EC coupling was not a consequence of altered function of the type 1 ryanodine receptor, or of reduced Ca2+ stores, since the application of 4-chloro-m-cresol, a direct type 1 ryanodine receptor activator, elicited myoplasmic Ca2+ release in YFP-Rem-expressing myotubes that was not distinguishable from that in control myotubes. However, YFP-Rem reduced the magnitude of L-type Ca2+ current by ∼75% and produced a concomitant reduction in membrane-bound charge movements. Thus, our results indicate that Rem negatively regulates skeletal muscle EC coupling by reducing the number of functional L-type Ca2+ channels in the plasma membrane. 相似文献
3.
D Singer-Lahat E Gershon I Lotan R Hullin M Biel V Flockerzi F Hofmann N Dascal 《FEBS letters》1992,306(2-3):113-118
L-Type calcium channel was expressed in Xenopus laevis oocytes injected with RNAs coding for different cardiac Ca2+ channel subunits, or with total heart RNA. The effects of activation of protein kinase C (PKC) by the phorbol ester PMA (4 beta-phorbol 12-myristate 13-acetate) were studied. Currents through channels composed of the main (alpha 1) subunit alone were initially increased and then decreased by PMA. A similar biphasic modulation was observed when the alpha 1 subunit was expressed in combination with alpha 2/delta, beta and/or gamma subunits, and when the channels were expressed following injection of total rat heart RNA. No effects on the voltage dependence of activation were observed. The effects of PMA were blocked by staurosporine, a protein kinase inhibitor. beta subunit moderate the enhancement caused by PMA. We conclude that both enhancement and inhibition of cardiac L-type Ca2+ currents by PKC are mediated via an effect on the alpha 1 subunit, while the beta subunit may play a mild modulatory role. 相似文献
4.
Marchant JS Ramos V Parker I 《American journal of physiology. Cell physiology》2002,282(6):C1374-C1386
Ca2+ uptakeand release from endoplasmic reticulum (ER) and mitochondrialCa2+ stores play important physiological and pathologicalroles, and these processes are shaped by interactions that depend onthe structural intimacy between these organelles. Here we investigate the morphological and functional relationships between mitochondria, ER, and the sites of intracellular Ca2+ release inXenopus laevis oocytes by combining confocal imaging oflocal Ca2+ release events ("Ca2+ puffs")with mitochondrial localization visualized using vital dyes andsubcellularly targeted fluorescent proteins. Mitochondria and ER arelocalized in cortical bands ~6-8 µm wide, with the mitochondria arranged as densely packed "islands" interconnected bydiscrete strands. The ER is concentrated more superficially thanmitochondria, and the mean separation between Ca2+ puffsites and mitochondria is ~2.3 µm. However, a subpopulation ofCa2+ puff sites is intimately associated with mitochondria(~28% within <600 nm), a greater number than expected ifCa2+ puff sites were randomly distributed. Ca2+release sites close to mitochondria exhibit lower Ca2+ puffactivity than Ca2+ puff sites in regions with lowermitochondrial density. Furthermore, Ca2+ puff sites inclose association with mitochondria rarely serve as the sites forCa2+ wave initiation. We conclude that mitochondria playimportant roles in regulating local ER excitability, Ca2+wave initiation, and, thereby, spatial patterning of globalCa2+ signals. 相似文献
5.
Ward CW Feng W Tu J Pessah IN Worley PK Schneider MF 《The Journal of biological chemistry》2004,279(7):5781-5787
Members of the Homer family of proteins are known to form multimeric complexes capable of cross-linking plasma membrane channels (e.g. metabotropic glutamate receptor) and intracellular Ca2+ release channels (e.g. inositol trisphosphate receptor) in neurons, which potentiates Ca2+ release. Recent work has demonstrated direct interaction of Homer proteins with type 1 and type 2 ryanodine receptor (RyR) isoforms. Moreover, Homer proteins have been shown to modulate RyR-dependent Ca2+ release in isolated channels as well as in whole cell preparations. We now show that long and short forms of Homer H1 (H1c and H1-EVH1) are potent activators of Ca2+ release via RyR in skeletal muscle fibers (e.g. Ca2+ sparks) and potent modulators of ryanodine binding to membranes enriched with RyR, with H1c being significantly more potent than H1-EVH1. Homer did not significantly alter the spatio-temporal properties of the sparks, demonstrating that Homer increases the rate of opening of RyRs, with no change in the overall RyR channel open time and amount of Ca2+ released during a spark. No changes in Ca2+ spark frequency or properties were observed using a full-length H1c with mutation in the EVH1 binding domain (H1c-G89N). One novel finding with each Homer agonist (H1c and H1-EVH1) was that in combination their actions on [3H]ryanodine binding was additive, an effect also observed for these Homer agonists in the Ca2+ spark studies. Finally, in Ca2+ spark studies, excess H1c-G89N prevented the effects of H1c in a dominant negative manner. Taken together our results suggest that the EVH1 domain is critical for the agonist behavior on Ca2+ sparks and ryanodine binding, and that the coiled-coil domain, present in long but not short form Homer, confers an increase in agonist potential apparently through the multimeric association of Homer ligand. 相似文献
6.
7.
The study of Ca2+ sparks has led to extensive new information regarding the gating of the Ca2+ release channels underlying these events in skeletal, cardiac and smooth muscle cells, as well as the possible roles of these local Ca2+ release events in muscle function. Here we review basic procedures for studying Ca2+sparks in skeletal muscle, primarily from frog, as well as the basic results concerning the properties of these events, their pattern and frequency of occurrence during fiber depolarization and the mechanisms underlying their termination. Finally, we also consider the contribution of different ryanodine receptor (RyR) isoforms to Ca2+ sparks and the number of RyR Ca2+ release channels that may contribute to the generation of a Ca2+ spark. Over the decade since their discovery, Ca2+ sparks have provided a wealth of information concerning the function of Ca2+ release channels within their intracellular environment. 相似文献
8.
G Romey F Rieger J F Renaud M Pin?on-Raymond M Lazdunski 《Biochemical and biophysical research communications》1986,136(3):935-940
Action potentials of myotubes in culture prepared from 18-19 day -old mouse embryos have a contractile activity and action potentials that are followed by a long lasting after hyperpolarization (ahp) which is blocked by apamin. Myotubes prepared from embryos of mice with muscular dysgenesis (mdg/mdg) did not contract and had action potentials which were never followed by a.h.p.'s. Voltage-clamp experiments have shown that Na+ channel activity was identical in mutant and control muscles and that the activity of fast and slow Ca2+ channels was nearly absent in the mutant. 相似文献
9.
Avila G O'Connell KM Groom LA Dirksen RT 《The Journal of biological chemistry》2001,276(21):17732-17738
Skeletal muscle obtained from mice that lack the type 1 ryanodine receptor (RyR-1), termed dyspedic mice, exhibit a 2-fold reduction in the number of dihydropyridine binding sites (DHPRs) compared with skeletal muscle obtained from wild-type mice (Buck, E. D., Nguyen, H. T., Pessah, I. N., and Allen, P. D. (1997) J. Biol. Chem. 272, 7360-7367 and Fleig, A., Takeshima, H., and Penner, R. (1996) J. Physiol. (Lond.) 496, 339-345). To probe the role of RyR-1 in influencing L-type Ca(2+) channel (L-channel) expression, we have monitored functional L-channel expression in the sarcolemma using the whole-cell patch clamp technique in normal, dyspedic, and RyR-1-expressing dyspedic myotubes. Our results indicate that dyspedic myotubes exhibit a 45% reduction in maximum immobilization-resistant charge movement (Q(max)) and a 90% reduction in peak Ca(2+) current density. Calcium current density was significantly increased in dyspedic myotubes 3 days after injection of cDNA encoding either wild-type RyR-1 or E4032A, a mutant RyR-1 that is unable to restore robust voltage-activated release of Ca(2+) from the sarcoplasmic reticulum (SR) following expression in dyspedic myotubes (O'Brien, J. J., Allen, P. D., Beam, K., and Chen, S. R. W. (1999) Biophys. J. 76, A302 (abstr.)). The increase in L-current density 3 days after expression of either RyR-1 or E4032A occurred in the absence of a change in Q(max). However, Q(max) was increased 85% 6 days after injection of dyspedic myotubes with cDNA encoding the wild-type RyR-1 but not E4032A. Because normal and dyspedic myotubes exhibited a similar density of T-type Ca(2+) current (T-current), the presence of RyR-1 does not appear to cause a general overall increase in protein synthesis. Thus, long-term expression of L-channels in skeletal myotubes is promoted by Ca(2+) released through RyRs occurring either spontaneously or during excitation-contraction coupling. 相似文献
10.
11.
12.
Upon two repetitive deep injections of Ca2+ into Xenopus oocyte (200-300 microns under the membrane), the amplitude of the transient Cl- current induced by the second injection is several-fold higher than that of the first one. This 'potentiation' persists even at 60-90 min intervals between injections. However, in oocytes permeabilized to Ca2+ by the ionophore A23187 in a Ca2(+)-free solution, the potentiation completely disappears after 30 min. It is proposed that the injected Ca2+ is largely taken up by the stores, whereas following the second injection, a higher proportion of Ca2+ reaches the membrane, since the stores are already loaded. In ionophore-treated oocytes, the stores lose the accumulated Ca2+ over several minutes and are then ready to take up Ca2+ again, hindering its arrival at the membrane. 相似文献
13.
G B Frank 《Canadian journal of physiology and pharmacology》1984,62(4):374-378
The effects of the voltage-sensitive, calcium channel blocking agents, D-600 and verapamil, on twitches and K+-induced contractures were studied using frog's toe muscles. K+-contracture tension was reduced by concentrations as low as 10(-8) M and the contractures were blocked by 10(-6) M. There was no significant difference in the effects of the two drugs. Twitches were potentiated by 5 X 10(-5) M D-600 and blocked only at 3 X 10(-4) M. The latter concentration also produced contractures in the toe muscles. As shown by other workers, the higher concentration also blocks action potential production and this is probably the way in which it blocks the twitch. Raising the bathing solution Ca2+ concentration from 1.08 to 10 or 20 mM, produced only a small, inconsistent, noncompetitive antagonism of the D-600 block of K+ contractures. 相似文献
14.
Elena Bossi Elena Centinaio Andrea Moriondo Antonio Peres 《Journal of cellular physiology》1998,174(2):154-159
The role of Ca2+ on the depolarization-induced appearance of a Na+ current in Xenopus oocytes was studied. Oocytes were voltage-clamped and the induction of the Na+ current was tested under various conditions. In oocytes pre-injected with 400 pmol EGTA to increase the intracellular Ca2+ buffering power, the current was significantly reduced. Conversely, when intracellular Ca2+ was made to increase by injecting an analogue of inositol 1,4,5-trisphosphate (3-F InsP3), to cause Ca2+ release from internal stores, the induction of the Na+ current was potentiated. The depolarization-inducible Na+ channels of the Xenopus oocyte membrane appear, therefore, to be Ca2+ sensitive, as well as depolarization-activated. J. Cell. Physiol. 174:154–159, 1998. © 1998 Wiley-Liss, Inc. 相似文献
15.
Rat forebrain- and heart-derived mRNA were used to express Ca2+ channels inXenopus oocytes to study their cAMP-dependent regulation. Forebrain and heart mRNA-directed Ca2+ channel currents (I
Ba, 40 mM Ba2+ were used as a charge carrier) showed similar voltage dependence and macroscopic kinetics but different pharmacology, which
allowed us to attribute them to N- and L-type, respectively. Brain mRNA-directedI
Ba was insensitive to the dihydropyridine (DHP) antagonist nitrendipine and the agonist Bay K 8644, but could be inhibited by
70% by 1 μM of ω-conotoxin GVIA, whileI
Ba directed by cardiac mRNA was extremely sensitive to DHP. Neither forebrain, nor heart mRNA-directedI
Ba could be augmented by the external applications of the β-agonist isoproterenol (ISO, 10 μM), the adenylate cyclase (AC) activator
forskolin (FSK, 10 μM), the phosphodiesterase inhibitor IBMX (200 μM), or their mixtures. “Cardiac”I
Ba was also unresponsive to the external applications of a membrane-permeable cAMP analog 8-(4-chlorophenylthio)-cAMP (500 μM),
as well as to the direct intracellular infusion of cAMP (300 μM). Blockade of cAMP-dependent phosphorylation pathway by intracellular
perfusion of the oocytes with 200 μM Rp-cAMP plus 200 μM of a synthetic protein kinase A (PKA) inhibitor peptide also exerted
no effect on the basal level ofI
Ba, suggesting that the expressed Ca2+ channels are not fully phosphorylated in the resting state. Measurements of the concentration of cAMP in the control and
heart mRNA-injected oocytes, using an enzyme-immunoassay system, showed that they display a similar basal cAMP concentration
(2.0–2.5 μM); however, application of ISO + FSK increased the cAMP concentration 2- to 3-fold in mRNA-injected oocytes, but
not in control oocytes. Thus, our data demonstrate that injection of rat cardiac mRNA intoXenopus oocytes results in the expression of receptor-stimulated AC and L-type Ca2+ channels, which do not respond to cAMP or PKA inhibitors. Unresponsiveness to cAMP-dependent regulation is not channel type-specific,
since N-type Ca2+ channels expressed by means of forebrain mRNA are also insensitive to such regulation. Unresponsiveness of the channels to
cAMP-mediated regulation is most probably due to lack/inaccessibility of PKA-dependent phosphorylation site(s), or loss of
functional significance of phosphorylation. 相似文献
16.
Block of single L-type Ca2+ channels in skeletal muscle fibers by aminoglycoside antibiotics 下载免费PDF全文
《The Journal of general physiology》1996,107(3):421-432
The activity of single L-type Ca2+ channels was recorded from cell- attached patches on acutely isolated skeletal muscle fibers from the mouse. The experiments were concerned with the mechanism by which aminoglycoside antibiotics inhibit ion flow through the channel. Aminoglycosides produced discrete fluctuations in the single-channel current when added to the external solution. The blocking kinetics could be described as a simple bimolecular reaction between an aminoglycoside molecule and the open channel. The blocking rate was found to be increased when either the membrane potential was made more negative or the concentration of external permeant ion was reduced. Both of these effects are consistent with a blocking site that is located within the channel pore. Other features of block, however, were incompatible with a simple pore blocking mechanism. Hyperpolarization enhanced the rate of unblocking, even though an aminoglycoside molecule must dissociate from its binding site in the channel toward the external solution against the membrane field. Raising the external permeant ion concentration also enhanced the rate of unblocking. This latter finding suggests that aminglycoside affinity is modified by repulsive interactions that arise when the pore is simultaneously occupied by a permeant ion and an aminoglycoside molecule. 相似文献
17.
Arellano RO Robles-Martínez L Serrano-Flores B Vázquez-Cuevas F Garay E 《Journal of cellular physiology》2012,227(10):3457-3470
Xenopus follicles are endowed with specific receptors for ATP, ACh, and AII, transmitters proposed as follicular modulators of gamete growth and maturation in several species. Here, we studied ion‐current responses elicited by stimulation of these receptors and their activation mechanisms using the voltage‐clamp technique. All agonists elicited Cl? currents that depended on coupling between oocyte and follicular cells and on an increase in intracellular Ca2+ concentration ([Ca2+]i), but they differed in their activation mechanisms and in the localization of the molecules involved. Both ATP and ACh generated fast Cl? (FCl) currents, while AII activated an oscillatory response; a robust Ca2+ influx linked specifically to FCl activation elicited an inward current (Iiw,Ca) which was carried mainly by Cl? ions, through channels with a sequence of permeability of SCN? > I? > Br? > Cl?. Like FCl, Iiw,Ca was not dependent on oocyte [Ca2+]i; instead both were eliminated by preventing [Ca2+]i increase in the follicular cells, and also by U73122 and 2‐APB, drugs that inhibit the phospolipase C (PLC) pathway. The results indicated that FCl and Iiw,Ca were produced by the expected, PLC‐stimulated Ca2+‐release and Ca2+‐influx, respectively, and by the opening of ICl(Ca) channels located in the follicular cells. Given their pharmacological characteristics and behavior in conditions of divalent cation deprivation, Ca2+‐influx appeared to be driven through store‐operated, calcium‐like channels. The AII response, which is also known to require PLC activation, did not activate Iiw,Ca and was strictly dependent on oocyte [Ca2+]i increase; thus, ATP and ACh receptors seem to be expressed in a population of follicular cells different from that expressing AII receptors, which were coupled to the oocyte through distinct gap‐junction channels. J. Cell. Physiol. 227: 3457–3470, 2012. © 2011 Wiley Periodicals, Inc. 相似文献
18.
Functional studies of single membrane ion channels were made possible by the introduction of the patch-clamp technique, which allows single-channel currents to be measured with unprecedented resolution. Nevertheless, patch clamping has some limitations: including the need for physical access of the patch pipette, possible disruption of local cellular architecture, inability to monitor multiple channels, and lack of spatial information. Here, we demonstrate the use of confocal fluorescence microscopy as a non-invasive technique to optically monitor the gating of individual Ca2+ channels. Near-membrane fluorescence signals track the gating of N-type Ca2+ channels with a kinetic resolution of about 10ms, provide a simultaneous and independent readout from several channels, and allow their locations to be mapped with sub-micrometer spatial resolution. Optical single-channel recording should be applicable to diverse voltage- and ligand-gated Ca2+-permeable channels, and has the potential for high-throughput functional analysis of single channels. 相似文献
19.
Eun Hui Lee 《Progress in biophysics and molecular biology》2010,103(1):35-43
When observed under a microscope, skeletal muscle exhibits striations due to the highly organized arrangement of muscle proteins that interact with one another to induce muscle contraction. Muscle contraction requires transient increases in intracellular ‘Ca2+’ concentration. In this review, Ca2+ channels contributing to the functional integrity of intracellular Ca2+-release and extracellular Ca2+-entry during skeletal muscle contraction are reviewed in terms of their properties, newly emerging ancillary proteins to them, and their abnormalities related to human skeletal muscle diseases. Finally, the aim of this review is to show the big picture of the correlation among Ca2+ channels that participate in the Ca2+ homeostasis in skeletal muscle. 相似文献
20.
Abnormal human sarcoplasmic reticulum Ca2+ release channels in malignant hyperthermic skeletal muscle. 下载免费PDF全文
Single sarcoplasmic reticulum (SR) Ca2+ release channels were reconstituted from normal and malignant hyperthermic (MH) human skeletal muscle biopsies (2-5 g samples). Conduction, gating properties, and myoplasmic Ca2+ dependence of human SR Ca2+ release channels were similar to those in other species (rabbit, pig). The MH diagnostic procedure distinguishes three phenotypes (normal, MH-equivocal, and MH-susceptible) on the basis of muscle contracture sensitivity to caffeine and/or halothane. Single channel studies reveal that human MH muscles (both MH phenotypes) contain SR Ca2+ release channels with abnormally greater caffeine sensitivity. Muscles from MH-equivocal and MH-susceptible patients appear to contain channels with the same abnormality. Further, our data (n = 115, 21 channels, 11 patients) reveals that human MH muscles (both phenotypes) may contain two populations of SR Ca2+ release channels, possibly corresponding to normal and abnormal isoforms. Thus, whole cell phenotypic variation (MH-equivocal vs. MH-susceptible) arises in muscles containing channels with similar caffeine sensitivity suggesting that human MH does not arise from a single defect. These results have important ramifications concerning (a) correlation of functional and genetic MH studies, (b) identification of other, yet to be determined, factors which may influence MH expression, and (c) characterization of normal SR Ca2+ release channel function by exploring genetic channel defects. 相似文献