共查询到20条相似文献,搜索用时 0 毫秒
1.
ESX‐1 exploits type I IFN‐signalling to promote a regulatory macrophage phenotype refractory to IFNγ‐mediated autophagy and growth restriction of intracellular mycobacteria 下载免费PDF全文
Julia Lienard Elin Movert Christine Valfridsson Erik Sturegård Fredric Carlsson 《Cellular microbiology》2016,18(10):1471-1485
The ability of macrophages to eradicate intracellular pathogens is normally greatly enhanced by IFNγ, a cytokine produced mainly after onset of adaptive immunity. However, adaptive immunity is unable to provide sterilizing immunity against mycobacteria, suggesting that mycobacteria have evolved virulence strategies to inhibit the bactericidal effect of IFNγ‐signalling in macrophages. Still, the host–pathogen interactions and cellular mechanisms responsible for this feature have remained elusive. We demonstrate that the ESX‐1 type VII secretion systems of Mycobacterium tuberculosis and Mycobacterium marinum exploit type I IFN‐signalling to promote an IL‐12low/IL‐10high regulatory macrophage phenotype characterized by secretion of IL‐10, IL‐27 and IL‐6. This mechanism had no impact on intracellular growth in the absence of IFNγ but suppressed IFNγ‐mediated autophagy and growth restriction, indicating that the regulatory phenotype extends to function. The IFNγ‐refractory phenotype was partly mediated by IL‐27‐signalling, establishing functional relevance for this downstream cytokine. These findings identify a novel macrophage‐modulating function for the ESX‐1 secretion system that may contribute to suppress the efficacy of adaptive immunity and provide mechanistic insight into the antagonistic cross talk between type I IFNs and IFNγ in mycobacterial infection. 相似文献
2.
Adam Vigil Rocio Ortega Rie Nakajima‐Sasaki Jozelyn Pablo Douglas M. Molina Chien‐Chung Chao Hua‐Wei Chen Wei‐Mei Ching Philip L. Felgner 《Proteomics》2010,10(12):2259-2269
Comprehensive evaluation of the humoral immune response to Coxiella burnetii may identify highly needed diagnostic antigens and potential subunit vaccine candidates. Here we report the construction of a protein microarray containing 1901 C. burnetii ORFs (84% of the entire proteome). This array was probed with Q‐fever patient sera and naïve controls in order to discover C. burnetii‐specific seroreactive antigens. Among the 21 seroreactive antigens identified, 13 were significantly more reactive in Q‐fever cases than naïve controls. The remaining eight antigens were cross‐reactive in both C. burnetii infected and naïve patient sera. An additional 64 antigens displayed variable seroreactivity in Q‐fever patients, and underscore the diversity of the humoral immune response to C. burnetii. Nine of the differentially reactive antigens were validated on an alternative immunostrip platform, demonstrating proof‐of‐concept development of a consistent, safe, and inexpensive diagnostic assay alternative. Furthermore, we report here the identification of several new diagnostic antigens and potential subunit vaccine candidates for the highly infectious category B alphaproteobacteria, C. burnetii. 相似文献
3.
Mengjiao Fu Yuchen Liu Guannan Wang Peng Wang Jianing Zhang Chen Chen Mingliang Zhao Shan Zhang Jun Jiao Xuan Ouyang Yonghui Yu Bohai Wen Chengzhi He Jian Wang Dongsheng Zhou Xiaolu Xiong 《PLoS pathogens》2022,18(7)
Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91–120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection. 相似文献
4.
A proposed model to explain persistent infection of host cells with Coxiella burnetii 总被引:12,自引:0,他引:12
L929 mouse fibroblast cells and J774 macrophage-like cells are both susceptible to persistent infection with the Q fever agent Coxiella burnetti. Previously this laboratory has shown that persistently infected cell populations multiply with unaltered generation times or cell cycle progression. It has also been reported by others and us that highly infected cells typically exhibit one large parasite-containing vacuole. We now report that lightly and heavily infected cells are capable of division and in the process segregate the parasite-containing vacuole into one of the emerging daughter cells; the companion daughter cell emerges parasite-free. This asymmetric division of infected cells, revealed via photomicrography of stained cells, accounts for the appearance of uninfected cells within persistently infected host cell populations that were previously 100% infected. Some of the persistently infected L929 populations were maintained in culture for over two years without the addition of normal cells. 相似文献
5.
Iu E Polotski? A B Da?ter V E Efremov V A Kuzina A G Belov N K Tokarevich N A Kartseva T V Koroleva 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》1991,(9):70-75
After the intraperitoneal injection of corpuscles of C. burnetii antigen (Ag), phospholipid (PL), and sediment obtained after the extraction of PL from Ag with chloroform-methanol (CM) slight leukocytic reaction developed in the peritoneum on day 1, and on day 2 it could be observed in the liver and in the spleen. Ag induced the most pronounced morphological changes. In the spleen they were manifested by the activation of T- and B-dependent zones of white pulp from day 2 and by the pronounced hyperplasia of reticular cells and macrophages, leading to splenomegaly, by days 7-14. Simultaneously lymphoid-macrophagal granulomas and hepatomegaly developed in the liver. By days 7-14 the foci of necrosis in the liver were caused by the thrombosis of portal veins and were not registered after the injection of PL and CM (and earlier also in experiments with Ag in doses of 0.1-0.3 mg). 相似文献
6.
7.
Stewart G. Martin Siwei Zhang Song Yang Behnaz Saidy Suha Deen Sarah J. Storr 《Journal of cellular and molecular medicine》2020,24(16):9165-9175
Dopamine and cyclic‐AMP activated phosphoprotein Mr32kDa (DARPP‐32) is a central signalling protein in neurotransmission. Following DARPP‐32 phosphorylation by protein kinase A (PKA), DARPP‐32 becomes a potent protein phosphatase 1 (PP1) inhibitor. DARPP‐32 can itself inhibit PKA following DARPP‐32 phosphorylation by cyclin‐dependent kinase 5 (Cdk5). Increasing evidence indicates a role for DARPP‐32 and its associated signalling pathways in cancer; however, its role in ovarian cancer remains unclear. Using immunohistochemistry, expression of DARPP‐32, PP1 and Cdk5 was determined in a large cohort of primary tumours from ovarian cancer patients (n = 428, 445 and 434 respectively) to evaluate associations between clinical outcome and clinicopathological criteria. Low cytoplasmic and nuclear DARPP‐32 expression was associated with shorter patient overall survival and progression‐free survival (P = .001, .001, .004 and .037 respectively). Low nuclear and cytoplasmic DARPP‐32 expression remained significantly associated with overall survival in multivariate Cox regression (P = .045, hazard ratio (HR) = 0.734, 95% confidence interval (CI) = 0.542‐0.993 and P = .001, HR = 0.494, 95% CI = 0.325‐0.749, respectively). High cytoplasmic and nuclear PP1 expression was associated with shorter patient overall survival and high cytoplasmic PP1 expression with shorter progression‐free survival (P = .005, .033, and .037, respectively). High Cdk5 expression was associated with shorter progression‐free survival (P = .006). These data suggest a role for DARPP‐32 and associated signalling kinases as prognostic markers with clinical utility in ovarian cancer. 相似文献
8.
Invasion of hepatocytes by Plasmodium sporozoites requires cGMP‐dependent protein kinase and calcium dependent protein kinase 4 下载免费PDF全文
K. Govindasamy S. Jebiwott D. K. Jaijyan A. Davidow K. K. Ojo W. C. Van Voorhis M. Brochet O. Billker P. Bhanot 《Molecular microbiology》2016,102(2):349-363
Invasion of hepatocytes by sporozoites is essential for Plasmodium to initiate infection of the mammalian host. The parasite's subsequent intracellular differentiation in the liver is the first developmental step of its mammalian cycle. Despite their biological significance, surprisingly little is known of the signalling pathways required for sporozoite invasion. We report that sporozoite invasion of hepatocytes requires signalling through two second‐messengers – cGMP mediated by the parasite's cGMP‐dependent protein kinase (PKG), and Ca2+, mediated by the parasite's calcium‐dependent protein kinase 4 (CDPK4). Sporozoites expressing a mutated form of Plasmodium berghei PKG or carrying a deletion of the CDPK4 gene are defective in invasion of hepatocytes. Using specific and potent inhibitors of Plasmodium PKG and CDPK4, we demonstrate that PKG and CDPK4 are required for sporozoite motility, and that PKG regulates the secretion of TRAP, an adhesin that is essential for motility. Chemical inhibition of PKG decreases parasite egress from hepatocytes by inhibiting either the formation or release of merosomes. In contrast, genetic inhibition of CDPK4 does not significantly decrease the number of merosomes. By revealing the requirement for PKG and CDPK4 in Plasmodium sporozoite invasion, our work enables a better understanding of kinase pathways that act in different Plasmodium stages. 相似文献
9.
Interactions between the Coxiella burnetii parasitophorous vacuole and the endoplasmic reticulum involve the host protein ORP1L 下载免费PDF全文
Anna V. Justis Bryan Hansen Paul A. Beare Kourtney B. King Robert A. Heinzen Stacey D. Gilk 《Cellular microbiology》2017,19(1)
Coxiella burnetii is a gram‐negative intracellular bacterium that forms a large, lysosome‐like parasitophorous vacuole (PV) essential for bacterial replication. Host membrane lipids are critical for the formation and maintenance of this intracellular niche, yet the mechanisms by which Coxiella manipulates host cell lipid metabolism, trafficking and signalling are unknown. Oxysterol‐binding protein‐related protein 1 long (ORP1L) is a mammalian lipid‐binding protein that plays a dual role in cholesterol‐dependent endocytic trafficking as well as interactions between endosomes and the endoplasmic reticulum (ER). We found that ORP1L localized to the Coxiella PV within 12 h of infection through a process requiring the Coxiella Dot/Icm Type 4B secretion system, which secretes effector proteins into the host cell cytoplasm where they manipulate trafficking and signalling pathways. The ORP1L N‐terminal ankyrin repeats were necessary and sufficient for PV localization, indicating that ORP1L binds a PV membrane protein. Strikingly, ORP1L simultaneously co‐localized with the PV and ER, and electron microscopy revealed membrane contact sites between the PV and ER membranes. In ORP1L‐depleted cells, PVs were significantly smaller than PVs from control cells. These data suggest that ORP1L is specifically recruited by the bacteria to the Coxiella PV, where it influences PV membrane dynamics and interactions with the ER. 相似文献
10.
Stephen A. Stricker 《Molecular reproduction and development》2009,76(8):693-707
Based on immunoblotting analyses using phospho‐specific antibodies, follicle‐free oocytes of the marine nemertean worm Cerebratulus sp. activate protein kinase C (PKC) when induced to mature by either seawater (SW) or cAMP‐elevating drugs. In SW‐stimulated oocytes, the onset of maturation (=germinal vesicle breakdown, “GVBD”) can be inhibited by broadly acting PKC antagonists such as bisindoylmaleimide (BIM)‐I or BIM‐IX. Conversely, co‐treatment with SW solutions of BIM‐I or BIM‐IX plus a cAMP elevator (forskolin, serotonin, or a phosphodiesterase inhibitor) restores GVBD, indicating that the blockage of SW‐induced GVBD by PKC antagonists is not simply due to oocyte morbidity and that such inhibition is somehow reversible by cAMP signaling. In tests to determine which specific PKC may be involved in regulating GVBD, immunoblots fail to provide strong evidence for the presence of conventional or novel PKCs, which are characteristically activated by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA). Moreover, inhibitors of TPA‐sensitive PKCs do not prevent SW‐induced GVBD, and TPA itself serves to downregulate, rather than stimulate, GVBD. Alternatively, maturing oocytes apparently possess phosphorylated forms of TPA‐insensitive isotypes, including an ~67‐kDa atypical PKC and an ~130‐kDa PKC‐related kinase (PRK). Accordingly, inhibitors of atypical PKC signaling block SW‐but not cAMP‐induced GVBD, collectively suggesting that instead of depending on a conventional or novel isotype, SW‐induced GVBD may require atypical PKC and/or PRK. In addition, such findings provide further support for the view that GVBD in nemertean oocytes can be achieved via multiple mechanisms, with SW triggering different signaling pathways than are stimulated in the presence of cAMP‐elevating drugs. Mol. Reprod. Dev. 76: 693–707, 2009. © 2008 Wiley‐Liss, Inc. 相似文献
11.
Horst D Favaloro V Vilardi F van Leeuwen HC Garstka MA Hislop AD Rabu C Kremmer E Rickinson AB High S Dobberstein B Ressing ME Wiertz EJ 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(6):3594-3605
EBV, the prototypic human γ(1)-herpesvirus, persists for life in infected individuals, despite the presence of vigorous antiviral immunity. CTLs play an important role in the protection against viral infections, which they detect through recognition of virus-encoded peptides presented in the context of HLA class I molecules at the cell surface. The viral peptides are generated in the cytosol and are transported into the endoplasmic reticulum (ER) by TAP. The EBV-encoded lytic-phase protein BNLF2a acts as a powerful inhibitor of TAP. Consequently, loading of antigenic peptides onto HLA class I molecules is hampered, and recognition of BNLF2a-expressing cells by cytotoxic T cells is avoided. In this study, we characterize BNLF2a as a tail-anchored (TA) protein and elucidate its mode of action. Its hydrophilic N-terminal domain is located in the cytosol, whereas its hydrophobic C-terminal domain is inserted into membranes posttranslationally. TAP has no role in membrane insertion of BNLF2a. Instead, Asna1 (also named TRC40), a cellular protein involved in posttranslational membrane insertion of TA proteins, is responsible for integration of BNLF2a into the ER membrane. Asna1 is thereby required for efficient BNLF2a-mediated HLA class I downregulation. To optimally accomplish immune evasion, BNLF2a is composed of two specialized domains: its C-terminal tail anchor ensures membrane integration and ER retention, whereas its cytosolic N terminus accomplishes inhibition of TAP function. These results illustrate how EBV exploits a cellular pathway for TA protein biogenesis to achieve immune evasion, and they highlight the exquisite adaptation of this virus to its host. 相似文献
12.
13.
Nuclear trafficking of the anti‐apoptotic Coxiella burnetii effector protein AnkG requires binding to p32 and Importin‐α1 下载免费PDF全文
Walter Schäfer Rita A. Eckart Benedikt Schmid Hasret Cagköylü Kerstin Hof Yves A. Muller Bushra Amin Anja Lührmann 《Cellular microbiology》2017,19(1)
The obligate intracellular bacterium Coxiella burnetii causes the zoonotic disease Q‐fever. Coxiella pathogenesis depends on a functional type IV secretion system (T4SS). The T4SS effector AnkG inhibits pathogen‐induced host cell apoptosis, which is believed to be important for the establishment of a persistent infection. However, the mode of action of AnkG is not fully understood. We have previously demonstrated that binding of AnkG to p32 is crucial for migration of AnkG into the nucleus and that nuclear localization of AnkG is essential for its anti‐apoptotic activity. Here, we compared the activity of AnkG from the C. burnetii strains Nine Mile and Dugway. Although there is only a single amino acid exchange at residue 11, we observed a difference in anti‐apoptotic activity and nuclear migration. Mutation of amino acid 11 to glutamic acid, threonine or valine results in AnkG mutants that had lost the anti‐apoptotic activity and the ability to migrate into the nucleus. We identified Importin‐α1 to bind to AnkG, but not to the mutants and concluded that binding of AnkG to p32 and Importin‐α1 is essential for migration into the nucleus. Also during Coxiella infection binding of AnkG to p32 and Importin‐α1 is crucial for nuclear localization of AnkG. 相似文献
14.
Colognato H Baron W Avellana-Adalid V Relvas JB Baron-Van Evercooren A Georges-Labouesse E ffrench-Constant C 《Nature cell biology》2002,4(11):833-841
Depending on the stage of development, a growth factor can mediate cell proliferation, survival or differentiation. The interaction of cell-surface integrins with extracellular matrix ligands can regulate growth factor responses and thus may influence the effect mediated by the growth factor. Here we show, by using mice lacking the alpha(6) integrin receptor for laminins, that myelin-forming oligodendrocytes activate an integrin-regulated switch in survival signalling when they contact axonal laminins. This switch alters survival signalling mediated by neuregulin from dependence on the phosphatidylinositol-3-OH kinase (PI(3)K) pathway to dependence on the mitogen-activated kinase pathway. The consequent enhanced survival provides a mechanism for target-dependent selection during development of the central nervous system. This integrin-regulated switch reverses the capacity of neuregulin to inhibit the differentiation of precursors, thereby explaining how neuregulin subsequently promotes differentiation and survival in myelinating oligodendrocytes. Our results provide a general mechanism by which growth factors can exert apparently contradictory effects at different stages of development in individual cell lineages. 相似文献
15.
AMP‐activated protein kinase mediates activity‐dependent axon branching by recruiting mitochondria to axon 下载免费PDF全文
During development, axons are guided to their target areas and provide local branching. Spatiotemporal regulation of axon branching is crucial for the establishment of functional connections between appropriate pre‐ and postsynaptic neurons. Common understanding has been that neuronal activity contributes to the proper axon branching; however, intracellular mechanisms that underlie activity‐dependent axon branching remain elusive. Here, we show, using primary cultures of the dentate granule cells, that neuronal depolarization‐induced rebalance of mitochondrial motility between anterograde versus retrograde transport underlies the proper formation of axonal branches. We found that the depolarization‐induced branch formation was blocked by the uncoupler p‐trifluoromethoxyphenylhydrazone, which suggests that mitochondria‐derived ATP mediates the observed phenomena. Real‐time analysis of mitochondrial movement defined the molecular mechanisms by showing that the pharmacological activation of AMP‐activated protein kinase (AMPK) after depolarization increased anterograde transport of mitochondria into axons. Simultaneous imaging of axonal morphology and mitochondrial distribution revealed that mitochondrial localization preceded the emergence of axonal branches. Moreover, the higher probability of mitochondrial localization was correlated with the longer lifetime of axon branches. We qualitatively confirmed that neuronal ATP levels decreased immediately after depolarization and found that the phosphorylated form of AMPK was increased. Thus, this study identifies a novel role for AMPK in the transport of axonal mitochondria that underlie the neuronal activity‐dependent formation of axon branches. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 557–573, 2014 相似文献
16.
Felix Breyer Anetta Hrtlova Teresa Thurston Helen R Flynn Probir Chakravarty Julia Janzen Julien Peltier Tiaan Heunis Ambrosius P Snijders Matthias Trost Steven C Ley 《The EMBO journal》2021,40(10)
Tumour progression locus 2 (TPL‐2) kinase mediates Toll‐like receptor (TLR) activation of ERK1/2 and p38α MAP kinases in myeloid cells to modulate expression of key cytokines in innate immunity. This study identified a novel MAP kinase‐independent regulatory function for TPL‐2 in phagosome maturation, an essential process for killing of phagocytosed microbes. TPL‐2 catalytic activity was demonstrated to induce phagosome acidification and proteolysis in primary mouse and human macrophages following uptake of latex beads. Quantitative proteomics revealed that blocking TPL‐2 catalytic activity significantly altered the protein composition of phagosomes, particularly reducing the abundance of V‐ATPase proton pump subunits. Furthermore, TPL‐2 stimulated the phosphorylation of DMXL1, a regulator of V‐ATPases, to induce V‐ATPase assembly and phagosome acidification. Consistent with these results, TPL‐2 catalytic activity was required for phagosome acidification and the efficient killing of Staphylococcus aureus and Citrobacter rodentium following phagocytic uptake by macrophages. TPL‐2 therefore controls innate immune responses of macrophages to bacteria via V‐ATPase induction of phagosome maturation. 相似文献
17.
Yoshio Wakamatsu 《Development, growth & differentiation》2009,51(8):707-714
Although cAMP‐dependent kinase (PKA) has been known to regulate many biological systems, including patterning, cell differentiation and proliferation, it is not well understood how the spatial‐temporal specificity of the PKA signaling is generated. While the PKA signal activation is regulated in many ways, a direct visualization of PKA activity in situ is not possible. Thus, examinations of PKA regulators will provide indirect, but nonetheless important information to elucidate the distribution of PKA activity. In the present study, three isoforms of PKA‐inhibitor (PKI) genes were identified from avian genome, and their expression patterns were examined during the organogenesis period. PKI genes were strongly expressed in muscle, liver, and nervous system primordia, suggesting their inhibitory roles on the PKA signaling in the development of these tissues. 相似文献
18.
Heat shock protein 70 and AMP‐activated protein kinase contribute to 17‐DMAG‐dependent protection against heat stroke 下载免费PDF全文
Yi‐Jen Peng Yen‐Mei Lee Chung‐Yu Yang Yi‐Ju Tsai Mao‐Hsiung Yen Pao‐Yun Cheng 《Journal of cellular and molecular medicine》2016,20(10):1889-1897
Heat shock protein 70 (Hsp70) preconditioning induces thermotolerance, and adenosine monophosphate (AMP)‐activated protein kinase (AMPK) plays a role in the process of autophagy. Here, we investigated whether 17‐dimethylaminoethylamino‐17‐demethoxy‐geldanamycin (17‐DMAG) protected against heat stroke (HS) in rats by up‐regulation of Hsp70 and phosphorylated AMPK (pAMPK). To produce HS, male Sprague–Dawley rats were placed in a chamber with an ambient temperature of 42°C. Physiological function (mean arterial pressure, heart rate and core temperature), hepatic and intestinal injury, inflammatory mediators and levels of Hsp70, pAMPK and light chain 3 (LC3B) in hepatic tissue were measured in HS rats or/and rats pre‐treated with 17‐DMAG. 17‐DMAG pre‐treatment significantly attenuated hypotension and organ dysfunction induced by HS in rats. The survival time during HS was also prolonged by 17‐DMAG treatment. Hsp70 expression was increased, whereas pAMPK levels in the liver were significantly decreased in HS rats. Following pre‐treatment with 17‐DMAG, Hsp70 protein levels increased further, and pAMPK levels were enhanced. Treatment with an AMPK activator significantly increased the LC3BII/LC3BI ratio as a marker of autophagy in HS rats. Treatment with quercetin significantly suppressed Hsp70 and pAMPK levels and reduced the protective effects of 17‐DMAG in HS rats. Both of Hsp70 and AMPK are involved in the 17‐DMAG‐mediated protection against HS. 17‐DMAG may be a promising candidate drug in the clinical setting. 相似文献
19.
Yersinia protein kinase A phosphorylates vasodilator‐stimulated phosphoprotein to modify the host cytoskeleton 下载免费PDF全文
Yuehua Ke Yafang Tan Na Wei Fen Yang Huiying Yang Shiyang Cao Xiaohui Wang Jian Wang Yanping Han Yujing Bi Yujun Cui Yanfeng Yan Yajun Song Xiaoming Yang Zongmin Du Ruifu Yang 《Cellular microbiology》2015,17(4):473-485
Pathogenic Yersinia species evolved a type III secretion system that injects a set of effectors into the host cell cytosol to promote infection. One of these effectors, Yersinia protein kinase A (YpkA), is a multidomain effector that harbours a Ser/Thr kinase domain and a guanine dissociation inhibitor (GDI) domain. The intercellular targets of the kinase and GDI domains of YpkA were identified to be Gαq and the small GTPases RhoA and Rac1, respectively, which synergistically induce cytotoxic effects on infected cells. In this study, we demonstrate that vasodilator‐stimulated phosphoprotein (VASP), which is critical for regulation of actin assembly, cell adhesion and motility, is a direct substrate of YpkA kinase activity. Ectopic co‐expression of YpkA and VASP in HEK293T cells leads to the phosphorylation of VASP at S157, and YpkA kinase activity is essential for VASP phosphorylation at this site. Moreover, YpkA directly phosphorylates VASP in in vitro kinase assay. YpkA‐mediated VASP phosphorylation significantly inhibits actin polymerization and promotes the disruption of actin cytoskeleton, which inhibits the phagocytosis. Taken together, our study found a novel molecular mechanism used by YpkA to disrupt cytoskeleton dynamics, thereby promoting the anti‐phagocytosis ability of pathogenic Yersiniae. 相似文献
20.
Animals often respond to danger by raising alarm to inform others. Alarm signals come in many different forms, such as visual or mechanical display, sound or odour. Some animals produce vocal alarm signals that vary with the level of danger. For chemical alarm signals, virtually nothing is known about such context‐dependent signalling due to a general notion that alarm pheromones have fixed compositions. Here, we show that larvae of the Western Flower Thrips (Frankliniella occidentalis) produce an alarm pheromone whose composition varies with the level of danger they face: the presence of a relatively harmless predator or a very dangerous predator, that is either actually attacking or not. The frequency of alarm pheromone excretion increases with the level of danger. Moreover, the composition of excreted alarm pheromone varies in the relationship between total and relative amount of the putative two components, decyl acetate (DAc) and dodecyl acetate (DDAc). When pheromone is excreted with a predator present but not attacking, the percentage DDAc increases with the total amount of pheromone. When a predator does attack, however, the relationship between percentage DDAc and total amount of pheromone is reversed. Taken together, the alarm signal of thrips larvae appears to be context dependent, which to our knowledge is the first report of context‐dependent composition of an alarm pheromone. 相似文献