首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Aims To evaluate the role of native predators (birds) within an Australian foodweb (lerp psyllids and eucalyptus trees) reassembled in California. Location Eucalyptus groves within Santa Cruz, California. Methods We compared bird diversity and abundance between a eucalyptus grove infested with lerp psyllids and a grove that was uninfested, using point counts. We documented shifts in the foraging behaviour of birds between the groves using structured behavioural observations. Additionally, we judged the effect of bird foraging on lerp psyllid abundance using exclosure experiments. Results We found a greater richness and abundance of Californian birds within a psyllid infested eucalyptus grove compared to a matched non‐infested grove, and that Californian birds modify their foraging behaviour within the infested grove in order to concentrate on ingesting psyllids. This suggests that Californian birds could provide indirect top‐down benefits to eucalyptus trees similar to those observed in Australia. However, using bird exclosure experiments, we found no evidence of top‐down control of lerp psyllids by Californian birds. Main conclusions We suggest that physiological and foraging differences between Californian and Australian pysllid‐eating birds account for the failure to observe top‐down control of psyllid populations in California. The increasing rate of non‐indigenous species invasions has produced local biotas that are almost entirely composed of non‐indigenous species. This example illustrates the complex nature of cosmopolitan native‐exotic food webs, and the ecological insights obtainable through their study.  相似文献   

2.
Most species introductions are not expected to result in invasion, and species that are invasive in one area are frequently not invasive in others. However, cases of introduced organisms that failed to invade are reported in many instances as anecdotes or are simply ignored. In this analysis, we aimed to find common characteristics between non‐invasive populations of known invasive species and evaluated how the study of failed invasions can contribute to research on biological invasions. We found intraspecific variation in invasion success and several recurring explanations for why non‐native species fail to invade; these included low propagule pressure, abiotic resistance, biotic resistance, genetic constraints and mutualist release. Furthermore, we identified key research topics where ignoring failed invasions could produce misleading results; these include studies on historical factors associated with invasions, distribution models of invasive species, the effect of species traits on invasiveness, genetic effects, biotic resistance and habitat invasibility. In conclusion, we found failed invasions can provide fundamental information on the relative importance of factors determining invasions and might be a key component of several research topics. Therefore, our analysis suggests that more specific and detailed studies on invasion failures are necessary.  相似文献   

3.
Aim The introduction of non‐indigenous species has resulted in wide‐ranging ecological and economic impacts. Predictive modelling of the introduction and establishment of non‐indigenous species is imperative to identify areas at high risk of invasion to effectively manage non‐indigenous species and conserve native populations. Smallmouth bass (Micropterus dolomieu), a warm water fish species native to central North America has negatively impacted native fish communities, including cyprinids and salmonid populations, as a result of intentional introductions. We predicted the introduction risk; species establishment based on habitat suitability; identified lakes at high risk of invasion; and finally assessed the consequential impacts on native salmon, trout and cyprinid populations. Location Ontario and British Columbia, Canada. Methods Classification tree and logistic regression models were developed and validated to predict the introduction and establishment of smallmouth bass for thousands of lakes. Results Densely human populated areas and larger lake surface areas successfully identify lakes associated with the introduction of smallmouth bass (introduction model) in British Columbia. Climate, lake morphology and water chemistry variables were the driving environmental parameters to define suitable smallmouth bass habitat (establishment model). A combination of the introduction and establishment model identified 138 lakes that are currently at risk in British Columbia to the introduction and establishment of smallmouth bass. Of these 138 high‐risk lakes, 95% of them contain at least one species of salmon, trout or cyprinid, thereby increasing the potential impact of an invasion by smallmouth bass. Main conclusions Our framework can be applied to other terrestrial and aquatic species to obtain a better understanding of the potential risk posed by a non‐indigenous species to an ecosystem. Furthermore, our methodology can be used to focus management efforts on areas at higher risk (e.g. number of potential releases, more favourable habitats) to control future introductions of non‐indigenous species, thereby conserving native populations.  相似文献   

4.
Niche conservatism, the hypothesis that niches remain constant through time and space, is crucial for the study of biological invasions as it underlies native‐range based predictions of invasion risk. Niche changes between native and non‐native populations are increasingly reported. However, it has been argued that these changes arise mainly because in their novel range, species occupy only a subset of the environments they inhabit in their native range, and not because they expand into environments entirely novel to them. Here, using occurrences of 29 vertebrate species native to either Europe or North America and introduced into the other continent, we assess the prevalence of niche changes between native and non‐native populations and assess whether the changes detected are caused primarily by native niche unfilling in the non‐native range rather than by expansion into novel environments. We show that niche overlap between native and non‐native populations is generally low because of a large degree of niche unfilling in the non‐native range. This most probably reflects an ongoing colonization of the novel range, as niche changes were smaller for species that were introduced longer ago and into a larger number of locations. Niche expansion was rare, and for the few species exhibiting larger amounts of niche overlap, an unfilling of the niche in the native range (e.g. through competition or dispersal limitations) is the most probable explanation. The fact that for most species, the realized non‐native niche is a subset of the realized native niche allows native‐range based niche models to generate accurate predictions of invasion risk. These results suggest that niche changes arising during biological invasions are strongly influenced by propagule pressure and colonization processes, and we argue that introduction history should be taken into account when evaluating niche conservatism in the context of biological invasions.  相似文献   

5.
Aim We examine the regional dominance of California as a beachhead for marine biological invasions in western North America and assess the relative contribution of different transfer mechanisms to invasions over time. Location Western North America (California to Alaska, excluding Mexico). Methods We undertook extensive analysis of literature and collections records to characterize the invasion history of non‐native species (invertebrates, microalgae and microorganisms) with established populations in coastal marine (tidal) waters of western North America through 2006. Using these data, we estimated (1) the proportion of first regional records of non‐native species that occurred in California and (2) the relative contribution of transfer mechanisms to California invasions (or vector strength) over time. Results Excluding vascular plants and vertebrates, we identified 290 non‐native marine species with established populations in western North America, and 79% had first regional records from California. Many (40–64%) of the non‐native species in adjacent states and provinces were first reported in California, suggesting northward spread. California also drives the increasing regional rate of detected invasions. Of 257 non‐native species established in California, 59% had first regional records in San Francisco Bay; 57% are known from multiple estuaries, suggesting secondary spread; and a majority were attributed to vessels (ballast water or hull fouling) or oysters, in some combination, but their relative contributions are not clear. For California, more than one vector was possible for 56% of species, and the potential contribution of ballast water, hull fouling and live trade increased over time, unlike other vectors. Main conclusions California, especially San Francisco Bay, plays a pivotal role for marine invasion dynamics for western North America, providing an entry point from which many species spread. This pattern is associated historically with high propagule supply and salinity. Any effective strategies to minimize new invasions throughout this region must (1) focus attention on California and (2) address current uncertainty and future shifts in vector strength.  相似文献   

6.
Antarctica is experiencing significant ecological and environmental change, which may facilitate the establishment of non‐native marine species. Non‐native marine species will interact with other anthropogenic stressors affecting Antarctic ecosystems, such as climate change (warming, ocean acidification) and pollution, with irreversible ramifications for biodiversity and ecosystem services. We review current knowledge of non‐native marine species in the Antarctic region, the physical and physiological factors that resist establishment of non‐native marine species, changes to resistance under climate change, the role of legislation in limiting marine introductions, and the effect of increasing human activity on vectors and pathways of introduction. Evidence of non‐native marine species is limited: just four marine non‐native and one cryptogenic species that were likely introduced anthropogenically have been reported freely living in Antarctic or sub‐Antarctic waters, but no established populations have been reported; an additional six species have been observed in pathways to Antarctica that are potentially at risk of becoming invasive. We present estimates of the intensity of ship activity across fishing, tourism and research sectors: there may be approximately 180 vessels and 500+ voyages in Antarctic waters annually. However, these estimates are necessarily speculative because relevant data are scarce. To facilitate well‐informed policy and management, we make recommendations for future research into the likelihood of marine biological invasions in the Antarctic region.  相似文献   

7.
8.
Aim We tested the hypothesis that construction of lakes and ponds has facilitated both inter‐ and intracontinental invasions of calanoid copepod species. Location North Island, New Zealand. Methods We sampled both natural and constructed lakes, ponds and reservoirs for calanoid copepods in the North Island, New Zealand. Species records were supplemented by examining historically collected samples and literature review. Distributions of non‐indigenous calanoid copepod species were compared between constructed and natural waters. Species distributions of native species were compared with the basement terranes (microplates) of the North Island to determine if they possess ‘natural ranges’, and to assess whether construction of new water bodies had altered these distributions. Results Ten calanoid copepod species have been recorded. At least four, and possibly five, of these species are non‐indigenous and were restricted to constructed water bodies. Occurrences in constructed water bodies were not restricted to dammed valleys, but also included ponds constructed on farms, ornamental ponds, disused quarries and retired mines. Four Boeckella species had distributions in natural waters closely related to the North Island basement terranes, and therefore possess ‘natural ranges’ on the island. One species, Boeckella propinqua, was found in natural lakes over a small geographical range only, but has spread with construction of new water bodies to now be widely distributed over the island. Main conclusions Construction of lakes and ponds has facilitated the invasion of calanoid copepod species at both inter‐ and intracontinental scales. Our findings suggest that resident native calanoid copepod species may reduce the risk of invasion to natural water bodies, as similar‐sized species are commonly unable to co‐occur. Spread of the non‐indigenous representatives from constructed into natural waters is inevitable, with established populations providing local propagule supplies for regular introductions.  相似文献   

9.
Understanding why populations of some migratory species show a directional change over time, i.e. increase or decrease, while others do not, remains a challenge for ecological research. One possible explanation is that species with smaller non‐breeding ranges may have more pronounced directional population trends, and their populations are thus more sensitive to the variation in environmental conditions in their non‐breeding quarters. According to the serial residency hypothesis, this sensitivity should lead to higher magnitudes (i.e. absolute values) of population trends for species with smaller non‐breeding ranges, with the direction of trend being either positive or negative depending on the nature of the environmental change. We tested this hypothesis using population trends over 2001–2012 for 36 sub‐Saharan migratory passerine birds breeding in Europe. Namely, we related the magnitude of the species' population trends to the size of their sub‐Saharan non‐breeding grounds, whilst controlling for factors including number of migration routes, non‐breeding habitat niche and wetness, breeding habitat type and life‐history strategy. The magnitude of species' population trends grew with decreasing absolute size of sub‐Saharan non‐breeding ranges, and this result remained significant when non‐breeding range size was expressed relative to the size of the breeding range. After repeating the analysis with the trend direction, the relationship with the non‐breeding range size disappeared, indicating that both population decreases and increases are frequent amongst species with small non‐breeding range sizes. Therefore, species with small non‐breeding ranges are at a higher risk of population decline due to adverse factors such as habitat loss or climatic extremes, but their populations are also more likely to increase when suitable conditions appear. As non‐breeding ranges may originate from stochasticity of non‐breeding site selection in naive birds (‘serial‐residency’ hypothesis), it is crucial to maintain a network of stable and resilient habitats over large areas of birds’ non‐breeding quarters.  相似文献   

10.
Non‐native fish species pose a major threat to local fish populations and aquatic ecosystems in general. Invasive gobies are a particular focus of research, but with partly inconsistent results. While some studies reported severe detrimental impacts on native species, others have concluded less serious or neutral effects. We provide results from a large‐scale, multi‐annual fish monitoring program on the occurrence and abundance of non‐native fishes in the main stem of a free‐flowing section of the Austrian Danube. Special emphasis was placed on identifying positive or negative interactions of invasive gobies with native species. Whereas most non‐native species occurred too sporadically or were too few in number to infer a direct threat on the local fish community, invasive gobies were among the most common fishes throughout all sampling years. Co‐occurrence analyses revealed species‐ and mesohabitat type‐specific associations of gobies with native species, which were primarily positive. Notably, native predators such as asp, burbot, or perch probably benefit from the ubiquitous gobies. Two characteristic fluvial fishes revealed negative associations with invasive gobies, namely barbel (Barbus barbus) and Danube whitefin gudgeon (Romanogobio vladykovi): they appear to avoid habitats occupied by gobies. Accordingly, high abundances of round and bighead goby most likely resulted in population losses of barbel and whitefin gudgeon, respectively. Overall, our results indicate a limited negative impact of non‐native species in the sampling area. This is because only two out of 51 occurring species were found to be adversely affected by gobies, the share of co‐occurrences with native species was high, and other non‐native species were generally rare. Nevertheless, invasions are highly dynamic, and new non‐native species are likely to occur in the Austrian Danube, calling for continued monitoring and awareness.  相似文献   

11.
Aim Non‐indigenous species pose a significant threat to the environment and to global economies. Predictive and preventative measures are widely considered more effective in curtailing invasions than are eradication or control measures. Of key importance in the prediction of regional invasion risk are the environmental conditions that enable successful establishment. Location We surveyed native and non‐indigenous sessile invertebrate diversity in each of two commercial (600–1500 vessels per year) and two recreational estuaries (seven to nine marinas) in New South Wales, Australia. Methods A nested hierarchical design was employed to investigate variation in sessile invertebrate diversity at the scales of site (1–3 km apart) and estuary (40–180 km apart). Settlement plates (15 × 15 cm) were used to sample invertebrates and background heavy metal loads were assessed using bioaccumulation in experimentally deployed oysters. Other physico‐chemical variables were monitored monthly. Manipulative experiments were used to test the direct effects of exposure to copper and tributyltin (TBT) antifouling paints on sessile invertebrates. Results Native and non‐indigenous species richness differed at various spatial scales, but showed no consistent difference between commercial and recreational estuaries. Instead, individual species distributions were strongly related to metal contamination, temperature, turbidity and pH. In experimental studies, several species (mostly invaders) were more abundant on plates exposed to copper and/or TBT antifouling paints. We found higher levels of copper (and in some instances TBT) in recreational marinas than in commercial harbours. Main conclusions Our results demonstrate the importance of metal pollution and physico‐chemical variables in the establishment of invaders in new regions. We have identified several native Australian species that have been exported overseas and suggested mechanisms contributing to their transport and establishment. Combining physico‐chemical information about donor and recipient regions with species tolerances could go some way to predicting where future invasions may occur.  相似文献   

12.
While there is a long‐history of biological invasions and their ecological impacts have been widely demonstrated across taxa and ecosystems, our knowledge on the temporal dynamic of these impacts remains extremely limited. Using a meta‐analytic approach, we investigated how the ecological impacts of non‐native brown trout (Salmo trutta), a model species with a 170‐year‐long and well‐documented history of intentional introductions across the globe, vary with time since introduction. We first observed significant negative ecological impacts immediately after the species introduction. Second, we found that the negative ecological impacts decrease with time since introduction and that the average ecological impacts become nonsignificant more than one century after introduction. This pattern was consistent across other ecological contexts (i.e., geographical location, levels of biological organization, and methodological approach). However, overall negative ecological impacts were more pronounced at the individual and population levels and in experimental studies. While the mechanisms leading to this decrease remain to be determined, our results indicate that rapid response of native organisms (e.g. adaptation, but also local extinction) may play an important role in this dynamic. Changes in native species traits and local extinction can have important conservation implications. Therefore, we argue that the decline of the negative ecological impacts over time should not be used as an argument to neglect the negative impacts of biological invasions.  相似文献   

13.
This review provides a contemporary account of knowledge on aspects of introductions of non‐native fish species and includes issues associated with introduction pathways, ecological and economic impacts, risk assessments, management options and impact of climate change. It offers guidance to reconcile the increasing demands of certain stakeholders to diversify their activities using non‐native fishes with the long‐term sustainability of native aquatic biodiversity. The rate at which non‐native freshwater fishes have been introduced worldwide has doubled in the space of 30 years, with the principal motives being aquaculture (39%) and improvement of wild stocks (17%). Economic activity is the principal driver of human‐mediated non‐native fish introductions, including the globalization of fish culture, whereby the production of the African cichlid tilapia is seven times higher in Asia than in most areas of Africa, and Chile is responsible for c. 30% of the world's farmed salmon, all based on introduced species. Consequently, these economic benefits need balancing against the detrimental environmental, social and economic effects of introduced non‐native fishes. There are several major ecological effects associated with non‐native fish introductions, including predation, habitat degradation, increased competition for resources, hybridization and disease transmission. Consideration of these aspects in isolation, however, is rarely sufficient to adequately characterize the overall ecological effect of an introduced species. Regarding the management of introduced non‐native fish, pre‐introduction screening tools, such as the fish invasiveness scoring kit (FISK), can be used to ensure that species are not introduced, which may develop invasive populations. Following the introduction of non‐native fish that do develop invasive populations, management responses are typified by either a remediation or a mitigation response, although these are often difficult and expensive to implement, and may have limited effectiveness.  相似文献   

14.
A meta-analysis of biotic resistance to exotic plant invasions   总被引:12,自引:0,他引:12  
Biotic resistance describes the ability of resident species in a community to reduce the success of exotic invasions. Although resistance is a well‐accepted phenomenon, less clear are the processes that contribute most to it, and whether those processes are strong enough to completely repel invaders. Current perceptions of strong, competition‐driven biotic resistance stem from classic ecological theory, Elton's formulation of ecological resistance, and the general acceptance of the enemies‐release hypothesis. We conducted a meta‐analysis of the plant invasions literature to quantify the contribution of resident competitors, diversity, herbivores and soil fungal communities to biotic resistance. Results indicated large negative effects of all factors except fungal communities on invader establishment and performance. Contrary to predictions derived from the natural enemies hypothesis, resident herbivores reduced invasion success as effectively as resident competitors. Although biotic resistance significantly reduced the establishment of individual invaders, we found little evidence that species interactions completely repelled invasions. We conclude that ecological interactions rarely enable communities to resist invasion, but instead constrain the abundance of invasive species once they have successfully established.  相似文献   

15.
Biological invasions often have contrasting consequences with reports of invasions decreasing diversity at small scales and facilitating diversity at large scales. Thus, previous literature has concluded that invasions have a fundamental spatial scale‐dependent relationship with diversity. Whether the scale‐dependent effects apply to vertebrate invaders is questionable because studies consistently report that vertebrate invasions produce different outcomes than plant or invertebrate invasions. Namely, vertebrate invasions generally have a larger effect size on species richness and vertebrate invaders commonly cause extinction, whereas extinctions are rare following invertebrate or plant invasions. In an agroecosystem invaded by a non‐native ungulate (i.e., feral swine, Sus scrofa), we monitored species richness of native vertebrates in forest fragments ranging across four orders of magnitude in area. We tested three predictions of the scale‐dependence hypothesis: (a) Vertebrate species richness would positively increase with area, (b) the species richness y‐intercept would be lower when invaded, and (c) the rate of native species accumulation with area would be steeper when invaded. Indeed, native vertebrate richness increased with area and the species richness was 26% lower than should be expected when the invasive ungulate was present. However, there was no evidence that the relationship was scale dependent. Our data indicate the scale‐dependent effect of biological invasions may not apply to vertebrate invasions.  相似文献   

16.
The European green crab Carcinus maenas is one of the world's most successful aquatic invaders, having established populations on every continent with temperate shores. Here we describe patterns of genetic diversity across both the native and introduced ranges of C. maenas and its sister species, C. aestuarii, including all known non‐native populations. The global data set includes sequences from the mitochondrial cytochrome c oxidase subunit I gene, as well as multilocus genotype data from nine polymorphic nuclear microsatellite loci. Combined phylogeographic and population genetic analyses clarify the global colonization history of C. maenas, providing evidence of multiple invasions to Atlantic North America and South Africa, secondary invasions to the northeastern Pacific, Tasmania, and Argentina, and a strong likelihood of C. maenas × C. aestuarii hybrids in South Africa and Japan. Successful C. maenas invasions vary broadly in the degree to which they retain genetic diversity, although populations with the least variation typically derive from secondary invasions or from introductions that occurred more than 100 years ago.  相似文献   

17.
Human-caused disturbances can lead to the extinction of indigenous (endemic and native) species, while facilitating and increasing the colonisation of exotic species; this increase can, in turn, promote the similarity of species compositions between sites if human-disturbed sites are consistently invaded by a regionally species-poor pool of exotic species. In this study, we analysed the extent to which epigean arthropod assemblages of four islands of the Azorean archipelago are characterised by nestedness according to a habitat-altered gradient. The degree of nestedness represents the extent to which less ubiquitous species occur in subsets of sites occupied by the more widespread species, resulting in an ordered loss/gain of species across environmental or ecological gradients. A predictable loss of species across communities while maintaining others may lead to more similar communities (i.e. lower beta-diversity). In contrast, anti-nestedness occurs when different species tend to occupy distinct sites, thus characterising a replacement of species across such gradients. Our results showed that an increase in exotic species does not promote assemblage homogenisation at the habitat level. On the contrary, exotic species were revealed as habitat specialists that constitute new and well-differentiated assemblages, even increasing the species compositional heterogeneity within human-altered landscapes. Therefore, contrary to expectations, our results show that both indigenous and exotic species established idiosyncratic assemblages within habitats and islands. We suggest that both the historical extinction of indigenous species in disturbed habitats and the habitat-specialised character of some exotic invasions have contributed to the construction of current assemblages.  相似文献   

18.
Population genetic diversity influences colonization success   总被引:1,自引:0,他引:1  
Much thought has been given to the individual‐level traits that may make a species a successful colonizer. However, these traits have proven to be weak predictors of colonization success. Here, we test whether population‐level characteristics, specifically genetic diversity and population density, can influence colonization ability on a short‐term ecological timescale, independent of longer‐term effects on adaptive potential. Within experimentally manipulated populations of the weedy herb Arabidopsis thaliana, we found that increased genetic diversity increased colonization success measured as population‐level seedling emergence rates, biomass production, flowering duration, and reproduction. Additive and non‐additive effects contributed to these responses, suggesting that both individual genotypes (sampling effect) and positive interactions among genotypes (complementarity) contributed to increased colonization success. In contrast, manipulation of plant density had no effect on colonization success. The heightened ability of relatively genetically rich populations to colonize novel habitats, if a general phenomenon, may have important implications for predicting and controlling biological invasions.  相似文献   

19.
Questions: Plant invasions are considered one of the top threats to the biodiversity of native taxa, but clearly documenting the causal links between invasions and the decline of native species remains a major challenge of invasion biology. Most studies have focused on impacts of invaders' living biomass, rather than on mechanisms mediated by litter. However, invasive plant litter, which is often of a very different type and quantity than a system's native plant litter, can have multiple important effects on ecosystem processes – such as nitrogen cycling and soil microclimate – that may influence native plants. Location: We studied effects of litter of invasive grass species that are widespread throughout western North America on native shrubs in southern California's semi‐arid habitat of coastal sage scrub. Methods: We combined a 3‐year field manipulation of non‐native litter with structural equation modeling to understand interacting effects on non‐native grasses, native shrubs, soil nitrogen (available and total), and soil moisture. Results: Litter addition facilitated non‐native grass growth, revealing a positive feedback likely to enhance invasion success. Contrary to a major paradigm of invasion biology – that competition with invasive plant species causes declines of native plants – we found that litter also facilitated growth of the native dominant shrub, a result supported by observational trends. Structural equation models indicated that enhanced soil moisture mediated the positive effects of litter on shrub growth. Conclusions: We demonstrate that invasive plants, via their litter, can facilitate dominant native plants by altering soil moisture. Our results highlight that understanding the impacts and mechanisms of plant invasions may be enhanced by considering the role of invasive plant litter on native plants and ecosystem properties.  相似文献   

20.
Facilitated by the intensification of global trading, the introduction and dispersal of species to areas in which they are historically non‐native is nowadays common. From an evolutionary standpoint, invasions are paradoxical: not only non‐native environments could be different from native ones for which introduced individuals would be ill‐adapted, but also small founding population size should be associated with reduced adaptive potential. As such, biological invasions are considered valuable real‐time evolutionary experiments. Here, we investigated the population structure and adaptive potential of the highly invasive topmouth gudgeon (Pseudorasbora parva) across Europe and East Asia. We RAD‐sequenced 301 specimens from sixteen populations and three distinct within‐catchment invaded regions as well as two locations in the native range. With 13,785 single nucleotide polymorphisms, we provide conclusive evidence for a genome‐wide signature of two distinct invasion events, in Slovakia and Turkey, each originating from a specific area in the native range. A third invaded area, in France, appears to be the result of dispersal within the invasive range. Few loci showed signs of selection, the vast majority of which being identified in the Slovakian region. Functional annotation suggests that faster early stage development, resistance to pollution and immunocompetence contribute to the invasion success of the local habitats. By showing that populations in the invasive range have different evolutionary histories, our study reinforces the idea that populations, rather than species, are the units to consider in invasion biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号