首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gbx-2 is a homeobox gene essential for normal development of the midbrain and the anterior hindbrain. Zebrafish gbx-2 shares an overall similarity of 67.8, 68.1, 60.6 and 66.5% in amino acid sequence to human, mouse, chick and Xenopus Gbx-2, respectively. The expression of zebrafish gbx-2 is initially, before the completion of epiboly, restricted to the prospective posterior midbrain. The expression remains detectable until the end of pharyngula period. The gbx-2 mRNA is also detected in the otic vesicles, the dorsoposterior telencephalon, the rostral branchial arches, the pronephric duct and median fin fold.  相似文献   

3.
Yue MJ  Mo SJ  Song P  Gong YZ 《动物学研究》2011,32(4):386-390
斑马鱼z-otu基因编码的蛋白可能具有DUBs活性,它包含OTU和TUDOR结构域,属于OTU相关蛋白酶家族的成员。该研究将原核表达的融合蛋白(OTU结构域和GST)纯化后免疫新西兰兔,获得多克隆抗体anti-Z-OTU,并利用该抗体对Z-OTU蛋白质在斑马鱼卵子发生和早期胚胎发育过程中的表达进行了分析。根据原位和整体免疫组织化学检测结果并结合以前的研究结论,分析并比较了z-otu基因的mRNA和蛋白质的分布,发现在卵子发生和早期胚胎发育过程中,z-otu基因的mRNA和蛋白质表达模式存在明显差异:mRNA仅在卵子发生早期表达,卵母细胞受精后才重新开始表达,而其蛋白在卵子发生过程中均表达;在卵子发生过程中,mRNA分布于细胞质中,而蛋白质先分布于细胞核中,然后向细胞质迁移,接着又向卵母细胞生发泡(germinal vesicle,GV)集中。推测Z-OTU蛋白类似于其他具有去泛素化酶活性的OTU相关蛋白酶,对于卵母细胞减数分裂过程中生发泡破裂、生发泡迁移及维持胚胎的分裂是必需的。  相似文献   

4.
Heat shock gene expression and function during zebrafish embryogenesis   总被引:3,自引:0,他引:3  
Recent work in the zebrafish, Danio rerio, indicates that heat shock genes are expressed in unique spatial patterns under non-stress conditions. In particular, hsp90alpha is expressed during the normal differentiation of striated muscle fibres, and hsp70-4 is expressed during normal lens development in the eye. Furthermore, disruption of the activity of either of these genes or their protein products gives rise to unique embryonic phenotypes that result from failures in proper somitic muscle development and lens development, respectively. Embryonic hsp70-4 expression is also activated in a cell-specific manner following heavy metal exposure. This has allowed for the development of a hsp70-4/eGFP reporter gene system in stable transgenic zebrafish that serves as a reliable yet extremely quick indicator of cell-specific toxicity in the context of the multicellular, living embryo.  相似文献   

5.
Developmental regulation of Tbx5 in zebrafish embryogenesis   总被引:1,自引:0,他引:1  
  相似文献   

6.
Two fibroblast growth factor (FGF) receptor substrates (FRS2 and FRS3) are involved in downstream signaling from activated FGF receptors and neurotrophin-activated Trk receptors. Despite the importance of signaling from these factors in embryogenesis, FRS2 and FRS3 expression patterns during development are unknown. In this study we characterize the expression of FRS2 and FRS3 from E7 to parturition and in adult murine tissues. Both are first detected in whole E8.5 CD1 mouse embryos. FRS2 is detected as early as E7 in the developing syncytiotrophoblast, later in the neural tube (NT) and in many adult and fetal tissues. FRS3 is more restricted in location than FRS2 (fetal NT, heart, stomach, liver and some adult tissues), and is expressed predominantly in the ventricular layer of the developing NT and brains of murine embryos.  相似文献   

7.
T-box genes are conserved in all animal species. We have identified two members of the T-box gene family from the zebrafish, Danio rerio. Zf-tbr1 and zf-tbx3 share high amino acid identity with human, murine, chick and Xenopus orthologs and are expressed in specific regions during zebrafish development.  相似文献   

8.
9.
BTG/tob family proteins are thought to be a potential tumor suppressor due to their anti-proliferative activity. We cloned zebrafish btg-b, a member of the BTG1/2 subfamily, using in situ hybridization screening. The tissue-specific expression of btg-b is first observed in the organizer region at the early gastrula stage. Later in development, the forebrain, the hindbrain, the polster and the paraxial mesoderm transiently express btg-b. Recently, mouse Btg1 and Btg2 have been shown to be a cofactor for Hoxb9. Double in situ hybridization with zebrafish btg-b and hoxb9a indicates that the expression domains of these two genes overlap in the posterior paraxial mesoderm.  相似文献   

10.
11.
Li D  Sun H  Deng W  Tao D  Liu Y  Ma Y 《Zoological science》2011,28(6):397-402
Bone morphogenetic protein (Bmp) signaling plays a pivotal role in dorsal-ventral (DV) patterning in vertebrate embryos. Piwi proteins are required for germline and stem cell development. Our previous study demonstrated that Zili, zebrafish Piwil2, inhibits transforming growth factor (TGF)-βsignaling by interacting with Smad4, suggesting a role for zili in Bmp signaling. In the present study, zili-MO or zili mRNA was microinjected into one-cell embryos to knock down or elevate the expression of zili to study the role of zili during early zebrafish embryogenesis. Knockdown of zili inhibited the expression of dorsal marker genes, and enhanced that of ventral marker genes. In contrast, overexpression of zili promoted expression of dorsal marker genes, while it inhibited ventral marker genes. These results suggest that zili regulates DV patterning. The influence of zili on the Bmp pathway was further explored. Knockdown of zili resulted in higher expression levels of bmp2b, and bmp4, the Bmp signaling ligands, and reduced expression of chordin (chd), noggin (nog1), and follistatin (fst), which encode BMP antagonists. Meanwhile, overexpression of zili produced opposite effects. In conclusion, our results indicate that zili regulates dorsal-ventral patterning by antagonizing Bmp signaling during early embryogenesis in zebrafish.  相似文献   

12.
Development of an animal embryo involves the coordination of cell divisions, a variety of inductive interactions and extensive cellular rearrangements. One of the biggest challenges in developmental biology is to explain the relationships between these processes and the mechanisms that regulate them. Teleost embryos provide an ideal subject for the study of these issues. Their optical lucidity combined with modern techniques for the marking and observation of individual living cells allow high resolution investigations of specific morphogenetic movements and the construction of detailed fate maps. In this review we describe the patterns of cell divisions, cellular movements and other morphogenetic events during zebrafish early development and discuss how these events relate to the formation of restricted lineages.  相似文献   

13.
Sox B1 group genes, Sox1, Sox2, and Sox3 (Sox1-3), are involved in neurogenesis in various species. Here, we identified the Xenopus homolog of Sox1, and investigated its expression patterns and neural inducing activity. Sox1 was initially expressed in the anterior neural plate of Xenopus embryos, with expression restricted to the brain and optic vesicle by the tailbud stage. Expression subsequently decreased in the eye region by the tadpole stage. Sox1 expression in animal cap explants was induced by inhibition of BMP signaling in the same manner as Sox2, Sox3, and SoxD. In addition, overexpression of Sox1 induced neural markers in ventral ectoderm and in animal caps. These results implicate Xenopus Sox1 in neurogenesis, especially brain and eye development.  相似文献   

14.
We used a green fluorescent kidney line, Tg(wt1b:GFP), as a model to access the acetaminophen (AAP)-induced nephrotoxicity dynamically. Zebrafish (Danio rerio) embryos at different developmental stages (12–60 hpf) were treated with different dosages of AAP (0–45 mM) for different time courses (12–60 h). Results showed that zebrafish embryos exhibited no evident differences in survival rates and morphological changes between the mock-treated control (0 mM) and 2.25 mM AAP-exposure (12–72 hpf) groups. In contrast, after higher doses (22.5 and 45 mM) of exposure, embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tube, pronephric duct, and a cystic and atrophic glomerulus. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AAP increased. Interestingly, under the same exposure time course (12 h) and dose (22.5 mM), embryos displayed higher percentages of severe defects at earlier developmental stage of exposure (12–24 hpf), whereas embryos displayed higher percentages of mild defects at later exposure (60–72 hpf). With an exposure time course less than 24 h of 45 mM AAP, no embryo survived by the developmental stage of 72 hpf. These results indicated that AAP-induced nephrotoxicity depended on the exposure dose, time course and developmental stages. Immunohistochemical experiments showed that the cells' morphologies of the pronephric tube, pronephric duct and glomerulus were disrupted by AAP, and consequently caused cell death. Real-time RT-PCR revealed embryos after AAP treatment decreased the expression of cox2 and bcl2, but increased p53 expression. In conclusion, AAP-induced defects on glomerulus, pronephric tube and pronephric duct could be easily and dynamically observed in vivo during kidney development in this present model.  相似文献   

15.
Zebrafish cops6 encodes a putative deubiquitylating enzyme (DUB) that belongs to the JAMM family. It consists of 297 amino acids and includes the Mov34/MPN/PAD-1 (PF01398) domain. Ubiquitylation is involved in many cellular processes and deconjugation of ubiquitin-modified substrates is important to maintain a sufficient amount of free ubiquitin in the cell. Here, we report our findings regarding the general function of the cops6 gene, as a continuation of our previous studies involving DUB knockdown screening. We have found that cops6 plays different roles in early embryonic development in the zebrafish, including dorsoventral patterning, convergent extension movement and brain formation. In addition, our findings indicate that cops6 plays an anti-apoptotic role during segmentation. Overall, the present study that consolidates our previous work on zebrafish DUB genes, corroborates the hypothesis of multi-functional roles for DUB genes during development.  相似文献   

16.
17.
Fibroblast growth factor binding protein 1 (FGFBP1) is expressed in various tumors and may serve as a diagnostic marker and/or a therapeutic target. Previous studies suggested FGFBP1 functions as an angiogenic switch molecule by regulating the activity of FGF2, and it was later found to associate with a broad spectrum of FGFs. To study FGFBP1, we used zebrafish, in which the function of extracellular matrix protein can be easily studied in intact tissues or organisms. When Fgfbp1 expression was knocked down, morphants manifested massive cell death and structural abnormalities. Cell death was most prominent in the brain and the neural tube, but not limited to those regions. These findings suggest that the primary function of Fgfbp1 may be to sustain cellular survival throughout embryogenesis. For comparison, the expression of fgf2 was limited to the early stage of embryogenesis and fgf2 morphants showed more severe phenotype, with high morbidity before reaching 14-somites. Taken together, our work reveals the physiologic function of Fgfbp1, and that its function could be exerted in a Fgf2-independent manner.  相似文献   

18.
19.
We have carried out a large-scale, semi-automated whole-mount in situ hybridization screen of 8369 cDNA clones in Xenopus laevis embryos. We confirm that differential gene expression is prevalent during embryogenesis since 24% of the clones are expressed non-ubiquitously and 8% are organ or cell type specific marker genes. Sequence analysis and clustering yielded 723 unique genes displaying a differential expression pattern. Of these, 18% were already described in Xenopus, 47% have homologs and 35% are lacking significant sequence similarity in databases. Many of them encode known developmental regulators. We classified 363 of the 723 genes for which a Gene Ontology annotation for molecular function could be attributed and found 'DNA binding' and 'enzyme' the most represented terms. The most common protein domains encoded in these embryonic, differentially expressed genes are the homeobox and RNA Recognition Motif (RRM). Fifty-nine putative orthologs of human disease genes, and 254 organ or cell specific marker genes were identified. Markers were found for nasal placode and archenteron roof, organs for which a specific marker was previously unavailable. Markers were also found for novel subdomains of various other organs. The tissues for which most markers were found are muscle and epidermis. Expression of cell cycle regulators fell in two classes, containing proliferation-promoting and anti-proliferative genes, respectively. We identified 66 new members of the BMP4, chromatin, endoplasmic reticulum, and karyopherin synexpression groups, thus providing a first glimpse of their probable cellular roles. Cluster analysis of tissues to measure tissue relatedness yielded some unorthodox affinities besides expectable lineage relationships. In conclusion, this study represents an atlas of gene expression patterns, which reveals embryonic regionalization, provides novel marker genes, and makes predictions about the functional role of unknown genes.  相似文献   

20.
The initiation and maintenance of G1 cell cycle arrest is a key feature of animal development. In the Drosophila ectoderm, G1 arrest first appears during the seventeenth embryonic cell cycle. The initiation of G1(17) arrest requires the developmentally-induced expression of Dacapo, a p27-like Cyclin E-Cdk2 inhibitor. The maintenance of G1(17) arrest requires Rbf1-dependent repression of E2f1-regulated replication factor genes, which are expressed continuously during cycles 1-16 when S phase immediately follows mitosis. The mechanisms that trigger Rbf1 repressor function and mediate G1(17) maintenance are unknown. Here we show that the initial downregulation of expression of the E2f1-target gene RnrS, which occurs during cycles 15 and 16 prior to entry into G1(17), does not require Rbf1 or p27(Dap). This suggests a mechanism for Rbf1-independent control of E2f1 during early development. We show that E2f1 protein is destroyed in a cell cycle-dependent manner during S phase of cycles 15 and 16. E2f1 is destroyed during early S phase, and requires ongoing DNA replication. E2f1 protein reaccumulates in epidermal cells arrested in G1(17), and in these cells the induction of p27(Dap) activates Rbf1 to repress E2f1-target genes to maintain a stable G1 arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号