首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the functional role of neuronal calcium sensor-1 (Ncs-1) in zebrafish development. We identified two orthologs of the mammalian NCS-1 gene. Full-length cDNAs encoding zebrafish Ncs-1a and Ncs-1b polypeptides were cloned and characterized. Whole-mount in situ hybridization revealed that ncs-1a mRNA was expressed beginning at early somitogenesis. As development progressed, ncs-1a mRNA was present throughout the embryo with expression detected in ventral hematopoietic mesoderm, pronephric tubules, CNS nuclei, and otic vesicle. By 4.5 days post fertilization (dpf), ncs-1a expression was detected primarily in the brain. Expression of ncs-1b mRNA was first detected at 36 hours post fertilization (hpf) and was restricted to the olfactory bulb. By 4.5 dpf, ncs-1b was expressed at low levels throughout the brain. Knockdown of ncs-1a mRNA translation with antisense morpholinos blocked formation of semicircular canals. These studies identify a novel function for ncs-1a in inner ear development and suggest that this calcium sensor plays an important role in vestibular function.  相似文献   

2.
3.
4.
Emx1 and Emx2 genes are known to be involved in mammalian forebrain development. In order to investigate the evolution of the Emx gene family in vertebrates, a phylogenetic analysis was carried out on the Emx genes sequenced in man, mice, frogs, coelacanths and zebrafish. The results demonstrated the existence of two clades (Emx1 and Emx2), each grouping one of the two genes of the investigated taxa. The only exception was the zebrafish Emx1-like gene which turned out to be a sister group to both the Emx1 and Emx2 clusters. Such striking sequence divergence observed for the zebrafish Emx1-like gene could indicate that it is not orthologous to the other Emx1 genes, and therefore, in vertebrates there must be three Emx genes. Alternatively, if the zebrafish emx1 gene is orthologous to the tetrapod one, it must have undergone to strong diversifying selection.  相似文献   

5.
We have analyzed the functional role of neuronal calcium sensor‐1 (Ncs‐1) in zebrafish development. We identified two orthologs of the mammalian NCS‐1 gene. Full‐length cDNAs encoding zebrafish Ncs‐1a and Ncs‐1b polypeptides were cloned and characterized. Whole‐mount in situ hybridization revealed that ncs‐1a mRNA was expressed beginning at early somitogenesis. As development progressed, ncs‐1a mRNA was present throughout the embryo with expression detected in ventral hematopoietic mesoderm, pronephric tubules, CNS nuclei, and otic vesicle. By 4.5 days post fertilization (dpf), ncs‐1a expression was detected primarily in the brain. Expression of ncs‐1b mRNA was first detected at 36 hours post fertilization (hpf) and was restricted to the olfactory bulb. By 4.5 dpf, ncs‐1b was expressed at low levels throughout the brain. Knockdown of ncs‐1a mRNA translation with antisense morpholinos blocked formation of semicircular canals. These studies identify a novel function for ncs‐1a in inner ear development and suggest that this calcium sensor plays an important role in vestibular function. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

6.
Egr1 is a highly conserved zinc finger protein which plays important roles in many aspects of vertebrate development and in the adult. The cDNA coding for zebrafish Egr1 was obtained and its expression pattern was examined during zebrafish embryogenesis using whole-mount in situ hybridization. Egr1 mRNA is first detected in adaxial cells in the presomitic mesoderm between 11 and 20 h post-fertilization (hpf), spanning the 4-24 somite stages. Later, Egr1 expression is observed only in specific brain areas, starting at 21 hpf and subsequently increasing in distinct domains of the central nervous system, e.g. in the telencephalon, diencephalon and hypothalamus. Between 24 and 48 hpf, Egr1 is expressed in specific domains of the hypothalamus, mesencephalon, tegmentum, pharynx, retina, otic vesicle and heart.  相似文献   

7.
为了更好地了解脊椎动物肾脏的早期发育,本研究利用斑马鱼这一研究脊椎动物器官发育的理想模式生物,通过构建肾脏特异性pax2a荧光标记转基因品系以实现实时在体地观察斑马鱼前肾的发育过程。我们分析了斑马鱼pax2a基因的启动子,扩增出其翻译起始位点上游3.1 kb的基因组DNA,利用Tol2转座子系统,经胚胎显微注射及三代筛选,成功构建了一个稳定的pax2a(-3.1 kb):eGFP转基因鱼品系。此转基因品系的绿色荧光蛋白在3体节时期就可以标记出中间中胚层,并在后续体节时期的中间中胚层前端(第3体节至第5体节对应的部分),及24 hpf的肾管前端和中段表达,基本模拟了pax2a在斑马鱼早期前肾发育中的时空表达模式。本研究所获得的pax2a(-3.1 kb):eGFP弥补了已有pax2a转基因品系中报告基因无法准确标记出中间中胚层和前肾管前端的缺陷,是研究斑马鱼前肾早期发育的良好材料。  相似文献   

8.
A gene expressed in the choroidal fissure of the zebrafish eye was isolated. This gene, designated #61, contained significant homology with the previously reported actin-binding protein smoothelin. During zebrafish embryogenesis, #61 expression was first detected in the lateral mesoderm of the mid-trunk region, and then strong expression was observed in the choroid fissure of the eye and in a part of the brain at 30 hpf. Abrogation of #61 activity by an antisense morpholino oligonucleotide resulted in the failure of closure of the choroid fissure at 30 hpf. In addition, hemorrhage was observed at the caudal side of the eye. Detailed analysis indicated that leakage of blood may have arisen from the hyaloid vessels and the primordial midbrain channels. On the other hand, retinal differentiation and optic nerve formation seemed normal. Taken together, our data suggest that gene #61 may play a role in the formation of hyaloid vessels and subsequent choroid fissure closure.  相似文献   

9.
We performed functional analyses of cadherin-6 (cdh6) in zebrafish nephrogenesis using antisense morpholino oligonucleotide (MO) inhibition combined with in situ hybridization. We have cloned a zebrafish homolog (accession number AB193290) of human K-cadherin (CDH6), which showed 6063% identity and 7678% similarity to the human, mouse, chicken and Xenopus homologs. Whole-mount in situ hybridization showed that cdh6 is expressed in the pronephric ducts and nephron primordia in addition to the central and peripheral nervous systems. Expression of cdh6 in the pronephric ducts was first detected at 14 hours post-fertilization (hpf) and increased to 24 hpf. Embryos injected with MOs directed against cdh6 (cdh6MOs) showed developmental defects, including a small head, body axis curvature, short yolk extension and a short bent tail by 30 hpf and edema appeared in the thorax by 42 hpf. Such defects and edema became more marked by 52 hpf and most of the affected embryos died by 5 days post-fertilization. Embryos injected with cdh6MOs were subjected to in situ hybridization with probes for the pronephric markers, wt1 and pax2.1, to examine disturbed development of the anterior region of the pronephric ducts and the nephron primordia. Histological studies showed malformation of the pronephros as abnormally fused glomerulus primordia, fused or abnormally bent pronephric tubule anlagen and coarctated pronephric ducts. These results suggest that cdh6 plays pivotal roles in the development of the pronephros in zebrafish embryos.  相似文献   

10.
The monoamine serotonin (5-HT) exerts key neuromodulatory activities in all animal phyla, but the development and function of the serotonergic system is still incompletely understood. The zebrafish Danio rerio is an excellent model to approach this question since it is amenable to a combination of genetic, molecular and embryological studies. In order to characterize the organization of serotonergic neurons in the zebrafish we cloned two cDNAs encoding distinct forms of tryptophan hydroxylase (Tph), the rate-limiting enzyme in serotonin synthesis. We report here the pattern of expression of these two genes in relation with immunoreactive TH and 5-HT nuclei in the developing zebrafish embryo and early larva. tphD1 expression starts at 22 h post-fertilization (hpf) in the epiphysis and in basal spinal cells. Expression persists in the epiphysis until at least 4 days (dpf). Between 48 hpf and 3 dpf, tphD1 expression is initiated in retinal amacrine cells and in restricted preoptic and posterior tubercular nuclei within the basal diencephalon. At 3 and 4 dpf, tphD1 expression is newly initiated in the caudal hypothalamus and in branchial arches-associated neurons. tphD2 mRNA is detected transiently (between 30 somites and 32 hpf) in a restricted preoptic nucleus. All sites of tphD1 or D2 expression within the anterior central nervous system are also immunoreactive for 5-HT, but are not positive for TH. However, neither tphD gene is expressed in raphe nuclei, suggesting that additional tph gene(s) exist in zebrafish to account for 5-HT synthesis in that location. The co-expression of tphD1, tphD2 and 5-HT in the zebrafish diencephalon appears in striking contrast to the situation in mammals, where diencephalic serotonin results from re-uptake rather than from local production.  相似文献   

11.
The monoamine serotonin (5-HT) exerts key neuromodulatory activities in all animal phyla, but the development and function of the serotonergic system is still incompletely understood. The zebrafish Danio rerio is an excellent model to approach this question since it is amenable to a combination of genetic, molecular and embryological studies. In order to characterize the organization of serotonergic neurons in the zebrafish we cloned two cDNAs encoding distinct forms of tryptophan hydroxylase (Tph), the rate-limiting enzyme in serotonin synthesis. We report here the pattern of expression of these two genes in relation with immunoreactive TH and 5-HT nuclei in the developing zebrafish embryo and early larva. tphD1 expression starts at 22 h post-fertilization (hpf) in the epiphysis and in basal spinal cells. Expression persists in the epiphysis until at least 4 days (dpf). Between 48 hpf and 3 dpf, tphD1 expression is initiated in retinal amacrine cells and in restricted preoptic and posterior tubercular nuclei within the basal diencephalon. At 3 and 4 dpf, tphD1 expression is newly initiated in the caudal hypothalamus and in branchial arches-associated neurons. tphD2 mRNA is detected transiently (between 30 somites and 32 hpf) in a restricted preoptic nucleus. All sites of tphD1 or D2 expression within the anterior central nervous system are also immunoreactive for 5-HT, but are not positive for TH. However, neither tphD gene is expressed in raphe nuclei, suggesting that additional tph gene(s) exist in zebrafish to account for 5-HT synthesis in that location. The co-expression of tphD1, tphD2 and 5-HT in the zebrafish diencephalon appears in striking contrast to the situation in mammals, where diencephalic serotonin results from re-uptake rather than from local production.  相似文献   

12.
Membrane tethered matrix metalloproteinases (MMPs) cleave a variety of extracellular matrix (ECM) and non-ECM targets and play important roles during embryonic development and tumor progression. Membrane tethered MMPs in particular are important regulators of both tissue invasion and morphogenesis. Much attention has been given to understanding the function of human and mouse MMP14 (also called membrane type-1 MMP, MT1-MMP) and our own data have linked zebrafish Mmp14 to the regulation of gastrulation cell movements. However, less is known regarding the expression and function of other membrane tethered MMPs. We report the cloning and gene expression analysis of zebrafish mmp15a and mmp15b (MT2-MMP) during early embryonic and larval development. Our data show that mmp15a exhibits limited expression prior to segmentation stages and is first detected in the tectum and posterior tailbud. At 24hours post-fertilization (hpf) mmp15a localizes to the caudal hematopoietic tissue, pectoral fin buds, and mandibular arch. By contrast, mmp15b is strongly expressed during gastrula stages before becoming restricted to the polster and anterior neural plate. From 24 to 48hpf, mmp15b expression is detected in the pharyngeal arches, fin buds, otic vesicle, pronephric ducts, proctodeum, tail epidermis, posterior lateral line primordia, and caudal notochord. During the larval period beginning at 72hpf, mmp15b expression becomes restricted to the brain ventricular zone, pharyngeal arches, pectoral fins, and the proctodeum. Many of the mmp15-expressing tissues have been shown to express genes encoding components of the ECM including collagens, fibronectin, and laminins. Our data thus provide a foundation for uncovering the role of Mmp15-dependent pericellular proteolysis during zebrafish embryonic development.  相似文献   

13.
The embryonic pronephric kidneys of Xenopus and zebrafish serve as models to study vertebrate nephrogenesis. Recently, multiple subdomains within the Xenopus pronephros have been defined based on the expression of several transport proteins. In contrast, very few studies on the expression of renal transporters have been conducted in zebrafish. We have recently shown that the anterior and posterior segments of the zebrafish pronephric duct may correspond to the proximal tubule and distal tubule/duct compartments of the Xenopus and higher vertebrate pronephros, respectively. Here, we report the embryonic expression pattern of the Na(+)/PO(4) cotransporter SLC20A1 (PiT1/Glvr-1) gene encoding a type III sodium-dependent phosphate cotransporter in Xenopus and zebrafish. In Xenopus, SLC20A1 mRNA is expressed in the somitic mesoderm and lower level of expression is detected in the neural tube, eye, and neural crest cells. From stage 25, SLC20A1 is also detectable in the developing pronephros where expression is restricted to the late portion of the distal pronephric tubules. In zebrafish, SLC20A1 is transcribed from mid-somitogenesis in the anterior part of the pronephros where its expression corresponds to the rostral portion of the expression of other proximal tubule-specific markers. Outside the pronephros, lower level of SLC20A1 expression is also observed in the posterior cardinal and caudal veins. Based on the SLC20A1 expression domain and that of other transporters, four segments have been defined within the zebrafish pronephros. Together, our data reveal that the zebrafish and Xenopus pronephros have non-identical proximo-distal organizations.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The insulin-like growth factor (Igf) family is an evolutionarily conserved system essential for normal growth and development in vertebrates. Unlike mammals, four distinct Igf ligands (Igf1, Igf2a, Igf2b and Igf3) and two Igf type 1 receptors (Igf1ra and Igf1rb) are present in zebrafish. However, the localization of these multiple ligands and receptors especially the recently discovered igf3 during early development of zebrafish is poorly understood. In this study, detailed expression patterns of these components of the Igf system during embryogenesis of zebrafish were analyzed. It was found that igf1 is specifically expressed in the trigeminal ganglia region from 18 hpf to 72 hpf, while igf2a is restricted to the caudal regions of the notochord from 14 hpf to 18 hpf as well as in the midbrain, dorsal hind brain and otic vesicle at 24 hpf. On the other hand, igf2a is highly expressed in the midbrain and pharyngeal arch region at 48 hpf, followed by its appearance in the liver and brain at 72 hpf, while igf2b is restricted to the floor plate and hypochord from 12 hpf to 18 hpf, and strong expression is also detected in the midbrain and dorsal hind brain at 24 hpf. The teleost specific igf3 is highly expressed in the pharyngeal arch region before 24 hpf, but is then restricted to the sternohyoideus after 48 hpf. The receptor subtype igf1ra is ubiquitously expressed before 24 hpf but is confined to the brain at 72 hpf. However, igf1rb is widely expressed before 10 hpf, but is more confined to the brain region at 24 hpf and 72 hpf. This dynamic temporal-spatial expression during embryogenesis of zebrafish, together with the unique and overlapping expression patterns of the Igf ligands and receptors suggest the coordination of the divergent functions of the Igf system during early development in zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号