首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We investigated the responses of 3 thrips species, Frankliniella schultzei Trybom, F. occidentalis Pergrande, and Thrips tabaci Lindeman (Thysanoptera: Thripidae) to herbivore‐damaged and undamaged cotton seedlings (Gossypium hirsutum L. [Malvales: Malvaceae]) at a range of time intervals following damage by adult Tetranychus urticae (Koch), adult T. ludeni (Zacher) (Acari: Tetranychidae) or Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae in olfactometer assays. The intensity/frequency of the response of thrips to herbivore‐induced plants decreased with time and ultimately disappeared in all cases; however, the rate at which the response declined was related to the herbivore species that inflicted the damage. All 3 species of thrips were attracted to plants damaged by T. urticae for longer than they were to plants damaged by T. ludeni. The duration for which damaged plants remained attractive was also affected by the degree of damage inflicted on cotton seedlings. For example, F. schultzei was attracted to plants damaged by a higher density of two‐spotted spider mites (100/plant) for much longer than to plants damaged by a lower density of these mites (50/plant). The results reinforce previous studies that demonstrate that arrangement of variables influences the responses of thrips to their herbivore‐induced cotton host plants. Results also show that these responses are variable in time following herbivore damage to cotton plants, which further demonstrates how difficult it is to generalize about the functional significance of these interactions.  相似文献   

3.
Chrysanthemum [Chrysanthemum × morifolium Ramat. (Asteraceae)] is one of the economically most important greenhouse ornamentals worldwide. A major constraint in chrysanthemum production is adequate pest management, requiring the use of different tactics, such as improving host plant resistance, in the framework of an integrated pest management (IPM) approach. In this study, we investigated cross‐resistance of chrysanthemum to its three major pests: western flower thrips [Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)], celery leafminer [Liriomyza trifolii (Burgess) (Diptera: Agromyzidae)], and two‐spotted spider mite [Tetranychus urticae Koch (Acari: Tetranychidae)]. We quantified resistance to each pest by performing greenhouse bioassays with a broad range of chrysanthemum types from commercial germplasm provided by Dutch breeding companies. Considerable variation was detected among the chrysanthemum cultivars in thrips silver damage and growth damage, leafminer damage, measured as number of mines and pupae, and spider mite numbers and damage. We observed significant positive correlations between thrips damage (both silver and growth damage) vs. leafminer numbers (both mines and pupae), and between leafminer numbers (both mines and pupae) vs. spider mite numbers. Our results indicate an overlap in resistance to all three herbivores. The important implications of this result for chrysanthemum breeding are discussed.  相似文献   

4.
The transgenic Bt cotton plant has been widely planted throughout the world for the control of cotton budworm Helicoverpa armigera (Hubner). However, a shift towards insect tolerance of Bt cotton is now apparent. In this study, the gene encoding neuropeptide F (NPF) was cloned from cotton budworm H. armigera, an important agricultural pest. The npf gene produces two splicing mRNA variants—npf1 and npf2 (with a 120‐bp segment inserted into the npf1 sequence). These are predicted to form the mature NPF1 and NPF2 peptides, and they were found to regulate feeding behaviour. Knock down of larval npf with dsNPF in vitro resulted in decreases of food consumption and body weight, and dsNPF also caused a decrease of glycogen and an increase of trehalose. Moreover, we produced transgenic tobacco plants transiently expressing dsNPF and transgenic cotton plants with stably expressed dsNPF. Results showed that H. armigera larvae fed on these transgenic plants or leaves had lower food consumption, body size and body weight compared to controls. These results indicate that NPF is important in the control of feeding of H. armigera and valuable for production of potential transgenic cotton.  相似文献   

5.
Zoophytophagous plant bugs feed on plant tissue as a source of water and nutrients, besides feeding on prey. By phytophagy, mirid predators activate plant defense responses through different pathways, resulting, among others, in the release of herbivore‐induced plant volatiles (HIPVs). These compounds could repel herbivores and attract parasitoids and predators, and synthetic versions could potentially be used in biological control. Nevertheless, little is known about the influence of synthetic volatiles on mirid attraction. Using Y‐tube olfactometer trials, we evaluated the responses of Nesidiocoris tenuis (Reuter), Macrolophus pygmaeus (Rambur), and Dicyphus bolivari Lindberg (Hemiptera: Miridae), important natural enemies used to control various greenhouse pests, to 10 synthetic versions of HIPVs released from tomato (Solanum lycopersicum L., Solanaceae) plants induced by N. tenuis and M. pygmaeus. Nesidiocoris tenuis responded to five of the 10 HIPVs, whereas M. pygmaeus and D. bolivari responded to four of the 10 HIPVs. Two green leaf volatiles, (Z)‐3‐hexenyl propanoate and (Z)‐3‐hexenyl acetate, and the ester methyl salicylate (MeSA) were attractive to all three mirid predator species. Our results demonstrate that the volatiles released by tomato plants activated by N. tenuis and M. pygmaeus phytophagy are attractive to their conspecifics and also to D. bolivari. Further studies should evaluate the potential of these compounds to attract predatory mirids in the field.  相似文献   

6.
7.
Temporal changes in the pre‐ and post‐alighting responses of mated female diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), to two species of Brassica (Brassicaceae) host plants induced by larval feeding were studied using olfactometer and oviposition assays. Females displayed strong olfactory and oviposition preferences for herbivore‐induced common cabbage (Brassica oleracea var. capitata L. cv. sugarloaf) plants over intact plants; these preferences decreased with time and disappeared by the 7th day after induction. In herbivore‐induced common cabbage plants, eggs were clustered near feeding damage on the younger leaves (leaves 5–7), whereas in intact plants, eggs were clustered on the stem and lower leaves (leaves 1–4) . However, as the time interval between larval feeding and oviposition increased, more eggs were laid on the lower leaves of induced plants. This demonstrates a change in egg distribution from the pattern associated with induced plants to that associated with intact plants. In contrast, females displayed strong olfactory and oviposition preferences for intact Chinese cabbage [Brassica rapa ssp. pekinensis (Lour.) Hanelt cv. Wombok] plants over induced plants; these preferences decreased with time and disappeared by the 5th day after induction. More eggs were laid on the upper leaves (leaves 4–6) than on the lower leaves (leaves 1–3) of intact Chinese cabbage plants at first, but the distribution changed over time until there were no significant differences in the egg count between upper and lower leaves by the 4th day post induction. For both host plant species, pre‐alighting responses of moths were reliable indicators of post‐alighting responses on the first 2 days post induction. The results suggest that temporal changes in a plant's profile (chemical or otherwise) following herbivory may influence attractiveness to an insect herbivore and be accompanied by changes in olfactory and oviposition preferences.  相似文献   

8.
To verify current thresholds for Bollgard II® cotton in Australia, the impact of Helicoverpa spp. (Lepidoptera: Noctuidae) larvae on yield, development, and quality under various infestation intensities and durations, and stages of growth, was tested using small plot field experiments over two seasons. Infestation with up to 80 eggs m?1 of Helicoverpa armigera (Hübner) and Helicoverpa punctigera Wallengren showed that species, infestation level, and stage of growth had no significant effect on yields of seed‐cotton or lint and on maturity and fibre quality. The duration of infestation of white flowers with H. punctigera neonates (maximum of every day for up to 4 weeks) had no impact on the yield of seed‐cotton or lint, maturity, and fibre quality, but when 100% of flowers were infested (compared with 0 or 50%), seed‐cotton and lint yields were significantly reduced and maturity was delayed. Infestation with up to 18 medium H. armigera larvae m?1 at several plant stages did not significantly affect yields of seed‐cotton and lint, maturity, and fibre quality. A heliocide spray applied on a commercial farm at the current threshold resulted in a significantly higher lint yield, compared with a farm where no spray was applied. In conclusion, Bollgard II® cotton is highly resistant to Helicoverpa spp. infestation.  相似文献   

9.
In eukaryotes, MAPK scaffold proteins are crucial for regulating the function of MAPK cascades. However, only a few MAPK scaffold proteins have been reported in plants, and the molecular mechanism through which scaffold proteins regulate the function of the MAPK cascade remains poorly understood. Here, we identified GhMORG1, a GhMKK6‐GhMPK4 cascade scaffold protein that positively regulates the resistance of cotton to Fusarium oxysporum. GhMORG1 interacted with GhMKK6 and GhMPK4, and the overexpression of GhMORG1 in cotton protoplasts dramatically increased the activity of the GhMKK6‐GhMPK4 cascade. Quantitative phosphoproteomics was used to clarify the mechanism of GhMORG1 in regulating disease resistance, and thirty‐two proteins were considered as the putative substrates of the GhMORG1‐dependent GhMKK6‐GhMPK4 cascade. These putative substrates were involved in multiple disease resistance processes, such as cellular amino acid metabolic processes, calcium ion binding and RNA binding. The kinase assays verified that most of the putative substrates were phosphorylated by the GhMKK6‐GhMPK4 cascade. For functional analysis, nine putative substrates were silenced in cotton, respectively. The resistance of cotton to F. oxysporum was decreased in the substrate‐silenced cottons. These results suggest that GhMORG1 regulates several different disease resistance processes by facilitating the phosphorylation of GhMKK6‐GhMPK4 cascade substrates. Taken together, these findings reveal a new plant MAPK scaffold protein and provide insights into the mechanism of plant resistance to pathogens.  相似文献   

10.
We tested, in an olfactometer, whether or not Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) responds preferentially to the volatiles that emanate from the fungi associated with cotton [Gossypium hirsutum L. (Malvaceae)] seed over those that emanate from cereals, because cereals are usually portrayed as the primary resources of these beetles. Pairwise comparisons were conducted between cotton seed, wheat (Triticum aestivum L.), and sorghum [Sorghum bicolor (L.) Moench] (both Poaceae); volatiles were tested from intact seeds and from both water and ethanol extracts. The results demonstrate that T. castaneum is attracted more strongly to cotton seeds with its lint contaminated with fungi, than to the conventional resources of this species (i.e., wheat and sorghum). Further tests prove that it is the fungus on the lint that produces the active volatiles, because the beetles did not respond to sterilized cotton lint (i.e., without the fungi typically associated with it when cotton seed is stored). Tests with five fungal cultures (each representing an unidentified species that was isolated from the field‐collected cotton lint) were variable across the cultures, with only one of them being significantly attractive to the beetles. The others were not attractive and one may even have repulsed the beetles. The results are consistent with the beetles having a strong ecological association with fungi and suggest it would be worth investigating the ecology of T. castaneum from this perspective.  相似文献   

11.
12.
Larvae of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) that survive on genetically modified Bt cotton (Gossypium hirsutum L., Malvaceae) contribute to the risk of widespread resistance to Bt toxins. Current resistance management techniques include pupae busting, which involves deep tilling of the soil to kill overwintering pupae. Unfortunately, pupae busting runs counter to soil and water conserving techniques, such as minimum tillage. This problem could be relieved with biological control methods, whereby predators attack either larvae going to ground to pupate or moths emerging from the ground. We found that the wolf spider Tasmanicosa leuckartii (Thorell) (Araneae: Lycosidae), a common inhabitant of Australian cotton agroecosystems, is an effective predator of H. armigera, attacking and killing most larvae (66%) and emerging moths (77%) in simple laboratory arenas. Tasmanicosa leuckartii also reduced the number of emerging moths by 66% on average in more structurally complex glasshouse arenas. Males, females, and late‐instar juveniles of T. leuckartii were similarly effective. Tasmanicosa leuckartii also imposed non‐consumptive effects on H. armigera, as when a spider was present larvae in the laboratory areas spent less time on the cotton boll and more time on the soil and more mass was lost from the cotton boll. Increased loss of boll mass likely reflects changes in H. armigera foraging behavior induced by the presence of spiders (indirect non‐consumptive effects). Helicoverpa armigera spent more time as pupae when the spider was present in simple laboratory arenas, but not in more complex glasshouse enclosures. Overall, results indicate that T. leuckartii spiders can be effective predators of H. armigera late instars and moths but also suggest that, under some conditions, the presence of spiders could increase the damage to individual cotton bolls.  相似文献   

13.
The entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin is known to produce a broad range of secondary metabolites. Beauvericin, a cyclic hexadepsipeptide, is the best known mycotoxin produced by B. bassiana; however, reports discussing the insecticidal activity of beauvericin per se are limited. In this study, we assessed the lethal activity of beauvericin against Tetranychus urticae Koch (Acarina: Tetranychidae). In addition, screening for suitable application of the mycotoxin against T. urticae on greenhouse strawberries is discussed. Beauvericin was able to control successfully T. urticae where concentrations of 10, 100 and 1,000 µg/g recorded mortalities of 84%, 100% and 100%, respectively, against motile stages. Furthermore, beauvericin inhibited egg hatching up to 83.3%, 69.3% and 53.3%, respectively, using the same concentrations under laboratory conditions. Under greenhouse conditions, the efficacy recorded was 52.6%, 85.7%, 72.4% and 72.4% at 1, 3, 7 and 10 days post‐inoculation, respectively. Beauvericin was efficacious under greenhouse conditions since the application increased strawberry yields while showing no phytotoxicity and ecotoxicological risk. Resistance to beauvericin was not detected initially at the unselected strain of T. urticae. Yet, the laboratory selection of populations of T. urticae exposed to beauvericin resulted in relatively resistant T. urticae strain that displayed no cross‐resistance to cyflumetofen and bifenazate. The acaricidal activity of beauvericin documented in this study would increase the efficacy of integrated pest management strategies.  相似文献   

14.
Arthropod herbivory induces plant volatiles that can be used by natural enemies of the herbivores to find their prey. This has been studied mainly for arthropods that prey upon or parasitise herbivorous arthropods but rarely for insectivorous birds, one of the main groups of predators of herbivorous insects such as lepidopteran larvae. Here, we show that great tits (Parus major) discriminate between caterpillar‐infested and uninfested trees. Birds were attracted to infested trees, even when they could not see the larvae or their feeding damage. We furthermore show that infested and uninfested trees differ in volatile emissions and visual characteristics. Finally, we show, for the first time, that birds smell which tree is infested with their prey based on differences in volatile profiles emitted by infested and uninfested trees. Volatiles emitted by plants in response to herbivory by lepidopteran larvae thus not only attract predatory insects but also vertebrate predators.  相似文献   

15.
The gram pod borer, Helicoverpa armigera, is one of the most important constraints to chickpea production. High acidity of chickpea exudates is associated with resistance to pod borer, H. armigera; however, acidic exudates in chickpea might influence the biological activity of the bacterium, Bacillus thuringiensis (Bt), applied as a foliar spray or deployed in transgenic plants for controlling H. armigera. Therefore, studies were undertaken to evaluate the biological activity of Bt towards H. armigera on chickpea genotypes with different amounts of organic acids. Significantly lower leaf feeding, larval survival and larval weights were observed on ICC 506EB, followed by C 235, and ICCV 10 across Bt concentrations. Leaf feeding by the larvae and larval survival and weights decreased with an increase in Bt concentration. However, rate of decrease in leaf feeding and larval survival and weights with an increase in Bt concentration was greater on L 550 and ICCV 10 than on the resistant check, ICC 506EB, suggesting that factors in the resistant genotypes, particularly the acid exudates, resulted in lower levels of biological activity of Bt possibly because of antifeedant effects of the acid exudates. Antifeedant effects of acid exudates reduced food consumption and hence might reduce the efficacy of Bt sprays on insect‐resistant chickpea genotypes or Bt‐transgenic chickpeas, although the combined effect of plant resistance based on organic acids, and Bt had a greater effect on survival and development of H. armigera than Bt alone.  相似文献   

16.
17.
The boll weevil, Anthonomus grandisBoheman (Coleoptera: Curculionidae), is a key pest of cotton, Gossypium hirsutumL. (Malvaceae). Knowledge about boll weevil feeding and oviposition behavior and its response to plant volatiles can underpin our understanding of host plant resistance, and contribute to improved monitoring and mass capture of this pest. Boll weevil oviposition preference and immature development in four cotton genotypes (CNPA TB90, TB85, TB15, and BRS Rubi) were investigated in the laboratory and greenhouse. Volatile organic compounds (VOCs) produced by TB90 and Rubi genotypes were obtained from herbivore‐damaged and undamaged control plants at two phenological stages – vegetative (prior to squaring) and reproductive (during squaring) – and four collection times – 24, 48, 72, and 96 h following herbivore damage. The boll weevil exhibited similar feeding and oviposition behavior across the four tested cotton genotypes. The chemical profiles of herbivore‐damaged plants of both genotypes across the two phenological stages were qualitatively similar, but differed in the amount of volatiles produced. Boll weevil response to VOC extracts was studied using a Y‐tube olfactometer. The boll weevil exhibited similar feeding and oviposition behavior at the four tested cotton genotypes, although delayed development and production of smaller adults was found when fed TB85. The chemical profile of herbivore‐damaged plants of both genotypes at the two phenological stages and time periods (24–96 h) was similar qualitatively, with 30 identified compounds, but differed in the amount of volatiles produced. Additionally, boll weevil olfactory response was positive to herbivory‐induced volatiles. The results help to understand the interaction between A. grandis and cotton plants, and why it is difficult to obtain cotton genotypes possessing constitutive resistance to this pest.  相似文献   

18.
Parasitoids use herbivore‐induced plant volatiles (HIPVs) to locate their hosts. However, there are few studies in soybean showing the mechanisms involved in the attraction of natural enemies to their hosts and prey. The objective of this study was to evaluate the influence of volatile organic compounds (VOCs) of soybean, Glycine max (L.) Merr. (Fabaceae) (cv. Dowling), that were induced after injury caused by Euschistus heros (Fabricius) (Hemiptera: Pentatomidae), on the searching behavior of the egg parasitoid Telenomus podisi Ashmead (Hymenoptera: Scelionidae). Four HIPVs from soybean, (E,E)‐α‐farnesene, methyl salicylate, (Z)‐3‐hexenyl acetate, and (E)‐2‐octen‐1‐ol, were selected, prepared from standards at various concentrations (10?6 to 10?1 m ), and tested individually and in combinations using a two‐choice olfactometer (type Y). Telenomus podisi displayed a preference only for (E,E)‐α‐farnesene at 10?5 m when tested individually and compared to hexane, but they did not respond to the other compounds tested individually at any concentration or when combinations of these compounds were tested. However, the parasitoids stayed longer in the olfactometer arm with the mixture of (E,E)‐α‐farnesene + methyl salicylate at 10?5 m than in the arm containing hexane. The results suggest that (E,E)‐α‐farnesene and methyl salicylate might help T. podisi to determine the presence of stink bugs on a plant. In addition, bioassays were conducted to compare (E,E)‐α‐farnesene vs. the volatiles emitted by undamaged and E. heros‐damaged plants, to evaluate whether (E,E)‐α‐farnesene was the main cue used by T. podisi or whether other minor compounds from the plants and/or the background might also be used to locate its host. The results suggest that minor volatile compounds from soybean plants or from its surroundings are involved in the host‐searching behavior of T. podisi.  相似文献   

19.
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro‐economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13‐LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10‐derived signaling is required for LOX8‐mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound‐induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore‐induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV‐, JA‐ and HIPV‐deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10‐dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro‐ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.  相似文献   

20.
The endosymbiotic bacterium Wolbachia pipientis infects a wide range of arthropods and induces a variety of reproductive anomalies, including cytoplasmic incompatibility (CI). Three populations of the two‐spotted spider mite, Tetranychus urticae, were investigated in the present study. Based on gene sequencing, they had different host genetic backgrounds but were infected with the same Wolbachia strain. We also examined the CI level relative to host background, male age, Wolbachia density, and Ankyrin (ANK) gene expression in T. urticae. The results of the present study suggest that: (1) CI differences between populations appear to be a result of host genetic background; (2) male age is not a factor determining intensity of CI; (3) Wolbachia density in males may serve as threshold factor necessary for the CI to occur in T. urticae, after which other factors become important in determining the strength of CI; and (4) hosts may modulate CI intensity through modulation of ANK gene expression in males. Our results describe a new type of interaction between Wolbachia and its hosts, and the effect of the interactions on CI. Further investigations on the functions of Wolbachia ankyrin gene products and their host targets, particularly with respect to host reproductive manipulation, are also imperative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号