首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estimating diversification rates from phylogenetic information   总被引:4,自引:1,他引:3  
Patterns of species richness reflect the balance between speciation and extinction over the evolutionary history of life. These processes are influenced by the size and geographical complexity of regions, conditions of the environment, and attributes of individuals and species. Diversity within clades also depends on age and thus the time available for accumulating species. Estimating rates of diversification is key to understanding how these factors have shaped patterns of species richness. Several approaches to calculating both relative and absolute rates of speciation and extinction within clades are based on phylogenetic reconstructions of evolutionary relationships. As the size and quality of phylogenies increases, these approaches will find broader application. However, phylogeny reconstruction fosters a perceptual bias of continual increase in species richness, and the analysis of primarily large clades produces a data selection bias. Recognizing these biases will encourage the development of more realistic models of diversification and the regulation of species richness.  相似文献   

2.
The emergence of new frameworks combining evolutionary and ecological dynamics in communities opens new perspectives on the study of speciation. By acknowledging the relative contribution of local and regional dynamics in shaping the complexity of ecological communities, metacommunity theory sheds a new light on the mechanisms underlying the emergence of species. Three integrative frameworks have been proposed, involving neutral dynamics, niche theory, and life history trade‐offs respectively. Here, we review these frameworks of metacommunity theory to emphasise that: (1) studies on speciation and community ecology have converged towards similar general principles by acknowledging the central role of dispersal in metacommunities dynamics, (2) considering the conditions of emergence and maintenance of new species in communities has given rise to new models of speciation embedded in the metacommunity theory, (3) studies of diversification have shifted from relating phylogenetic patterns to landscapes spatial and ecological characteristics towards integrative approaches that explicitly consider speciation in a mechanistic ecological framework. We highlight several challenges, in particular the need for a better integration of the eco‐evolutionary consequences of dispersal and the need to increase our understanding on the relative rates of evolutionary and ecological changes in communities.  相似文献   

3.
Palaeontologists have long employed discrete categorical data to capture morphological variation in fossil species, using the resulting character–taxon matrices to measure evolutionary tempo, infer phylogenies and capture morphological disparity. However, to date these have been seen as separate approaches despite a common goal of understanding morphological evolution over deep time. Here I argue that there are clear advantages to considering these three lines of enquiry in a single space: the phylomorphospace. Conceptually these high‐dimensional spaces capture how a phylogenetic tree explores morphospace and allow us to consider important process questions around evolutionary rates, constraints, convergence and directional trends. Currently the literature contains fundamentally different approaches used to generate such spaces, with no direct comparison between them, despite the differing evolutionary histories they imply. Here I directly compare five different phylomorphospace approaches, three with direct literature equivalents and two that are novel. I use a single empirical case study of coelurosaurian theropod dinosaurs (152 taxa, 853 characters) to show that under many analyses the literature‐derived approaches tend to reflect introduced phylogenetic (rather than the intended morphological) signal. The two novel approaches, which produce limited ancestral state estimates prior to ordination, are able to minimize this phylogenetic signal and thus exhibit more realistic amounts of phylogenetic signal, rate heterogeneity, and convergent evolution.  相似文献   

4.
The recognition that animals sense the world in a different way than we do has unlocked important lines of research in ecology and evolutionary biology. In practice, the subjective study of natural stimuli has been permitted by perceptual spaces, which are graphical models of how stimuli are perceived by a given animal. Because colour vision is arguably the best‐known sensory modality in most animals, a diversity of colour spaces are now available to visual ecologists, ranging from generalist and basic models allowing rough but robust predictions on colour perception, to species‐specific, more complex models giving accurate but context‐dependent predictions. Selecting among these models is most often influenced by historical contingencies that have associated models to specific questions and organisms; however, these associations are not always optimal. The aim of this review is to provide visual ecologists with a critical perspective on how models of colour space are built, how well they perform and where their main limitations are with regard to their most frequent uses in ecology and evolutionary biology. We propose a classification of models based on their complexity, defined as whether and how they model the mechanisms of chromatic adaptation and receptor opponency, the nonlinear association between the stimulus and its perception, and whether or not models have been fitted to experimental data. Then, we review the effect of modelling these mechanisms on predictions of colour detection and discrimination, colour conspicuousness, colour diversity and diversification, and for comparing the perception of colour traits between distinct perceivers. While a few rules emerge (e.g. opponent log–linear models should be preferred when analysing very distinct colours), in general model parameters still have poorly known effects. Colour spaces have nonetheless permitted significant advances in ecology and evolutionary biology, and more progress is expected if ecologists compare results between models and perform behavioural experiments more routinely. Such an approach would further contribute to a better understanding of colour vision and its links to the behavioural ecology of animals. While visual ecology is essentially a transfer of knowledge from visual sciences to evolutionary ecology, we hope that the discipline will benefit both fields more evenly in the future.  相似文献   

5.
Different diversification scenarios have been proposed to explain the origin of extant biodiversity. However, most existing meta‐analyses of time‐calibrated phylogenies rely on approaches that do not quantitatively test alternative diversification processes. Here, I highlight the shortcomings of using species divergence ranks, which is a method widely used in meta‐analyses. Divergence ranks consist of categorizing cladogenetic events to certain periods of time, typically to either Pleistocene or to pre‐Pleistocene ages. This approach has been claimed to shed light on the origin of most extant species and the timing and dynamics of diversification in any biogeographical region. However, interpretations drawn from such method often confound two fundamental questions in macroevolutionary studies, tempo (timing of evolutionary rate shifts) and mode (“how” and “why” of speciation). By using simulated phylogenies under four diversification scenarios, constant‐rate, diversity‐dependence, high extinction, and high speciation rates in the Pleistocene, I showed that interpretations based on species divergence ranks might have been seriously misleading. Future meta‐analyses of dated phylogenies need to be aware of the impacts of incomplete taxonomic sampling, tree topology, and divergence time uncertainties, as well as they might be benefited by including quantitative tests of alternative diversification models that acknowledge extinction and diversity dependence.  相似文献   

6.
Tropical tree communities present one of the most challenging systems for studying the processes underlying community assembly. Most community assembly hypotheses consider the relative importance of the ecological similarity of co‐occurring species. Quantifying this similarity is a daunting and potentially impossible task in species‐rich assemblages. During the past decade tropical tree ecologists have increasingly utilized phylogenetic trees and functional traits to estimate the ecological similarity of species in order to test mechanistic community assembly hypotheses. A large amount of work has resulted with many important advances having been made along the way. That said, there are still many outstanding challenges facing those utilizing phylogenetic and functional trait approaches to study community assembly. Here I review the conceptual background, major advances and major remaining challenges in phylogenetic‐ and trait‐based approaches to community ecology with a specific focus on tropical trees. I argue that both approaches tremendously improve our understanding of tropical tree community ecology, but neither approach has fully reached its potential thus far.  相似文献   

7.
Phenotypes vary at multiple hierarchical levels, of which the interspecific variance is the primary focus of phylogenetic comparative studies. However, the evolutionary role of particular within‐species variance components (between‐population, between‐ or within‐individual variances) remains neglected. Here, we partition the variance in an anti‐predator behaviour, flight initiation distance (FID), and assess how its within‐ and between‐population variance are related to life history, distribution, dispersal and habitat ecology. Although the composition of within‐species variance in FID depended on the phylogeny, most variance occurred within populations. When accounting for allometry, density‐dependence, uncertainty in the phylogenetic hypothesis and heterogeneity in data quality, within‐population variance was significantly associated with habitat diversity and population size. Between‐population variance was a significant predictor of natal dispersal, senescence and habitat diversity. Accordingly, not only species‐specific mean values of a behavioural trait, but also its variance within and among populations can shape the evolutionary ecology of species.  相似文献   

8.
Theories of species coexistence have played a central role in ecology and evolutionary studies of the origin and maintenance of biodiversity in highly diverse communities. The concept of niche and associated theories predict that competition for available ecological space leads to a ceiling in species richness that influences further diversification patterns. By contrast, the neutral theory supports that speciation is stochastic and diversity independent. We examined the phylogenetic community structure and diversification rates in three families and 14 sites within coral reef fish communities from the Indian and Pacific oceans. Using the phylogenetic relationships among 157 species estimated with 2300 bp of mitochondrial DNA, we tested predictions in terms of species coexistence from the neutral and niche theories. At the regional scale, our findings suggest that phylogenetic community structure shifts during community assembly to a pattern of dispersion as a consequence of allopatric speciation in recent times but overall, variations in diversification rates did not relate with sea level changes. At the local scale, the phylogenetic community structure is consistent with a neutral model of community assembly since no departure from a random sorting of species was observed. The present results support a neutral model of community assembly as a consequence of the stochastic and unpredictable nature of coral reefs favoring generalist and sedentary species competing for living space rather than trophic resources. As a consequence, the observed decrease in diversification rates may be seen as the result of a limited supply of living space as expected in a finite island model.  相似文献   

9.
One of the oldest challenges in ecology is to understand the processes that underpin the composition of communities. Historically, an obvious way in which to describe community compositions has been diversity in terms of the number and abundances of species. However, the failure to reject contradictory models has led to communities now being characterized by trait and phylogenetic diversities. Our objective here is to demonstrate how species, trait and phylogenetic diversity can be combined together from large to local spatial scales to reveal the historical, deterministic and stochastic processes that impact the compositions of local communities. Research in this area has recently been advanced by the development of mathematical measures that incorporate trait dissimilarities and phylogenetic relatedness between species. However, measures of trait diversity have been developed independently of phylogenetic measures and conversely most of the phylogenetic diversity measures have been developed independently of trait diversity measures. This has led to semantic confusions particularly when classical ecological and evolutionary approaches are integrated so closely together. Consequently, we propose a unified semantic framework and demonstrate the importance of the links among species, phylogenetic and trait diversity indices. Furthermore, species, trait and phylogenetic diversity indices differ in the ways they can be used across different spatial scales. The connections between large‐scale, regional and local processes allow the consideration of historical factors in addition to local ecological deterministic or stochastic processes. Phylogenetic and trait diversity have been used in large‐scale analyses to determine how historical and/or environmental factors affect both the formation of species assemblages and patterns in species richness across latitude or elevation gradients. Both phylogenetic and trait diversity have been used at different spatial scales to identify the relative impacts of ecological deterministic processes such as environmental filtering and limiting similarity from alternative processes such as random speciation and extinction, random dispersal and ecological drift. Measures of phylogenetic diversity combine phenotypic and genetic diversity and have the potential to reveal both the ecological and historical factors that impact local communities. Consequently, we demonstrate that, when used in a comparative way, species, trait and phylogenetic structures have the potential to reveal essential details that might act simultaneously in the assembly of species communities. We highlight potential directions for future research. These might include how variation in trait and phylogenetic diversity alters with spatial distances, the role of trait and phylogenetic diversity in global‐scale gradients, the connections between traits and phylogeny, the importance of trait rarity and independent evolutionary history in community assembly, the loss of trait and phylogenetic diversity due to human impacts, and the mathematical developments of biodiversity indices including within‐species variations.  相似文献   

10.
Interactions between species are important catalysts of the evolutionary processes that generate the remarkable diversity of life. Symbioses, conspicuous and inherently interesting forms of species interaction, are pervasive throughout the tree of life. However, nearly all studies of the impact of species interactions on diversification have concentrated on competition and predation leaving unclear the importance of symbiotic interaction. Here, I show that, as predicted by evolutionary theories of symbiosis and diversification, multiple origins of a key innovation, symbiosis between gall-inducing insects and fungi, catalysed both expansion in resource use (niche expansion) and diversification. Symbiotic lineages have undergone a more than sevenfold expansion in the range of host-plant taxa they use relative to lineages without such fungal symbionts, as defined by the genetic distance between host plants. Furthermore, symbiotic gall-inducing insects are more than 17 times as diverse as their non-symbiotic relatives. These results demonstrate that the evolution of symbiotic interaction leads to niche expansion, which in turn catalyses diversification.  相似文献   

11.
Predicting phenology by integrating ecology,evolution and climate science   总被引:4,自引:0,他引:4  
Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology – the timing of life‐history events. Phenology has well‐demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species’ reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.  相似文献   

12.
Some major evolutionary theories predict a relationship between rates of proliferation of new species (species diversification) and rates of morphological divergence between them. However, this relationship has not been rigorously tested using phylogeny-based approaches. Here, we test this relationship with morphological and phylogenetic data from 190 species of plethodontid salamanders. Surprisingly, we find that rates of species diversification and morphological evolution are not significantly correlated, such that rapid diversification can occur with little morphological change, and vice versa. We also find that most clades have undergone remarkably similar patterns of morphological evolution (despite extensive sympatry) and that those relatively novel phenotypes are not associated with rapid diversification. Finally, we find a strong relationship between rates of size and shape evolution, which has not been previously tested.  相似文献   

13.
Specialization has often been claimed to be an evolutionary dead end, with specialist lineages having a reduced capacity to persist or diversify. In a phylogenetic comparative framework, an evolutionary dead end may be detectable from the phylogenetic distribution of specialists, if specialists rarely give rise to large, diverse clades. Previous phylogenetic studies of the influence of specialization on macroevolutionary processes have demonstrated a range of patterns, including examples where specialists have both higher and lower diversification rates than generalists, as well as examples where the rates of evolutionary transitions from generalists to specialists are higher, lower or equal to transitions from specialists to generalists. Here, we wish to ask whether these varied answers are due to the differences in macroevolutionary processes in different clades, or partly due to differences in methodology. We analysed ten phylogenies containing multiple independent origins of specialization and quantified the phylogenetic distribution of specialists by applying a common set of metrics to all datasets. We compared the tip branch lengths of specialists to generalists, the size of specialist clades arising from each evolutionary origin of a specialized trait and whether specialists tend to be clustered or scattered on phylogenies. For each of these measures, we compared the observed values to expectations under null models of trait evolution and expected outcomes under alternative macroevolutionary scenarios. We found that specialization is sometimes an evolutionary dead end: in two of the ten case studies (pollinator‐specific plants and host‐specific flies), specialization is associated with a reduced rate of diversification or trait persistence. However, in the majority of studies, we could not distinguish the observed phylogenetic distribution of specialists from null models in which specialization has no effect on diversification or trait persistence.  相似文献   

14.
Differences in the relative diversification rates of species with variant traits are known as species selection. Species selection can produce a macroevolutionary change in the frequencies of traits by changing the relative number of species possessing each trait over time. But species selection is not the only process that can change the frequencies of traits, phyletic microevolution of traits within species and phylogenetic trait evolution among species, the tempo and mode of microevolution can also change trait frequencies. Species selection, phylogenetic, and phyletic processes can all contribute to large‐scale trends, reinforcing or canceling each other out. Even more complex interactions among macroevolutionary processes are possible when multiple covarying traits are involved. Here I present a multilevel macroevolutionary framework that is useful for understanding how macroevolutionary processes interact. It is useful for empirical studies using fossils, molecular phylogenies, or both. I illustrate the framework with the macroevolution of coloniality and photosymbiosis in scleractinian corals using a time‐calibrated molecular phylogeny. I find that standing phylogenetic variation in coloniality and photosymbiosis deflects the direction of macroevolution from the vector of species selection. Variation in these traits constrains species selection and results in a 200 million year macroevolutionary equilibrium.  相似文献   

15.
Rates of trait evolution are known to vary across phylogenies; however, standard evolutionary models assume a homogeneous process of trait change. These simple methods are widely applied in small‐scale phylogenetic studies, whereas models of rate heterogeneity are not, so the prevalence and patterns of potential rate variation in groups up to hundreds of species remain unclear. The extent to which trait evolution is modelled accurately on a given phylogeny is also largely unknown because studies typically lack absolute model fit tests. We investigated these issues by applying both rate‐static and variable‐rates methods on (i) body mass data for 88 avian clades of 10–318 species, and (ii) data simulated under a range of rate‐heterogeneity scenarios. Our results show that rate heterogeneity is present across small‐scaled avian clades, and consequently applying only standard single‐process models prompts inaccurate inferences about the generating evolutionary process. Specifically, these approaches underestimate rate variation, and systematically mislabel temporal trends in trait evolution. Conversely, variable‐rates approaches have superior relative fit (they are the best model) and absolute fit (they describe the data well). We show that rate changes such as single internal branch variations, rate decreases and early bursts are hard to detect, even by variable‐rates models. We also use recently developed absolute adequacy tests to highlight misleading conclusions based on relative fit alone (e.g. a consistent preference for constrained evolution when isolated terminal branch rate increases are present). This work highlights the potential for robust inferences about trait evolution when fitting flexible models in conjunction with tests for absolute model fit.  相似文献   

16.
The present paper is an argument in support of the continued importance of morphological systematics and a plea for improving molecular phylogenetic analyses by addressing explicit character transformations. We use here the inference of key innovations and adaptive radiations to demonstrate why morphological systematics is still relevant and necessary. After establishing that theories of phylogenetic relationship offer robust explanatory bases for discussing evolutionary diversification, the following topics are addressed: (1) the inference of key innovations grounded in phylogenetic analyses; (2) the epistemic distinction between character ‘mapping’ and relevant evidence in systematic and evolutionary studies; and (3) key innovations in molecular phylogenetics. We emphasize that the discovery of key innovations, in fossil or extant taxa, further strengthens the importance of morphology in systematic and evolutionary inferences, as they reveal scenarios of character transformation that have led to asymmetrical sister-group diversification. Our main conclusion is that understanding characters in and of themselves, when properly contextualized systematically, is what evolutionary biologists should be concerned with, whereas the analysis of tree topology alone, in which statistical nodal support measures are the sole indicators of phylogenetic affinity, does not lead to a fuller understanding of key innovations.  相似文献   

17.
Two fundamental axes – space and time – shape ecological systems. Over the last 30 years spatial ecology has developed as an integrative, multidisciplinary science that has improved our understanding of the ecological consequences of habitat fragmentation and loss. We argue that accelerating climate change – the effective manipulation of time by humans – has generated a current need to build an equivalent framework for temporal ecology. Climate change has at once pressed ecologists to understand and predict ecological dynamics in non‐stationary environments, while also challenged fundamental assumptions of many concepts, models and approaches. However, similarities between space and time, especially related issues of scaling, provide an outline for improving ecological models and forecasting of temporal dynamics, while the unique attributes of time, particularly its emphasis on events and its singular direction, highlight where new approaches are needed. We emphasise how a renewed, interdisciplinary focus on time would coalesce related concepts, help develop new theories and methods and guide further data collection. The next challenge will be to unite predictive frameworks from spatial and temporal ecology to build robust forecasts of when and where environmental change will pose the largest threats to species and ecosystems, as well as identifying the best opportunities for conservation.  相似文献   

18.
Synthesis of ecological and evolutionary concepts and tools has led to improved understanding of how diversification, dispersal, community assembly, long‐term coexistence and extinction shape patterns of biological diversity. Phylogeography, with its focus on Quaternary interactions within and between populations, can help elucidate the processes acting between the evolutionary time‐scales on which species arise and the ecological time‐scales on which members of an assemblage interact with each other and their environment. Still, it has yet to be widely incorporated in that synthesis. Here, we highlight three areas where integration of phylogeography with ecological and evolutionary approaches can provide new insights into key questions. First, phylogeography can help clarify the roles of isolation, niche conservatism and environmental stability in generating patterns of alpha‐ and beta‐diversity. Second, phylogeography can help isolate the effects of Quaternary dispersal limitation from other factors driving community assembly and spatial turnover. Third, phylogeography can help identify key processes leading to and resulting from extinction events, including the population dynamics of species range reduction and its effects on the strength and temporal flexibility of networks of species interactions. We conclude with an outlook on the data‐gathering protocols necessary for this collaborative, interdisciplinary research agenda.  相似文献   

19.
Species interactions lie at the heart of many theories of macroevolution, from adaptive radiation to the Red Queen. Although some theories describe the imprint that interactions will have over long timescales, we are still missing a comprehensive understanding of the effects of interactions on macroevolution. Current research shows strong evidence for the impact of interactions on macroevolutionary patterns of trait evolution and diversification, yet many macroevolutionary studies have only a tenuous relationship to ecological studies of interactions over shorter timescales. We review current research in this area, highlighting approaches that explicitly model species interactions and connect them to broad‐scale macroevolutionary patterns. We also suggest that progress has been made by taking an integrative interdisciplinary look at individual clades. We focus on African cichlids as a case study of how this approach can be fruitful. Overall, although the evidence for species interactions shaping macroevolution is strong, further work using integrative and model‐based approaches is needed to spur progress towards understanding the complex dynamics that structure communities over time and space.  相似文献   

20.
Understanding how and why rates of evolutionary diversification vary is a key issue in evolutionary biology, ecology, and biogeography. Evolutionary rates are the net result of interacting processes summarized under concepts such as adaptive radiation and evolutionary stasis. Here, we review the central concepts in the evolutionary diversification literature and synthesize these into a simple, general framework for studying rates of diversification and quantifying their underlying dynamics, which can be applied across clades and regions, and across spatial and temporal scales. Our framework describes the diversification rate (d) as a function of the abiotic environment (a), the biotic environment (b), and clade‐specific phenotypes or traits (c); thus, d ~ a,b,c. We refer to the four components (ad) and their interactions collectively as the “Evolutionary Arena.” We outline analytical approaches to this framework and present a case study on conifers, for which we parameterize the general model. We also discuss three conceptual examples: the Lupinus radiation in the Andes in the context of emerging ecological opportunity and fluctuating connectivity due to climatic oscillations; oceanic island radiations in the context of island formation and erosion; and biotically driven radiations of the Mediterranean orchid genus Ophrys. The results of the conifer case study are consistent with the long‐standing scenario that low competition and high rates of niche evolution promote diversification. The conceptual examples illustrate how using the synthetic Evolutionary Arena framework helps to identify and structure future directions for research on evolutionary radiations. In this way, the Evolutionary Arena framework promotes a more general understanding of variation in evolutionary rates by making quantitative results comparable between case studies, thereby allowing new syntheses of evolutionary and ecological processes to emerge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号