首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The commensalistic interaction between vascular epiphytes and host trees is a type of biotic interaction that has been recently analysed with a network approach. This approach is useful to describe the network structure with metrics such as nestedness, specialization and interaction evenness, which can be compared with other vascular epiphyte-host tree networks from different forests of the world. However, in several cases these comparisons showed different and inconsistent patterns between these networks, and their possible ecological and evolutionary determinants have been scarcely studied. In this study, the interactions between vascular epiphytes and host trees of a subtropical forest of sierra de San Javier (Tucuman, Argentina) were analysed with a network approach. We calculated metrics to characterize the network and we analysed factors such as the abundance of species, tree size, tree bark texture, and tree wood density in order to predict interaction frequencies and network structure. The interaction network analysed exhibited a nested structure, an even distribution of interactions, and low specialization, properties shared with other obligated vascular epiphyte-host tree networks with a different assemblage structure. Interaction frequencies were predicted by the abundance of species, tree size and tree bark texture. Species abundance and tree size also predicted nestedness. Abundance indicated that abundant species interact more frequently; and tree size was an important predictor, since larger-diameter trees hosted more vascular epiphyte species than small-diameter trees. This is one of the first studies analyzing interactions between vascular epiphytes and host trees using a network approach in a subtropical forest, and taking the whole vascular epiphyte assemblage of the sampled community into account.  相似文献   

2.
植物与传粉者间相互作用,构成了复杂的传粉网络。非对称特化是共生互作网络中的有趣现象和基本特点,也被认为是植物-传粉者互作网络的结构特征之一。根据文献总结分析了植物-传粉者互作网络非对称特化的重要名词术语,并采用线性回归法深入分析了植物-传粉者互作网络的地理变异模式,以及植物生活型和网络大小等传粉网络特征对非对称程度的影响。结果表明:传粉网络大小与网络的交互作用间呈线性正相关关系,并随总物种丰度呈指数增长。25个传粉网络的线性回归斜率(Lβ)变异范围在0.002至0.031间,且斜率值随植物丰度(P)、传粉者丰度(A)、总物种丰度(R)、交互作用(I)及网络大小(M)上升而降低。海拔高度对传粉网络非对称性有一定影响效果,而纬度的变化并不显著影响传粉网络非对称性。草本植物、灌木及乔木植物与其传粉者之间的相关系数分别为-0.197,-0.026和0.200,表明草本物种比乔木物种非对称性更强。  相似文献   

3.
The community of host species that a parasite infects is often explained by functional traits and phylogeny, predicting that closely related hosts or those with particular traits share more parasites with other hosts. Previous research has examined parasite community similarity by regressing pairwise parasite community dissimilarity between two host species against host phylogenetic distance. However, pairwise approaches cannot target specific host species responsible for disproportionate levels of parasite sharing. To better identify why some host species contribute differentially to parasite diversity patterns, we represent parasite sharing using ecological networks consisting of host species connected by instances of shared parasitism. These networks can help identify host species and traits associated with high levels of parasite sharing that may subsequently identify important hosts for parasite maintenance and transmission within communities. We used global‐scale parasite sharing networks of ungulates, carnivores, and primates to determine if host importance – encapsulated by the network measures degree, closeness, betweenness, and eigenvector centrality – was predictable based on host traits. Our findings suggest that host centrality in parasite sharing networks is a function of host population density and range size, with range size reflecting both species geographic range and the home range of those species. In the full network, host taxonomic family became an important predictor of centrality, suggesting a role for evolutionary relationships between host and parasite species. More broadly, these findings show that trait data predict key properties of ecological networks, thus highlighting a role for species traits in understanding network assembly, stability, and structure.  相似文献   

4.
Nested architecture is distinctive in plant-animal mutualistic networks. However, to date an integrative and quantitative explanation has been lacking. It is evident that species often switch their interactive partners in real-world mutualistic networks such as pollination and seed-dispersal networks. By incorporating an interaction switch into a novel multi-population model, we show that the nested architecture rapidly emerges from an initially random network. The model allowing interaction switches between partner species produced predictions which fit remarkably well with observations from 81 empirical networks. Thus, the nested architecture in mutualistic networks could be an intrinsic physical structure of dynamic networks and the interaction switch is likely a key ecological process that results in nestedness of real-world networks. Identifying the biological processes responsible for network structures is thus crucial for understanding the architecture of ecological networks.  相似文献   

5.
Pollination networks are representations of all interactions between co-existing plants and their flower visiting animals at a given site. Although the study of networks has become a distinct sub-discipline in pollination biology, few studies have attempted to quantify spatio-temporal variation in species composition and structure of networks. We here investigate patterns of year-to-year change in pollination networks from six different sites spanning a large latitudinal gradient. We quantified level of species persistence and interactions among years, and examined year-to-year variation of network structural parameters in relation to latitude and sampling effort. In addition, we tested for correlations between annual variation in network parameters and short and long-term climate change variables. Numbers of plant and animal species and interactions were roughly constant from one year to another at all sites. However, composition of species and interactions changed from one year to another. Turnover was particularly high for flower visitors and interactions. On the other hand, network structural parameters (connectance, nestedness, modularity and centralization) remained remarkably constant between years, regardless of network size and latitude. Inter-annual variation of network parameters was not related to short or long term variation in climate variables (mean annual temperature and annual precipitation). We thus conclude that pollination networks are highly dynamic and variable in composition of species and interactions among years. However, general patterns of network structure remain constant, indicating that species may be replaced by topologically similar species. These results suggest that pollination networks are to some extent robust against factors affecting species occurrences.  相似文献   

6.
1. Consumer–resource species interactions form complex, dynamic networks, which may exhibit structural heterogeneity at various scales. This study set out to address whether host–parasitoid food web size and topology vary across forest canopy strata, and to what extent foliar resources and species abundances account for vertical patterns in network structure. 2. The vertical stratification of leaf miner–parasitoid food webs was examined in two monotypic beech (Nothofagus pumilio) forests in northern Patagonia, Argentina. Quantitative food webs were constructed for separate canopy layers by sampling foliage from three tree‐height classes at 0.5–1, 2–3 and 5–6 m above ground. 3. Leaf miner abundance per unit leaf mass and foliar damage (%) did not differ across strata, although foliage quality and quantity increased from the understorey to the upper canopy. Parasitism rates and food web complexity decreased with canopy height, as reflected by reduced linkage richness, linkage density, mean interaction strength, and host vulnerability. 4. Null model analyses revealed that food web metrics, especially in the upper canopy, were often lower than expected when compared with randomly structured networks. Overall, these patterns held for two forests differing in vertical structure and in dominant miner morphotype and parasitoid species. 5. These results suggest that vertical declines in network complexity may be driven by the parasitoids' limited functional response to host abundance and dispersal from pupation sites in the forest floor. A broader constraint on food web structure seemed to be imposed by host–parasitoid trait matching, a reflection of large‐scale assembly processes.  相似文献   

7.
  1. Ecological networks are valuable for ecosystem analysis but their use is often limited by a lack of data because many types of ecological interaction, for example, predation, are short‐lived and difficult to observe or detect. While there are different methods for inferring the presence of interactions, they have rarely been used to predict the interaction strengths that are required to construct weighted, or quantitative, ecological networks.
  2. Here, we develop a trait‐based approach suitable for inferring weighted networks, that is, with varying interaction strengths. We developed the method for seed‐feeding carabid ground beetles (Coleoptera: Carabidae) although the principles can be applied to other species and types of interaction.
  3. Using existing literature data from experimental seed‐feeding trials, we predicted a per‐individual interaction cost index based on carabid and seed size. This was scaled up to the population level to create inferred weighted networks using the abundance of carabids and seeds from empirical samples and energetic intake rates of carabids from the literature. From these weighted networks, we also derived a novel measure of expected predation pressure per seed type per network.
  4. This method was applied to existing ecological survey data from 255 arable fields with carabid data from pitfall traps and plant seeds from seed rain traps. Analysis of these inferred networks led to testable hypotheses about how network structure and predation pressure varied among fields.
  5. Inferred networks are valuable because (a) they provide null models for the structuring of food webs to test against empirical species interaction data, for example, DNA analysis of carabid gut regurgitates and (b) they allow weighted networks to be constructed whenever we can estimate interactions between species and have ecological census data available. This permits ecological network analysis even at times and in places when interactions were not directly assessed.
  相似文献   

8.
Recent work has suggested that emergent ecological network structure exhibits very little spatial or temporal variance despite changes in community composition. However, the changes in network interactions associated with turnover in community composition have seldom been assessed. Here we examine whether changes in ecological networks are best detected by standard emergent network metrics or by assessing internal network changes (i.e. interaction and composition turnover). To eliminate possible spatial or phylogenetic effects, that in large‐scale studies may obscure mechanisms structuring networks and interactions, we sampled multiple antagonistic (plant–herbivore) networks for a single diverse plant family (the Restionaceae) in the hyperdiverse Cape Floristic Region. These are the first plant–herbivore networks constructed for this global biodiversity hotspot. We found invariant emergent network structure despite considerable changes in insect and plant composition across communities over time and space. In contrast, there was high interaction turnover between networks. Seasonally, this was driven by turnover in insect species and insect host switching. Spatially, this was driven by simultaneous turnover in plant and insect species, suggesting that many insects are host specific or that both groups exhibit parallel responses to environmental gradients. Spatial interaction turnover was also driven by turnover in plants, showing that many insects can utilise multiple (possibly closely related) hosts and this may create divergent selection gradients that promote insect speciation. Thus we show highly variable interaction fidelity, despite invariant emergent network structure. We suggest that evaluating internal network changes may be more effective at elucidating the processes structuring networks, and many fine‐scale changes may be obscured when only calculating emergent network metrics.  相似文献   

9.
Food webs typically quantify interactions between species, whereas evolution operates through the success of alleles within populations of a single species. To bridge this gap, we quantify genotypic interaction networks among individuals of a single specialized parasitoid species and its obligate to cyclically parthenogenetic aphid host along a climatic gradient. As a case study for the kinds of questions genotype food webs could be used to answer, we show that genetically similar parasitoids became more likely to attack genetically similar hosts in warmer sites (i.e. there was network‐wide congruence between the within‐species shared allelic distance of the parasitoid and that of its host). Narrowing of host‐genotype‐niche breadth by parasitoids could reduce resilience of the network to changes in host genetic structure or invasion by novel host genotypes and inhibit biological control. Thus, our approach can be easily used to detect changes to sub‐species‐level food webs, which may have important ecological and evolutionary implications, such as promoting host‐race specialization or the accelerated loss of functional diversity following extinctions of closely related genotypes.  相似文献   

10.
1. Herbivorous insects can be classified into several trophic guilds with different levels of specialisation on their host plants, which may influence the topological structure of their trophic networks. The present study tested the hypothesis that the structure of plant–herbivore networks differs between guilds of galling, sucking, and chewing insects. 2. Six areas of Neotropical savannas were studied in two localities in the North of the state of Minas Gerais, Brazil. In each area, interactions between plant and insect species were used to build networks for different guilds. 3. In total, 18 plant–herbivore networks were built, comprising 317 insect morphospecies, 50 plant species, and 489 distinct interactions. The networks were characterised using species richness and different network topological measures (connectance, modularity, nestedness, and specialisation). 4. The results obtained showed no difference in species richness, network size, and connectance between distinct insect herbivore guilds. However, it was found that modularity was higher for exophagous than galling insect networks and nestedness was higher for chewers than for other guilds. On the other hand, galling insect networks showed higher specialisation than exophagous insect networks, and sucking insect networks were more specialised than chewing insect networks. 5. The findings of the present study indicate that, although species richness did not differ between insect guilds of herbivores in Neotropical savannas, the topological structure of networks is sensitive to biological and ecological differences between these herbivore groups. The present study stands out as the first to systematically compare the network structure of different herbivore guilds in Neotropical savannas.  相似文献   

11.
12.
Decreasing similarity between ecological communities with increasing geographic distance (i.e. distance‐decay) is a common biogeographical observation in free‐living communities, and a slightly less common observation for parasite communities. Ecological networks of interacting species may adhere to a similar pattern of decreasing interaction similarity with increasing geographic distance, especially if species interactions are maintained across space. We extend this further, examining if host–parasite networks – independent of host and parasite species identities – become more structurally dissimilar with increasing geographic distance. Utilizing a global database of helminth parasite occurrence records, we find evidence for distance‐decay relationships in host and parasite communities at both regional and global scales, but fail to detect similar relationships in network structural similarity. Host and parasite community similarity were strongly related, and both decayed rapidly with increasing geographic distance, typically resulting in complete dissimilarity after approximately 2500 km. Our failure to detect a decay in network structural similarity suggests the possibility that different host and parasite species are filling the same functional roles in interaction networks, or that variation in network similarity may be better explained by other geographic variables or aspects of host and parasite ecology.  相似文献   

13.
1.?Biological communities are organized in complex interaction networks such as food webs, which topology appears to be non-random. Gradients, compartments, nested subsets and even combinations of these structures have been shown in bipartite networks. However, in most studies only one pattern is tested against randomness and mechanistic hypotheses are generally lacking. 2.?Here we examined the topology of regional, coexisting plant-herbivore and host-parasitoid food webs to discriminate between the mentioned network patterns. We also evaluated the role of species body size, local abundance, regional frequency and phylogeny as determinants of network topology. 3.?We found both food webs to be compartmented, with interaction range boundaries imposed by host phylogeny. Species degree within compartments was mostly related to their regional frequency and local abundance. Only one compartment showed an internal nested structure in the distribution of interactions between species, but species position within this compartment was unrelated to species size or abundance. 4.?These results suggest that compartmentalization may be more common than previously considered, and that network structure is a result of multiple, hierarchical, non-exclusive processes.  相似文献   

14.
Mutualistic networks display distinct structural and organizational features such as nestedness, power‐law degree distribution and asymmetric dependencies. Attention is now focused on how these structural properties influence network function. Most plant‐pollinator networks are constructed using records of animals contacting flowers, which is based on the assumption that all visitors to flowers are pollinators; however, animals may visit flowers as nectar robbers, florivores, or to prey upon other visitors. To differentiate potential pollinator interactions from other interaction types, we examined individual bees that had visited flowers to detect if they carried pollen. Using these data, we constructed visitation and pollen‐transport networks for a spinifex‐dominated arid zone grassland. To determine how the structure of the visitation network reflects pollen transport, we compared the two networks using a null model approach to account for differences in network size. Differences in number of species, nestedness and connectance observed between the visitation and pollen‐transport networks were within expected ranges generated under the null model. The pollen‐transport network was more specialized, had lower interaction evenness, and fewer links compared to the visitation network. Almost half the number of species of the visitation network participated in the pollen‐transport network, and one‐third of unique visitation interactions resulted in pollen transport, highlighting that visitation does not always result in pollination. Floral visitor data indicate potential pollen transporters, but inferring pollination function from visitation networks needs to be performed cautiously as pollen transport resulted from both common and rare interactions, and depended on visitor identity. Although visitation and pollen‐transport networks are structurally similar, the function of all species cannot be predicted from the visitation network alone. Considering pollen transport in visitation networks is a simple first step towards determining pollinators from non‐pollinators. This is fundamental for understanding how network structure relates to network function.  相似文献   

15.
Recent research has shown that many mutualistic communities display non-random structures. While our understanding of the structural properties of mutualistic communities continues to improve, we know little of the biological variables resulting in them. Mutualistic communities include those formed between ants and extrafloral (EF) nectar-bearing plants. In this study, we examined the contributions of plant and ant abundance, plant and ant size, and plant EF nectar resources to the network structures of nestedness and interaction frequency of ant–plant networks across five sites within one geographic locality in the Sonoran Desert. Interactions between ant and plant species were largely symmetric. That is, ant and plant species exerted nearly equivalent quantitative interaction effects on one another, as measured by their frequency of interaction. The mutualistic ant–plant networks also showed nested patterns of structure, in which there was a central core of generalist ant and plant species interacting with one another and few specialist–specialist interactions. Abundance and plant size and ant body size were the best predictors of symmetric interactions between plants and ants, as well as nestedness. Despite interactions in these communities being ultimately mediated by EF nectar resources, the number of EF nectaries had a relatively weak ability to explain variation in symmetric interactions and nestedness. These results suggest that different mechanisms may contribute to structure of bipartite networks. Moreover, our results for ant–plant mutualistic networks support the general importance of species abundances for the structure of species interactions within biological communities.  相似文献   

16.
Seasonal turnover in plant and floral visitor communities changes the structure of the network of interactions they are involved in. Despite the dynamic nature of plant–visitor networks, a usual procedure is to pool year‐round interaction data into a single network which may result in a biased depiction of the real structure of the interaction network. The annual temporal dynamics and the effect of merging monthly data have previously been described for qualitative data (i.e. describing the occurrence of interactions) alone, while its quantitative aspect (i.e. the actual frequency with which interactions occur) remain little explored. For this, we built a set of 12 monthly networks describing year‐round plant–floral visitor interactions in a 30‐hectare planted forest and its adjacent agricultural landscape at Bahauddin Zakariya University Multan, Pakistan. A total of 80 plant and 162 insect species, which engaged in 1573 unique interactions, were recorded. Most network properties (particularly the number of plants, visitors and unique interactions) varied markedly during the year. Data aggregation showed that while animal species, plant species, unique interaction, weighted nestedness, interaction diversity and robustness increased, connectance and specialization decreased. The only metric which seemed relatively unaffected by data pooling was interaction evenness. In general, quantitative metrics were relatively less affected by temporal data aggregation than qualitative ones. Avoiding data aggregation not only gives a more realistic depiction of the dynamic nature of plant–visitor community networks, but also avoids biasing network metrics and, consequently, their expected response to disturbances such as the loss of species.  相似文献   

17.
Seed dispersal by vertebrates is fundamental for the persistence of plant species, forming networks of interactions that are often nested and modular. Networks involving angiosperms and frugivorous birds are relatively well-studied in the Neotropical region, but there are no previous studies of networks involving waterbirds. Here, we describe the structure of a Neotropical waterfowl seed-dispersal network and identify the species that have an important role for the network structure. We used information on 40 plant taxa found in fecal samples of five common waterfowl species to calculate the nestedness (NODF), weighted nestedness (WNODF), modularity, and weighted modularity of the network. We found that the network was nested, with yellow-billed teal showing the highest contribution both to nestedness and weighted nestedness. Twenty-four plant species contributed positively to weighted nestedness, with Salzmann's mille graines presenting the highest influence both to nestedness and weighted nestedness. The network was modular, but the weighted modularity was not significant. These results need to be considered with caution due to incomplete interaction sampling for two species. Ringed teal, Brazilian teal, and yellow-billed teal were considered hub modular species. Among plants, beak sedges and water snowflake were considered modular hub species, while Salzmann's mille graines and spikerush were network connectors. The structure of this Neotropical waterbird seed-dispersal network differed from the only previous waterfowl network study, from Europe, which found similar level of nestedness but no significant modularity. We include several possible explanations for this discrepancy and identified priorities for future research into waterbird–plant interaction networks. Abstract in Portuguese is available with online material.  相似文献   

18.
Species interact in many ways. Potentially, the type of interaction, e.g. mutualistic, commensalistic or antagonistic, determines the structure of interaction networks, but this remains poorly tested. Here we investigate whether epiphytes and wood decomposers, having different types of interaction with their host trees, show different network properties. We also test whether the traits of host trees affect network architecture. We recorded presence/absence of organisms colonizing trees, and traits of host trees, in 102 forest plots. Epiphytic bryophytes (64 species) and lichens (119 species) were recorded on c. 2300 trees. Similarly, wood-inhabiting fungi (193 species) were recorded on c. 900 dead wood items. We studied the patterns of species aggregation on host trees by comparing network metrics of species specialization, nestedness and modularity. Next, we tested whether the prevalence of interactions was influenced by host tree traits. We found non-random interaction patterns between host trees and the three ecological groups (bryophytes, lichens and fungi), with nested and modular structures associated with high host specificity. A higher modularity and number of modules was found for fungi than for epiphytes, which is likely related to their trophic relationship with the host plant, whilst the stronger nestedness for epiphytes is likely reflecting the commensalistic nature of their interactions. For all three groups, the difference in prevalence of interaction across modules was determined by a gradient in interaction intimacy (i.e. host tree specialization), driven by host tree traits. We conclude that the type of interaction with host trees defines the properties of each network: while autotrophic epiphyte networks show similar properties to mutualistic networks, the heterotrophic wood decomposers show similarity with antagonistic networks.  相似文献   

19.
Declining plant diversity alters ecological networks, such as plant–herbivore interactions. However, our knowledge of the potential mechanisms underlying effects of plant species loss on plant–herbivore network structure is still limited. We used DNA barcoding to identify herbivore–host plant associations along declining levels of tree diversity in a large‐scale, subtropical biodiversity experiment. We tested for effects of tree species richness, host functional and phylogenetic diversity, and host functional (leaf trait) and phylogenetic composition on species, phylogenetic and network composition of herbivore communities. We found that phylogenetic host composition and related palatability/defence traits but not tree species richness significantly affected herbivore communities and interaction network complexity at both the species and community levels. Our study indicates that evolutionary dependencies and functional traits of host plants determine the composition of higher trophic levels and corresponding interaction networks in species‐rich ecosystems. Our findings highlight that characteristics of the species lost have effects on ecosystem structure and functioning across trophic levels that cannot be predicted from mere reductions in species richness.  相似文献   

20.
Although a small set of external factors account for much of the spatial variation in plant and animal diversity, the search continues for general drivers of variation in parasite species richness among host species. Qualitative reviews of existing evidence suggest idiosyncrasies and inconsistent predictive power for all proposed determinants of parasite richness. Here, we provide the first quantitative synthesis of the evidence using a meta‐analysis of 62 original studies testing the relationship between parasite richness across animal, plant and fungal hosts, and each of its four most widely used presumed predictors: host body size, host geographical range size, host population density, and latitude. We uncover three universal predictors of parasite richness across host species, namely host body size, geographical range size and population density, applicable regardless of the taxa considered and independently of most aspects of study design. A proper match in the primary studies between the focal predictor and both the spatial scale of study and the level at which parasite species richness was quantified (i.e. within host populations or tallied across a host species' entire range) also affected the magnitude of effect sizes. By contrast, except for a couple of indicative trends in subsets of the full dataset, there was no strong evidence for an effect of latitude on parasite species richness; where found, this effect ran counter to the general latitude gradient in diversity, with parasite species richness tending to be higher further from the equator. Finally, the meta‐analysis also revealed a negative relationship between the magnitude of effect sizes and the year of publication of original studies (i.e. a time‐lag bias). This temporal bias may be due to the increasing use of phylogenetic correction in comparative analyses of parasite richness over time, as this correction yields more conservative effect sizes. Overall, these findings point to common underlying processes of parasite diversification fundamentally different from those controlling the diversity of free‐living organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号