首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The idea that science is dangerous is deeply embedded in our culture, particularly in literature, yet science provides the best way of understanding the world. Science is not the same as technology. In contrast to technology, reliable scientific knowledge is value-free and has no moral or ethical value. Scientists are not responsible for the technological applications of science; the very nature of science is that it is not possible to predict what will be discovered or how these discoveries could be applied. The obligation of scientists is to make public both any social implications of their work and its technological applications. A rare case of immoral science was eugenics. The image of Frankenstein has been turned by the media into genetic pornography, but neither cloning nor stem cells or gene therapy raise new ethical issues. There are no areas of research that are so socially sensitive that research into them should be proscribed. We have to rely on the many institutions of a democratic society: parliament, a free and vigorous press, affected groups and the scientists themselves. That is why programmes for the public understanding of science are so important. Alas, we still do not know how best to do this.  相似文献   

2.
The study of islands as model systems has played an important role in the development of evolutionary and ecological theory. The 50th anniversary of MacArthur and Wilson's (December 1963) article, ‘An equilibrium theory of insular zoogeography’, was a recent milestone for this theme. Since 1963, island systems have provided new insights into the formation of ecological communities. Here, building on such developments, we highlight prospects for research on islands to improve our understanding of the ecology and evolution of communities in general. Throughout, we emphasise how attributes of islands combine to provide unusual research opportunities, the implications of which stretch far beyond islands. Molecular tools and increasing data acquisition now permit re‐assessment of some fundamental issues that interested MacArthur and Wilson. These include the formation of ecological networks, species abundance distributions, and the contribution of evolution to community assembly. We also extend our prospects to other fields of ecology and evolution – understanding ecosystem functioning, speciation and diversification – frequently employing assets of oceanic islands in inferring the geographic area within which evolution has occurred, and potential barriers to gene flow. Although island‐based theory is continually being enriched, incorporating non‐equilibrium dynamics is identified as a major challenge for the future.  相似文献   

3.
Island systems are important models for evolutionary biology because they provide convenient, discrete biogeographic units of study. Continental islands with a history of intermittent dry land connections confound the discrete definitions of islands and have led zoologists to predict (i) little differentiation of terrestrial organisms among continental shelf islands and (ii) extinction, rather than speciation, to be the main cause of differences in community composition among islands. However, few continental island systems have been subjected to well‐sampled phylogeographic studies, leaving these biogeographic assumptions of connectivity largely untested. We analysed nine unlinked loci from shrews of the genus Crocidura from seven mountains and two lowland localities on the Sundaic continental shelf islands of Sumatra and Java. Coalescent species delimitation strongly supported all currently recognized Crocidura species from Sumatra (six species) and Java (five species), as well as one undescribed species endemic to each island. We find that nearly all species of Crocidura in the region are endemic to a single island and several of these have their closest relative(s) on the same island. Intra‐island genetic divergence among allopatric, conspecific populations is often substantial, perhaps indicating species‐level diversity remains underestimated. One recent (Pleistocene) speciation event generated two morphologically distinct, syntopic species on Java, further highlighting the prevalence of within‐island diversification. Our results suggest that both between‐ and within‐island speciation processes generated local endemism in Sundaland, supplementing the traditional view that the region's fauna is relictual and primarily governed by extinction.  相似文献   

4.
A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed ‘Sea‐Level Sensitive’ dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio‐eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50‐m isobath) in response to sea‐level oscillations driven by glacial–interglacial cycles. The following questions are considered by means of this revision: (i) what was the impact of (global) glacio‐eustatic sea‐level oscillations, particularly those of the Pleistocene glacial–interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? (ii) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? (iii) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea‐level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea‐surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea‐level changes and their impact on the littoral marine biota; island marine species–area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in‐situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory.  相似文献   

5.
The general dynamic model of oceanic island biogeography (GDM) has added a new dimension to theoretical island biogeography in recognizing that geological processes are key drivers of the evolutionary processes of diversification and extinction within remote islands. It provides a dynamic and essentially non‐equilibrium framework generating novel predictions for emergent diversity properties of oceanic islands and archipelagos. Its publication in 2008 coincided with, and spurred on, renewed attention to the dynamics of remote islands. We review progress, both in testing the GDM's predictions and in developing and enhancing ecological–evolutionary understanding of oceanic island systems through the lens of the GDM. In particular, we focus on four main themes: (i) macroecological tests using a space‐for‐time rationale; (ii) extensions of theory to islands following different patterns of ontogeny; (iii) the implications of GDM dynamics for lineage diversification and trait evolution; and (iv) the potential for downscaling GDM dynamics to local‐scale ecological patterns and processes within islands. We also consider the implications of the GDM for understanding patterns of non‐native species diversity. We demonstrate the vitality of the field of island biogeography by identifying a range of potentially productive lines for future research.  相似文献   

6.

Objectives

To explore scientists'' perspectives on the challenges and pressures of translating research findings into clinical practice and public health policy.

Methods

We conducted semi-structured interviews with a purposive sample of 20 leading scientists engaged in genetic research on addiction. We asked participants for their views on how their own research translates, how genetic research addresses addiction as a public health problem and how it may affect the public''s view of addiction.

Results

Most scientists described a direct translational route for their research, positing that their research will have significant societal benefits, leading to advances in treatment and novel prevention strategies. However, scientists also pointed to the inherent pressures they feel to quickly translate their research findings into actual clinical or public health use. They stressed the importance of allowing the scientific process to play out, voicing ambivalence about the recent push to speed translation.

Conclusions

High expectations have been raised that biomedical science will lead to new prevention and treatment modalities, exerting pressure on scientists. Our data suggest that scientists feel caught in the push for immediate applications. This overemphasis on rapid translation can lead to technologies and applications being rushed into use without critical evaluation of ethical, policy, and social implications, and without balancing their value compared to public health policies and interventions currently in place.  相似文献   

7.
Island disharmony refers to the biased representation of higher taxa on islands compared to their mainland source regions and represents a central concept in island biology. Here, we develop a generalizable framework for approximating these source regions and conduct the first global assessment of island disharmony and its underlying drivers. We compiled vascular plant species lists for 178 oceanic islands and 735 mainland regions. Using mainland data only, we modelled species turnover as a function of environmental and geographic distance and predicted the proportion of shared species between each island and mainland region. We then quantified the over‐ or under‐representation of families on individual islands (representational disharmony) by contrasting the observed number of species against a null model of random colonization from the mainland source pool, and analysed the effects of six family‐level functional traits on the resulting measure. Furthermore, we aggregated the values of representational disharmony per island to characterize overall taxonomic bias of a given flora (compositional disharmony), and analysed this second measure as a function of four island biogeographical variables. Our results indicate considerable variation in representational disharmony both within and among plant families. Examples of generally over‐represented families include Urticaceae, Convolvulaceae and almost all pteridophyte families. Other families such as Asteraceae and Orchidaceae were generally under‐represented, with local peaks of over‐representation in known radiation hotspots. Abiotic pollination and a lack of dispersal specialization were most strongly associated with an insular over‐representation of families, whereas other family‐level traits showed minor effects. With respect to compositional disharmony, large, high‐elevation islands tended to have the most disharmonic floras. Our results provide important insights into the taxon‐ and island‐specific drivers of disharmony. The proposed framework allows overcoming the limitations of previous approaches and provides a quantitative basis for incorporating functional and phylogenetic approaches into future studies of island disharmony.  相似文献   

8.
Janet Franklin  David W. Steadman 《Oikos》2008,117(12):1885-1891
Using data on prehistoric and modern birds from seven islands in the Kingdom of Tonga, we demonstrate that there is no positive relationship between species richness (S) and island area (A) over the observed range of A (1.8–259 km2). The uniform S‐values occur across more than three orders of magnitude of A when prehistoric data are included, and the strongest predictor of S on any island is the level of fossil sampling (number of identified bones). Below a minimum value for A (in Tonga < 1.8 km2), S declines to zero as A does the same. Within the ranges of island elevation (E) and inter‐island isolation (I) among the seven islands, neither E (11–312 m) nor I (0.6–38 km) has much if any effect on S. Under natural (pre‐human) conditions, a positive species‐area relationship may not be a valid generalization for birds on oceanic islands.  相似文献   

9.
I trace how the American Society for Cell Biology became a strong political advocate for the scientific community. I celebrate how good leadership and an effective staff enabled its energetic volunteer organization to have an impact, but I also ask how the effort can be made more successful.Many scientists take for granted that their scientific societies advocate for the well being of their individual members and the health of science. However, advocacy is a relatively recent development that emerged over the past two decades. Advocacy is essential in a democracy because science competes for taxpayer dollars with every other activity supported by the federal government. Advocacy is also important to ensure that lawmakers adopt sensible policies. I review how the American Society for Cell Biology (ASCB) and its allies learned how to fulfill this obligation, and I ask the reader to join the effort. The objective of these advocacy efforts is to influence political decisions through education and information, but the efforts by scientific societies are completely nonpartisan. Support from both political parties is essential to meet our goals.During the 1970s and 1980s biomedical scientists discussed federal funding and public policies that affected our science. Each year the public policy staff of the Federation of Societies of Experimental Biology (FASEB) helped member societies reach a consensus recommendation on the level of federal funding for the biosciences. However, we tended to talk to ourselves because we lacked effective ways to communicate with politicians or the outside world. For the most part we relegated the responsibility for advocacy to medical school deans and presidents of research universities. Their professional associations—the American Association of Medical Colleges (AAMC) and the Association of American Universities (AAU)—generally did a reasonable job of representing the interests of the scientists who worked at their schools.  相似文献   

10.
Scale, the scale dependency of patterns and processes, and the ways that organisms scale their responses to these patterns and processes are central to island and landscape ecology. Here, we take a database of studies in island ecology and investigate how studies have changed over a 40-year period with respect to spatial scale and organisms studied. We demonstrate that there have been changes in the spatial scale of islands studied and that there is taxonomic bias in favour of vertebrates in island ecological studies when compared to scientific publications as a whole. We discuss how such taxonomic bias may have arisen and discuss the implications for ecology and biogeography.  相似文献   

11.
The island species–area relationship (ISAR) describes how the number of species increases with increasing size of an island (or island‐like habitat), and is of fundamental importance in island biogeography and conservation. Here, we use a framework based on individual‐based rarefaction to infer whether ISARs result from passive sampling, or whether some processes are acting beyond sampling (e.g., disproportionate effects and/or habitat heterogeneity). Using data on total and relative abundances of four taxa (birds, butterflies, amphibians, and reptiles) from multiple islands in the Andaman and Nicobar archipelago, we examine how different metrics of biodiversity (total species richness, rarefied species richness, and abundance‐weighted effective numbers of species emphasizing common species) vary with island area. Total species richness increased for all taxa, as did rarefied species richness controlling for a given sampling effort. This indicates that the ISAR did not result because of passive sampling, but that instead, some species were disproportionately favored on larger islands. For birds, frogs, and lizards, this disproportionate effect was only associated with species that were rarer in the samples, but for butterflies, both more common and rarer species were affected. Furthermore, for the two taxa for which we had plot‐level data (reptiles and amphibians), within‐island β‐diversity did not increase with island size, suggesting that within‐island compositional effects were unlikely to be driving these ISARs. Overall, our results indicate that the ISARs of these taxa are most likely driven by disproportionate effects, that is, where larger islands are important sources of biodiversity beyond a simple sampling expectation, especially through their influence on rarer species, thus emphasizing their role in the preservation and conservation of species.  相似文献   

12.
Island biogeography has greatly contributed to our understanding of the processes determining species' distributions. Previous research has focused on the effects of island geography (i.e., island area, elevation, and isolation) and current climate as drivers of island species richness and endemism. Here, we evaluate the potential additional effects of historical climate on breeding land bird richness and endemism in Wallacea and the West Indies. Furthermore, on the basis of species distributions, we identify island biogeographical network roles and examine their association with geography, current and historical climate, and bird richness/endemism. We found that island geography, especially island area but also isolation and elevation, largely explained the variation in island species richness and endemism. Current and historical climate only added marginally to our understanding of the distribution of species on islands, and this was idiosyncratic to each archipelago. In the West Indies, endemic richness was slightly reduced on islands with historically unstable climates; weak support for the opposite was found in Wallacea. In both archipelagos, large islands with many endemics and situated far from other large islands had high importance for the linkage within modules, indicating that these islands potentially act as speciation pumps and source islands for surrounding smaller islands within the module and, thus, define the biogeographical modules. Large islands situated far from the mainland and/or with a high number of nonendemics acted as links between modules. Additionally, in Wallacea, but not in the West Indies, climatically unstable islands tended to interlink biogeographical modules. The weak and idiosyncratic effect of historical climate on island richness, endemism, and network roles indicates that historical climate had little effects on extinction‐immigration dynamics. This is in contrast to the strong effect of historical climate observed on the mainland, possibly because surrounding oceans buffer against strong climate oscillations and because geography is a strong determinant of island richness, endemism and network roles.  相似文献   

13.
Milberg (2014, Applied Vegetation Science, this issue) argues that scientific journals do not adequately respond to the practical needs of vegetation management. To bridge the gap between scientists and practitioners, he proposes a reform of applied vegetation research and of the journal Applied Vegetation Science. As the Chief Editors, we agree that it is vital to make the results of our studies accessible to decision‐makers and managers, but this cannot be at the expense of scientific research, or its publication. International scientific journals are source of theoretical foundations for applications, therefore they cannot be transformed to primarily solve practical issues while giving up their focus on understanding processes.  相似文献   

14.
A double mutualism (DM) occurs when two interacting species benefit each other in two different functions, e.g. when an animal species acts both as pollinator and seed disperser of the same plant. Besides the double benefit, a DM also imposes a larger risk to both functions if the performance of one partner declines. We conducted the first global review of DMs involving pollinators and seed dispersers, aiming to: 1) assess their prevalence across ecosystems and biogeographical regions; 2) identify the main plant and animal taxa, and their traits, implicated in DMs; and 3) evaluate the conservation status of double mutualist species. We compiled published and unpublished DM records using specific search terms, noting the species involved, their conservation status and geographic location, as well as the type of study (species vs community‐level) in which the DM was detected. We identified 302 DM cases involving 207 plant and 92 animal species from 16 mainland and 17 island areas. Most records come from tropical regions and islands. Animals included birds (62%), mammals (22%), and reptiles (16%), mostly opportunist species; only 18% were nectarivores. Plants were mainly fleshy‐fruited shrub or tree species (59%) with actinomorphic flowers that were visited by several or many pollinator species (87%). Most (56%) DMs were detected in community‐level studies. DMs are mostly prevalent in ecosystems with limited food resources and mutualist partners, and with high generalization levels. Nearly 30% of the species involved in DMs are threatened according to IUCN criteria, 68% of which are found on islands. The high prevalence of DM on islands paired with the threat status of island species suggest that the loss of a double mutualists and its cascading consequences may have a severe impact on community composition and functioning of fragile island ecosystems.  相似文献   

15.
Oceanic islands are renowned for the profound scientific insights that their fascinating biotas have provided to biologists during the past two centuries. Research presented at Island Biology 2014—an international conference, held in Honolulu, Hawaii (7–11 July 2014), which attracted 253 presenters and 430 participants from at least 35 countries1—demonstrated that islands are reclaiming a leading role in ecology and evolution, especially for synthetic studies at the intersections of macroecology, evolution, community ecology and applied ecology. New dynamics in island biology are stimulated by four major developments. We are experiencing the emergence of a truly global and comprehensive island research community incorporating previously neglected islands and taxa. Macroecology and big-data analyses yield a wealth of global-scale synthetic studies and detailed multi-island comparisons, while other modern research approaches such as genomics, phylogenetic and functional ecology, and palaeoecology, are also dispersing to islands. And, increasingly tight collaborations between basic research and conservation management make islands places where new conservation solutions for the twenty-first century are being tested. Islands are home to a disproportionate share of the world''s rare (and extinct) species, and there is an urgent need to develop increasingly collaborative and innovative research to address their conservation requirements.  相似文献   

16.
Aim The influence of physiographic and historical factors on species richness of native and non‐native vascular plants on 22 coastal islands was examined. Location Islands off the coast of north‐eastern USA and south‐eastern Canada between 41° and 45° N latitude were studied. Island size ranges from 3 to 26,668 ha. All islands were deglaciated between 15,000 and 11,000 yr bp ; all but the four New Brunswick islands were attached to the mainland until rising sea level isolated them between 14,000 and 3800 yr bp . Methods Island species richness was determined from floras compiled or revised since 1969. Simple and multiple regression and rank correlation analysis were employed to assess the relative influence of independent variables on species richness. Potential predictors included island area, latitude, elevation, distance from the mainland, distance from the nearest larger island, number of soil types, years since isolation, years since deglaciation, and human population density. Results Native vascular plant species richness for the 22 islands in this study is influenced most strongly by island area, latitude, and distance from the nearest larger island; richness increases with island area, but decreases with latitude and distance from the nearest larger island as hypothesized. That a similar model employing distance from the mainland does not meet the critical value of P confirms the importance of the stepping‐stone effect. Habitat diversity as measured by number of soil types is also an important predictor of native plant species richness, but at least half of its influence can be attributed to island area, with which it is correlated. Two historical factors, years since deglaciation and years since isolation, also appear to be highly correlated with native species richness, but their influence cannot be separated from that of latitude for the present sample size. Non‐native vascular plant species richness is influenced primarily by island area and present‐day human population density, although human population density may be a surrogate for the cumulative effect of several centuries of anthropogenic impacts related to agriculture, hunting, fishing, whaling, tourism, and residential development. Very high densities of ground‐nesting pelagic birds may account for the high percentage of non‐native species on several small northern islands. Main conclusions Many of the principles of island biogeography that have been applied to oceanic islands apply equally to the 22 islands in this study. Native vascular plant species richness for these islands is strongly influenced by physiographic factors. Influence of two historical factors, years since deglaciation and years since isolation, cannot be assessed with the present sample size. Non‐native vascular plant species richness is influenced by island area as well as by human population density; human population density may be a surrogate for other anthropogenic impacts.  相似文献   

17.
Treeline research has strongly focused on mountain systems on the mainland. However, island treelines offer the opportunity to contribute to the global framework on treeline elevation due to their island‐specific attributes such as isolation, small area, low species richness and relative youth. We hypothesize that, similar to the mainland, latitude‐driven temperature variation is the most important determinant of island treeline elevation on a global scale. To test this hypothesis, we compared mainland with island treeline elevations. Then we focused 1) on the global effects of latitude, 2) on the regional effects of island type (continental vs oceanic islands) and 3) the local effects of several specific island characteristics (age, area, maximum island elevation, isolation and plant species richness). We collected a global dataset of islands (n = 86) by applying a stratified design using GoogleEarth and the Global Island Database. For each island we extracted data on latitude and local characteristics. Treeline elevation decreased from the mainland through continental to oceanic islands. Island treeline elevation followed a hump‐shaped latitudinal distribution, which is fundamentally different from the mainland double‐hump. Higher maximum island elevation generated higher treeline elevation and was found the best single predictor of island treeline elevation, even better than latitude. Lower island treeline elevation may be the result of a low mass elevation effect (MEE) influencing island climates and an increasingly impoverished species pool but also trade wind inversion‐associated aridity. The maximum island elevation effect possibly results from an increasing mass elevation effect (MEE) with increasing island elevation but also range shifts during climatic fluctuations and the summit syndrome (i.e. high wind speeds and poor soils in peak regions). Investigating islands in treeline research has enabled disentangling the global effect of latitude from regional and local effects and, at least for islands, a comprehensive quantification of the MEE.  相似文献   

18.
ABSTRACT The islands of the Caribbean contain habitat of critical importance to a large number of endemic and resident birds, as well as many overwintering Neotropical migrants, and they rank as a globally outstanding conservation priority ecoregion and biodiversity hotspot. Considerable research from the region has focused on the ecology of permanent resident species, and these studies have had particular significance for threatened species management, especially parrot biology and conservation, but also for tropical community ecology in general. Work by ornithologists in the Caribbean has been instrumental in improving our understanding of the ecology of overwintering Neotropical migrants and in developing long‐term monitoring programs. Although Caribbean‐based studies of birds have resulted in significant contributions in many important areas of ecological research, there is a great need for additional research. Especially needed are studies with application to the management of resident species, and studies of how bird populations may be affected by pathogens, parasites, plants, and other types of biotic interactions. Studies focusing on how bird species and populations are affected by global climate change, and cumulative, landscape‐level changes in land use are also needed. Along with additional research, scientists have an important role to play in building capacity to prepare the next generation of biologists in the region who will need to address mounting challenges related to biodiversity protection. As with many conservation efforts, funding is a critical need for almost all organizations and agencies involved in research, conservation action, and capacity building in the West Indies.  相似文献   

19.
Terrestrial plants and animals on oceanic islands occupy zones of volcanism found at intraplate localities and along island arcs at subduction zones. The organisms often survive as metapopulations, or populations of separate sub‐populations connected by dispersal. Although the individual islands and their local subpopulations are ephemeral and unstable, the ecosystem dynamism enables metapopulations to persist in a region, more or less in situ, for periods of up to tens of millions of years. As well as surviving on systems of young volcanic islands, metapopulations can also evolve there; tectonic changes can break up widespread insular metapopulations and produce endemics restricted to fewer islands or even a single island. These processes explain the presence of old endemic clades on young islands, which is often reported in molecular clock studies, and the many distribution patterns in island life that are spatially correlated with tectonic features. Metapopulations can be ruptured by sea floor subsidence, and this occurs with volcanic loading in zones of active volcanism and with sea floor cooling following its production at mid‐ocean ridges. Metapopulation vicariance will also result if an active zone of volcanism is rifted apart. This can be caused by the migration of an arc (by slab rollback) away from a continent or from another subduction zone, by the offset of an arc at transform faults and by sea floor spreading at mid‐ocean ridges. These mechanisms are illustrated with examples from islands in the Caribbean and the Pacific. Endemism on oceanic islands has usually been attributed to chance, long‐distance dispersal, but the processes discussed here will generate endemism on young volcanic islands by vicariance.  相似文献   

20.
Citizen science (CS) has evolved over the past decades as a working method involving interested citizens in scientific research, for example by reporting observations, taking measurements or analysing data. In the past, research on animal behaviour has been benefitting from contributions of citizen scientists mainly in the field of ornithology but the full potential of CS in ecological and behavioural sciences is surely still untapped. Here, we present case studies that successfully applied CS to research projects in wildlife biology and discuss potentials and challenges experienced. Our case studies cover a broad range of opportunities: large‐scale CS projects with interactive online tools on bird song dialects, engagement of stakeholders as citizen scientists to reduce human–wildlife conflicts, involvement of students of primary and secondary schools in CS projects as well as collaboration with the media leading to successful recruitment of citizen scientists. Each case study provides a short overview of the scientific questions and how they were approached to showcase the potentials and challenges of CS in wildlife biology. Based on the experience of the case studies, we highlight how CS may support research in wildlife biology and emphasise the value of fostering communication in CS to improve recruitment of participants and to facilitate learning and mutual trust among different groups of interest (e.g., researchers, stakeholders, students). We further show how specific training for the participants may be needed to obtain reliable data. We consider CS as a suitable tool to enhance research in wildlife biology through the application of open science procedures (i.e., open access to articles and the data on publicly available repositories) to support transparency and sharing experiences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号