首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The apicomplexan parasite Plasmodium falciparum causes the most severe form of malaria in humans. After invasion into erythrocytes, asexual parasite stages drastically alter their host cell and export remodeling and virulence proteins. Previously, we have reported identification and functional analysis of a short motif necessary for export of proteins out of the parasite and into the red blood cell.  相似文献   

2.
Plasmodium falciparum virulence is linked to its ability to sequester in post‐capillary venules in the human host. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is the main variant surface antigen implicated in this process. Complete loss of parasite adhesion is linked to a large subtelomeric deletion on chromosome 9 in a number of laboratory strains such as D10 and T9‐96. Similar to the cytoadherent reference line FCR3, D10 strain expresses PfEMP1 on the surface of parasitized erythrocytes, however without any detectable cytoadhesion. To investigate which of the deleted subtelomeric genes may be implicated in parasite adhesion, we selected 12 genes for D10 complementation studies that are predicted to code for proteins exported to the red blood cell. We identified a novel single copy gene (PF3D7_0936500) restricted to P. falciparum that restores adhesion to CD36, termed here virulence‐associated protein 1 (Pfvap1). Protein knockdown and gene knockout experiments confirmed a role of PfVAP1 in the adhesion process in FCR3 parasites. PfVAP1 is co‐exported with PfEMP1 into the host cell via vesicle‐like structures called Maurer's clefts. This study identifies a novel highly conserved parasite molecule that contributes to parasite virulence possibly by assisting PfEMP1 to establish functional adhesion at the host cell surface.  相似文献   

3.
Malaria parasites survive through repairing a plethora of DNA double‐stranded breaks (DSBs) experienced during their asexual growth. In Plasmodium Rad51 mediated homologous recombination (HR) mechanism and homology‐independent alternative end‐joining mechanism have been identified. Here we address whether loss of HR activity can be compensated by other DSB repair mechanisms. Creating a transgenic Plasmodium line defective in HR function, we demonstrate that HR is the most important DSB repair pathway in malarial parasite. Using mouse malaria model we have characterized the dominant negative effect of PfRad51K143R mutant on Plasmodium DSB repair and host–parasite interaction. Our work illustrates that Plasmodium berghei harbouring the mutant protein (PfRad51K143R) failed to repair DSBs as evidenced by hypersensitivity to DNA‐damaging agent. Mice infected with mutant parasites lived significantly longer with markedly reduced parasite burden. To better understand the effect of mutant PfRad51K143R on HR, we used yeast as a surrogate model and established that the presence of PfRad51K143R completely inhibited DNA repair, gene conversion and gene targeting. Biochemical experiment confirmed that very low level of mutant protein was sufficient for complete disruption of wild‐type PfRad51 activity. Hence our work provides evidence that HR pathway of Plasmodium could be efficiently targeted to curb malaria.  相似文献   

4.
The pathogenicity of Plasmodium falciparum is partly due to parasite‐induced host cell modifications. These modifications are facilitated by exported P. falciparum proteins, collectively referred to as the exportome. Export of several hundred proteins is mediated by the PEXEL/HT, a protease cleavage site. The PEXEL/HT is usually comprised of five amino acids, of which R at position 1, L at position 3 and E, D or Q at position 5 are conserved and important for export. Non‐canonical PEXEL/HTs with K or H at position 1 and/or I at position 3 are presently considered non‐functional. Here, we show that non‐canonical PEXEL/HT proteins are overrepresented in P. falciparum and other Plasmodium species. Furthermore, we show that non‐canonical PEXEL/HTs can be cleaved and can promote export in both a REX3 and a GBP reporter, but not in a KAHRP reporter, indicating that non‐canonical PEXEL/HTs are functional in concert with a supportive sequence environment. We then selected P. falciparum proteins with a non‐canonical PEXEL/HT and show that some of these proteins are exported and that their export depends on non‐canonical PEXEL/HTs. We conclude that PEXEL/HT plasticity is higher than appreciated and that non‐canonical PEXEL/HT proteins cannot categorically be excluded from Plasmodium exportome predictions.  相似文献   

5.
Plasmodium sporozoites are transmitted by Anopheles mosquitoes and first infect the liver of their mammalian host, where they develop as liver stages before the onset of erythrocytic infection and malaria symptoms. Sporozoite entry into hepatocytes is an attractive target for anti‐malarial prophylactic strategies but remains poorly understood at the molecular level. Apicomplexan parasites invade host cells by forming a parasitophorous vacuole that is essential for parasite development, a process that involves secretion of apical organelles called rhoptries. We previously reported that the host membrane protein CD81 is required for infection by Plasmodium falciparum and Plasmodium yoelii sporozoites. CD81 acts at an early stage of infection, possibly at the entry step, but the mechanisms involved are still unknown. To investigate the role of CD81 during sporozoite entry, we generated transgenic P. yoelii parasites expressing fluorescent versions of three known rhoptry proteins, RON2, RON4 and RAP2/3. We observed that RON2 and RON4 are lost following rhoptry discharge during merozoite and sporozoite entry. In contrast, our data indicate that RAP2/3 is secreted into the parasitophorous vacuole during infection. We further show that sporozoite rhoptry discharge occurs only in the presence of CD81, providing the first direct evidence for a role of CD81 during sporozoite productive invasion.  相似文献   

6.
The bud emergence (BEM)46 proteins are evolutionarily conserved members of the α/β‐hydrolase superfamily, which includes enzymes with diverse functions and a wide range of substrates. Here, we identified a Plasmodium BEM46‐like protein (PBLP) and characterized it throughout the life cycle of the rodent malaria parasite Plasmodium yoelii. The Plasmodium BEM46‐like protein is shown to be closely associated with the parasite plasma membrane of asexual erythrocytic stage schizonts and exo‐erythrocytic schizonts; however, PBLP localizes to unique intracellular structures in sporozoites. Generation and analysis of P. yoelii knockout (Δpblp) parasite lines showed that PBLP has an important role in erythrocytic stage merozoite development with Δpblp parasites forming fewer merozoites during schizogony, which results in decreased parasitemia when compared with wild‐type (WT) parasites. Δpblp parasites showed no defects in gametogenesis or transmission to mosquitoes; however, because they formed fewer oocysts there was a reduction in the number of developed sporozoites in infected mosquitoes when compared with WT. Although Δpblp sporozoites showed no apparent defect in mosquito salivary gland infection, they showed decreased infectivity in hepatocytes in vitro. Similarly, mice infected with Δpblp sporozoites exhibited a delay in the onset of blood‐stage patency, which is likely caused by reduced sporozoite infectivity and a discernible delay in exo‐erythrocytic merozoite formation. These data are consistent with the model that PBLP has an important role in parasite invasive‐stage morphogenesis throughout the parasite life cycle.  相似文献   

7.
8.
In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains instead obscure how sequestration is established, and how the earliest sexual stages, morphologically similar to asexual trophozoites, modify the infected erythrocytes and their cytoadhesive properties at the onset of gametocytogenesis. Here, purified P. falciparum early gametocytes were used to ultrastructurally and biochemically analyse parasite‐induced modifications on the red blood cell surface and to measure their functional consequences on adhesion to human endothelial cells. This work revealed that stage I gametocytes are able to deform the infected erythrocytes like asexual parasites, but do not modify its surface with adhesive ‘knob’ structures and associated proteins. Reduced levels of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins are exposed on the red blood cell surface bythese parasites, and the expression of the var gene family, which encodes 50–60 variants of PfEMP1, is dramatically downregulated in the transition from asexual development to gametocytogenesis. Cytoadhesion assays show that such gene expression changes and host cell surface modifications functionally result in the inability of stage I gametocytes to bind the host ligands used by the asexual parasite to bind endothelial cells. In conclusion, these results identify specific differences in molecular and cellular mechanisms of host cell remodelling and in adhesive properties, leading to clearly distinct host parasite interplays in the establishment of sequestration of stage I gametocytes and of asexual trophozoites.  相似文献   

9.
The examination of the complex cell biology of the human malaria parasite Plasmodium falciparum usually relies on the time-consuming generation of transgenic parasites. Here, metabolic labeling and click chemistry are employed as a fast transfection-independent method for the microscopic examination of protein S-palmitoylation, an important post-translational modification during the asexual intraerythrocytic replication of P. falciparum. Applying various microscopy approaches such as confocal, single-molecule switching, and electron microscopy, differences in the extent of labeling within the different asexual developmental stages of P. falciparum and the host erythrocytes over time are observed.  相似文献   

10.
Accurate regulation of microfilament dynamics is central to cell growth, motility and response to environmental stimuli. Stabilizing and depolymerizing proteins control the steady‐state levels of filamentous (F‐) actin. Capping protein (CP) binds to free barbed ends, thereby arresting microfilament growth and restraining elongation to remaining free barbed ends. In all CPs characterized to date, alpha and beta subunits form the active heterodimer. Here, we show in a eukaryotic parasitic cell that the two CP subunits can be functionally separated. Unlike the beta subunit, the CP alpha subunit of the apicomplexan parasite Plasmodium is refractory to targeted gene deletion during blood infection in the mammalian host. Combinatorial complementation of Plasmodium berghei CP genes with the orthologs from Plasmodium falciparum verified distinct activities of CP alpha and CP alpha/beta during parasite life cycle progression. Recombinant Plasmodium CP alpha could be produced in Escherichia coli in the absence of the beta subunit and the protein displayed F‐actin capping activity. Thus, the functional separation of two CP subunits in a parasitic eukaryotic cell and the F‐actin capping activity of CP alpha expand the repertoire of microfilament regulatory mechanisms assigned to CPs.  相似文献   

11.
Malaria remains one of the most devastating infectious diseases, killing up to a million people every year. Whereas much progress has been made in understanding the life cycle of the parasite in the human host and in the mosquito vector, significant gaps of knowledge remain. Fertilization of malaria parasites, a process that takes place in the lumen of the mosquito midgut, is poorly understood and the molecular interactions (receptor–ligand) required for Plasmodium fertilization remain elusive. By use of a phage display library, we identified FG1 (Female Gamete peptide 1), a peptide that binds specifically to the surface of female Plasmodium berghei gametes. Importantly, FG1 but not a scrambled version of the peptide, strongly reduces P. berghei oocyst formation by interfering with fertilization. In addition, FG1 also inhibits P. falciparum oocyst formation suggesting that the peptide binds to a molecule on the surface of the female gamete whose structure is conserved. Identification of the molecular interactions disrupted by the FG1 peptide may lead to the development of novel malaria transmission‐blocking strategies.  相似文献   

12.
Gametocytes are the sole Plasmodium parasite stages that infect mosquitoes; therefore development of functional gametes is required for malaria transmission. Flagellum assembly of the Plasmodium male gamete differs from that of most other eukaryotes in that it is intracytoplasmic but retains a key conserved feature: axonemes assemble from basal bodies. The centriole/basal body protein SAS‐6 normally regulates assembly and duplication of these organelles and its depletion causes severe flagellar/ciliary abnormalities in a diverse array of eukaryotes. Since basal body and flagellum assembly are intimately coupled to male gamete development in Plasmodium, we hypothesized that SAS‐6 disruption may cause gametogenesis defects and perturb transmission. We show that Plasmodium berghei sas6 knockouts display severely abnormal male gametogenesis presenting reduced basal body numbers, axonemal assembly defects and abnormal nuclear allocation. The defects in gametogenesis reduce fertilization and render Pbsas6 knockouts less infectious to mosquitoes. Additionally, we show that lack of Pbsas6 blocks transmission from mosquito to vertebrate host, revealing an additional yet undefined role in ookinete to sporulating oocysts transition. These findings underscore the vulnerability of the basal body/SAS‐6 to malaria transmission blocking interventions.  相似文献   

13.
Intra‐erythrocytic stages of the malaria parasite, Plasmodium falciparum, are thought to be dependent on de novo synthesis of phosphatidylinositol, as red blood cells (RBC) lack the capacity to synthesize this phospholipid. The myo‐inositol headgroup of PI can either be synthesized de novo or scavenged from the RBC. An untargeted metabolite profiling of P. falciparum infected RBC showed that trophozoite and schizont stages accumulate high levels of myo‐inositol‐3‐phosphate, indicating increased de novo biosynthesis of myo‐inositol from glucose 6‐phosphate. Metabolic labelling studies with 13C‐U‐glucose in the presence and absence of exogenous inositol confirmed that de novo myo‐inositol synthesis occurs in parallel with myo‐inositol salvage pathways. Unexpectedly, while both endogenous and scavenged myo‐inositol was used to synthesize bulk PI, only de novo‐synthesized myo‐inositol was incorporated into GPI glycolipids. Moreover, gene disruption studies suggested that the INO1 gene, encoding myo‐inositol 3‐phosphate synthase, is essential in asexual parasite stages. Together these findings suggest that P. falciparum asexual stages are critically dependent on de novo myo‐inositol biosynthesis for assembly of a sub‐pool of PI species and GPI biosynthesis. These findings highlight unexpected complexity in phospholipid biosynthesis in P. falciparum and a lack of redundancy in some nutrient salvage versus endogenous biosynthesis pathways.  相似文献   

14.
Symptomatic malaria is caused by the infection of human red blood cells (RBCs) with Plasmodium parasites. The RBC is a peculiar environment for parasites to thrive in as they lack many of the normal cellular processes and resources present in other cells. Because of this, Plasmodium spp. have adapted to extensively remodel the host cell through the export of hundreds of proteins that have a range of functions, the best known of which are virulence‐associated. Many exported parasite proteins are themselves involved in generating a novel trafficking system in the RBC that further promotes export. In this review we provide an overview of the parasite synthesized export machinery as well as recent developments in how different classes of exported proteins are recognized by this machinery.  相似文献   

15.
Pathogenesis of malaria infections is linked to remodeling of erythrocytes, a process dependent on the trafficking of hundreds of parasite-derived proteins into the host erythrocyte. Recent studies have demonstrated that the Plasmodium translocon of exported proteins (PTEX) serves as the central gateway for trafficking of these proteins, as inducible knockdown of the core PTEX constituents blocked the trafficking of all classes of cargo into the erythrocyte. However, the role of the auxiliary component PTEX88 in protein export remains less clear. Here we have used inducible knockdown technologies in P. falciparum and P. berghei to assess the role of PTEX88 in parasite development and protein export, which reveal that the in vivo growth of PTEX88-deficient parasites is hindered. Interestingly, we were unable to link this observation to a general defect in export of a variety of known parasite proteins, suggesting that PTEX88 functions in a different fashion to the core PTEX components. Strikingly, PTEX88-deficient P. berghei were incapable of causing cerebral malaria despite a robust pro-inflammatory response from the host. These parasites also exhibited a reduced ability to sequester in peripheral tissues and were removed more readily from the circulation by the spleen. In keeping with these findings, PTEX88-deficient P. falciparum-infected erythrocytes displayed reduced binding to the endothelial cell receptor, CD36. This suggests that PTEX88 likely plays a specific direct or indirect role in mediating parasite sequestration rather than making a universal contribution to the trafficking of all exported proteins.  相似文献   

16.
The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain‐like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain‐like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596‐containing parasite‐derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity‐purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C‐terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non‐enzymatic role in the P. falciparum blood‐stage life cycle.  相似文献   

17.
18.
Malaria parasites export many proteins into their host erythrocytes and increase membrane permeability to diverse solutes. Although most solutes use a broad‐selectivity channel known as the plasmodial surface anion channel, increased Ca++ uptake is mediated by a distinct, poorly characterised mechanism that appears to be essential for the intracellular parasite. Here, we examined infected cell Ca++ uptake with a kinetic fluorescence assay and the virulent human pathogen, Plasmodium falciparum. Cell surface labelling with N‐hydroxysulfosuccinimide esters revealed differing effects on transport into infected and uninfected cells, indicating that Ca++ uptake at the infected cell surface is mediated by new or altered proteins at the host membrane. Conditional knockdown of PTEX, a translocon for export of parasite proteins into the host cell, significantly reduced infected cell Ca++ permeability, suggesting involvement of parasite‐encoded proteins trafficked to the host membrane. A high‐throughput chemical screen identified the first Ca++ transport inhibitors active against Plasmodium‐infected cells. These novel chemical scaffolds inhibit both uptake and parasite growth; improved in vitro potency at reduced free [Ca++] is consistent with parasite killing specifically via action on one or more Ca++ transporters. These inhibitors should provide mechanistic insights into malaria parasite Ca++ transport and may be starting points for new antimalarial drugs.  相似文献   

19.
20.
Cytoadhesion of Plasmodium falciparum‐infected erythrocytes to endothelial protein C receptor (EPCR) is associated with severe malaria. It has been postulated that parasite binding could exacerbate microvascular coagulation and endothelial dysfunction in cerebral malaria by impairing the protein C–EPCR interaction, but the extent of binding inhibition has not been fully determined. Here we expressed the cysteine‐rich interdomain region (CIDRα1) domain from a variety of domain cassette (DC) 8 and DC13 P. falciparum erythrocyte membrane protein 1 proteins and show they interact in a distinct manner with EPCR resulting in weak, moderate and strong inhibition of the activated protein C (APC)–EPCR interaction. Overall, there was a positive correlation between CIDRα1–EPCR binding activity and APC blockade activity. In addition, our analysis from a combination of mutagenesis and blocking antibodies finds that an Arg81 (R81) in EPCR plays a pivotal role in CIDRα1 binding, but domains with weak and strong APC blockade activity were distinguished by their sensitivity to inhibition by anti‐EPCR mAb 1535, implying subtle differences in their binding footprints. These data reveal a previously unknown functional heterogeneity in the interaction between P. falciparum and EPCR and have major implications for understanding the distinct clinical pathologies of cerebral malaria and developing new treatment strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号