首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Analysis of predator–prey interactions is a core concept of animal ecology, explaining structure and dynamics of animal food webs. Measuring the functional response, i.e. the intake rate of a consumer as a function of prey density, is a powerful method to predict the strength of trophic links and assess motives of prey choice, particularly in arthropod communities. However, due to their reductionist set‐up, functional responses, which are based on laboratory feeding experiments, may not display field conditions, possibly leading to skewed results. Here, we tested the validity of functional responses of centipede predators and their prey by comparing them with empirical gut content data from field‐collected predators. Our predator–prey system included lithobiid and geophilomorph centipedes, abundant and widespread predators of forest soils and their soil‐dwelling prey. First, we calculated the body size‐dependent functional responses of centipedes using a published functional response model in which we included natural prey abundances and animal body masses. This allowed us to calculate relative proportions of specific prey taxa in the centipede diet. In a second step, we screened field‐collected centipedes for DNA of eight abundant soil‐living prey taxa and estimated their body size‐dependent proportion of feeding events. We subsequently compared empirical data for each of the eight prey taxa, on proportional feeding events with functional response‐derived data on prey proportions expected in the gut, showing that both approaches significantly correlate in five out of eight predator–prey links for lithobiid centipedes but only in one case for geophilomorph centipedes. Our findings suggest that purely allometric functional response models, which are based on predator–prey body size ratios are too simple to explain predator–prey interactions in a complex system such as soil. We therefore stress that specific prey traits, such as defence mechanisms, must be considered for accurate predictions.  相似文献   

3.
Aim Our goals here are to: (1) assess the generality of one aspect of the island rule – the progressive trend towards decrease in size in larger species – for fossil carnivores on islands; (2) offer causal explanations for this pattern and deviations from it – as far as fossil carnivores are concerned; and (3) estimate the speed of this trend. Location Oceanic and oceanic‐like islands world‐wide. Methods Body size estimates of fossil insular carnivores and of their phylogenetically closest mainland relative were obtained from our own data and the published literature. Our dataset consisted of 18 species from nine islands world‐wide. These data were used to test whether the body size of fossil insular carnivores varies as a function of body size of the mainland species in combination with characteristics of the island ecosystem. Results Dwarfism was observed in two canid species. Moderate decrease in body mass was observed in one hyena species. Gigantism was observed in one otter species. Moderate body mass increase was observed in two otter species, one galictine mustelid and perhaps one canid. Negligible or no change in body mass at all was observed in five otter species, three galictine mustelids and one genet. Size changes in teeth do not lag behind in comparison to skeletal elements in the dwarfed canids. The evolutionary speed of dwarfism in a canid lineage is low. Main conclusions Size change in fossil terrestrial insular carnivores was constrained by certain ecological conditions, especially the availability of prey of appropriate body size. When such alternative prey was not available, the carnivores retained their mainland size. The impact of competitive carnivores seems negligible. The case of (semi‐)aquatic carnivores is much less clear. The species that maintained their ancestral body mass may have changed their diet, as is evidenced by their dentition. Among the otters, one case of significant size increase was observed, perhaps best explained as being due to it entering the niche of an obligate aquatic otter. Dwarfism was not observed in otters. The island rule seems to apply to fossil carnivores, but with exceptions. The dependency of the island rule on resource availability is emphasized by the present study.  相似文献   

4.
Carnivore kill frequency is a fundamental part of predator–prey interactions, which are important shapers of ecosystems. Current field kill frequency data are rare and existing models are insufficiently adapted to carnivore functional groups. We developed a kill frequency model accounting for carnivore mass, prey mass, pack size, partial consumption of prey and carnivore gut capacity. Two main carnivore functional groups, small prey‐feeders versus large prey‐feeders, were established based on the relationship between stomach capacity (C) and pack corrected prey mass (iMprey). Although the majority of small prey‐feeders is below, and of large prey‐feeders above a body mass of 10–20 kg, both occur across the whole body size spectrum, indicating that the dichotomy is rather linked to body size‐related ecology than physiology. The model predicts a negative relationship between predator size and kill frequency for large prey‐feeders. However, for small prey‐feeders, this negative relationship was absent. When comparing carnivore prey requirements to estimated stomach capacity, small carnivores may have to eat to their full capacity repeatedly per day, requiring fast digestion and gut clearance. Large carnivores do not necessarily have to eat to full gastric capacity per day, or do not need to eat every day, which in turn reduces kill frequencies or drives other ecological processes such as scavenging, kleptoparasitism, and partial carcass consumption. Where ecological conditions allow, large prey‐feeding appears attractive for carnivores, which can thus reduce activities related to hunting. This is particularly so for large carnivores, who can achieve distinct reductions in hunting activity due to their relatively large gut capacity.  相似文献   

5.
A novel hypothesis to better understand the evolution of gigantism in active marine predators and the diversity of body sizes, feeding strategies and thermophysiologies of extinct and living aquatic vertebrates is proposed. Recent works suggest that some aspects of animal energetics can act as constraining factors for body size. Given that mass-specific metabolic rate decreases with body mass, the body size of active predators should be limited by the high metabolic demand of this feeding strategy. In this context, we propose that shifts towards higher metabolic levels can enable the same activity and feeding strategy to be maintained at bigger body sizes, offering a satisfactory explanation for the evolution of gigantism in active predators, including a vast quantity of fossil taxa. Therefore, assessing the metabolic ceilings of living aquatic vertebrates and the thermoregulatory strategies of certain key extinct groups is now crucial to define the energetic limits of predation and provide quantitative support for this model.  相似文献   

6.
  1. DNA metabarcoding is an emerging tool used to quantify diet in environments and consumer groups where traditional approaches are unviable, including small‐bodied invertebrate taxa. However, metabarcoding of small taxa often requires DNA extraction from full body parts (without dissection), and it is unclear whether surface contamination from body parts alters presumed diet presence or diversity.
  2. We examined four different measures of diet (presence, rarefied read abundance, richness, and species composition) for a terrestrial invertebrate consumer (the spider Heteropoda venatoria) both collected in its natural environment and fed an offered diet item in contained feeding trials using DNA metabarcoding of full body parts (opisthosomas). We compared diet from consumer individuals surface sterilized to remove contaminants in 10% commercial bleach solution followed by deionized water with a set of unsterilized individuals.
  3. We found that surface sterilization did not significantly alter any measure of diet for consumers in either a natural environment or feeding trials. The best‐fitting model predicting diet detection in feeding trial consumers included surface sterilization, but this term was not statistically significant (β = −2.3, p‐value = .07).
  4. Our results suggest that surface contamination does not seem to be a significant concern in this DNA diet metabarcoding study for consumers in either a natural terrestrial environment or feeding trials. As the field of diet DNA metabarcoding continues to progress into new environmental contexts with various molecular approaches, we suggest ongoing context‐specific consideration of the possibility of surface contamination.
  相似文献   

7.
Aim We compiled data on prey utilization of spiders at a global scale to better understand the relationship between current climate or net primary production (NPP) and diet breadth, evenness and composition in spiders. We test whether the productivity and the diversity–climatic‐stability (DCS) hypotheses focusing on diversity patterns may also explain global patterns in prey utilization by web‐building and cursorial spiders. Location A global dataset of 95 data points from semi‐natural and natural terrestrial habitats spanning 41.3° S to 56.1° N. Methods We collected data on spider prey (29 groups, mostly order‐level invertebrate taxa) through extensive literature research to identify the relationship between climatic conditions and NPP and spider diets based on 66 studies of prey composition in 82 spider species. Results The number of prey groups in spider diets was positively related to NPP, after accounting for differences in sampling effort in the original studies. In general, diet breadth was significantly higher for spider species in tropical environments. Prey individuals in spider diets were more evenly distributed among different prey groups in warmer environments with lower fluctuations in precipitation. Collembola and other spiders were more common prey for spiders with a cursorial hunting mode. Myriapoda and Collembola were more common prey in cooler climates with more stable precipitation, whereas Isoptera, Lepidoptera, Psocoptera and Coleoptera showed the opposite pattern. Main conclusions The positive relationship between diet breadth and NPP and the negative relationship between prey evenness and seasonality in precipitation support the productivity and the DCS hypotheses, respectively. This effect on global patterns of invertebrate predator–prey interactions suggests that trophic interactions between spiders and their prey are sensitive to climatic conditions. Climatic conditions may not only affect spider community composition, but also considerably alter the functional role of these abundant invertebrate predators in terrestrial ecosystems.  相似文献   

8.
Metabarcoding diet analysis has become a valuable tool in animal ecology; however, co‐amplified predator sequences are not generally used for anything other than to validate predator identity. Exemplified by the common vampire bat, we demonstrate the use of metabarcoding to infer predator population structure alongside diet assessments. Growing populations of common vampire bats impact human, livestock and wildlife health in Latin America through transmission of pathogens, such as lethal rabies viruses. Techniques to determine large‐scale variation in vampire bat diet and bat population structure would empower locality‐ and species‐specific projections of disease transmission risks. However, previously used methods are not cost‐effective and efficient for large‐scale applications. Using bloodmeal and faecal samples from common vampire bats from coastal, Andean and Amazonian regions of Peru, we showcase metabarcoding as a scalable tool to assess vampire bat population structure and feeding preferences. Dietary metabarcoding was highly effective, detecting vertebrate prey in 93.2% of the samples. Bats predominantly preyed on domestic animals, but fed on tapirs at one Amazonian site. In addition, we identified arthropods in 9.3% of samples, likely reflecting consumption of ectoparasites. Using the same data, we document mitochondrial geographic population structure in the common vampire bat in Peru. Such simultaneous inference of vampire bat diet and population structure can enable new insights into the interplay between vampire bat ecology and disease transmission risks. Importantly, the methodology can be incorporated into metabarcoding diet studies of other animals to couple information on diet and population structure.  相似文献   

9.
Woody bamboos that undergo masting on a cyclic basis constitute large‐scale endogenous disturbances in forests of America, Africa and Asia, driving long‐ and short‐term effects on community structure and dynamics. Among the transient effects of these nonequilibrial phenomena are rodent outbreaks whose potential bottom‐up consequences on top predators have never been explored. We investigated the effects of unpredictable rodent outbreaks on the assemblage of nocturnal raptors of the southern Andes after a large‐scale (>140 000 ha), spatially heterogeneous, Chusquea culeou masting event in north Argentine Patagonia. We compared owl numbers and behaviours between pre‐masting (2009) and post‐masting (2011) at subsidized (outbreaking rodents) and unsubsidized (normal rodents) contiguous sites. Both generalist (opportunistic forest resident) and rodent‐specialist (forest‐facultative) owls were monitored, with emphasis on the resident territorial rufous‐legged owl (Strix rufipes). The resident owls behaved as predicted, perceiving the rodent increases soon and gathering at subsidized sites, while apparently relaxing territoriality. Contrary to our predictions, later at the rodent outbreak phase, resident territorial owls turned inconspicuous, coinciding – causally or not – with an irruption of forest‐facultative barn owls (Tyto alba tuidara), and influx of some open country short‐eared owls (Asio flammeus suinda, some of which took a chance to breed in the woods). Considering the whole rodent outbreak period, besides significant changes in owls’ numbers, we recorded a notable adjustment in owls’ foraging modes in response to food surplus (consuming prey heads only), and null interference behaviours among all observed species. This study provides a first quantitative assessment of the effects of bamboo episodic masting on top carnivores globally, and contributes novel data on the indirect effects of these events in forests of South America.  相似文献   

10.
Assessing diet variability is of main importance to better understand the biology of bats and design conservation strategies. Although the advent of metabarcoding has facilitated such analyses, this approach does not come without challenges. Biases may occur throughout the whole experiment, from fieldwork to biostatistics, resulting in the detection of false negatives, false positives or low taxonomic resolution. We detail a rigorous metabarcoding approach based on a short COI minibarcode and two‐step PCR protocol enabling the “all at once” taxonomic identification of bats and their arthropod prey for several hundreds of samples. Our study includes faecal pellets collected in France from 357 bats representing 16 species, as well as insect mock communities that mimic bat meals of known composition, negative and positive controls. All samples were analysed using three replicates. We compare the efficiency of DNA extraction methods, and we evaluate the effectiveness of our protocol using identification success, taxonomic resolution, sensitivity and amplification biases. Our parallel identification strategy of predators and prey reduces the risk of mis‐assigning prey to wrong predators and decreases the number of molecular steps. Controls and replicates enable to filter the data and limit the risk of false positives, hence guaranteeing high confidence results for both prey occurrence and bat species identification. We validate 551 COI variants from arthropod including 18 orders, 117 family, 282 genus and 290 species. Our method therefore provides a rapid, resolutive and cost‐effective screening tool for addressing evolutionary ecological issues or developing “chirosurveillance” and conservation strategies.  相似文献   

11.
Prey avoid being eaten by assessing the risk posed by approaching predators and responding accordingly. Such an assessment may result in prey–predator communication and signalling, which entail further monitoring of the predator by prey. An early antipredator response may provide potential prey with a selective advantage, although this benefit comes at the cost of disturbance in terms of lost foraging opportunities and increased energy expenditure. Therefore, it may pay prey to assess approaching predators and determine the likelihood of attack before fleeing. Given that many approaching potential predators are detected visually, we hypothesized that species with relatively large eyes would be able to detect an approaching predator from afar. Furthermore, we hypothesized that monitoring of predators by potential prey relies on evaluation through information processing by the brain. Therefore, species with relatively larger brains for their body size should be better able to monitor the intentions of a predator, delay flight for longer and hence have shorter flight initiation distances than species with smaller brains. Indeed, flight initiation distances increased with relative eye size and decreased with relative brain size in a comparative study of 107 species of birds. In addition, flight initiation distance increased independently with size of the cerebellum, which plays a key role in motor control. These results are consistent with cognitive monitoring as an antipredator behaviour that does not result in the fastest possible, but rather the least expensive escape flights. Therefore, antipredator behaviour may have coevolved with the size of sense organs, brains and compartments of the brain involved in responses to risk of predation.  相似文献   

12.
We address two fundamental ecological questions: what are the limits to animal population density and what determines those limits? We develop simple alternative models to predict population limits in relation to body mass. A model assuming that within‐species area use increases with the square of daily travel distance broadly predicts the scaling of empirical extremes of minimum density across birds and mammals. Consistent with model predictions, the estimated density range for a given mass, ‘population scope’, is greater for birds than for mammals. However, unlike mammals and carnivorous birds, expected broad relationships between body mass and density extremes are not supported by data on herbivorous and omnivorous birds. Our results suggest that simple constraints on mobility and energy use/supply are major determinants of the scaling of density limits, but further understanding of interactions between dietary constraints and density limits are needed to predict future wildlife population responses to anthropogenic threats.  相似文献   

13.
1. Australian crab spiders exploit the plant–pollinator mutualism by reflecting UV light that attracts pollinators to the flowers where they sit. However, spider UV reflection seems to vary broadly within and between individuals and species, and we are still lacking any comparative studies of prey and/or predator behaviour towards spider colour variation. 2. Here we looked at the natural variation in the coloration of two species of Australian crab spiders, Thomisus spectabilis and Diaea evanida, collected from the field. Furthermore, we examined how two species of native bees responded to variation in colour contrast generated by spiders sitting in flowers compared with vacant flowers. We used data from a bee choice experiment with D. evanida spiders and Trigona carbonaria bees and also published data on T. spectabilis spiders and Austroplebeia australis bees. 3. In the field both spider species were always achromatically (from a distance) undetectable but chromatically (at closer range) detectable for bees. Experimentally, we showed species‐specific differences in bee behaviour towards particular spider colour variation: T. carbonaria bees did not show any preference for any colour contrasts generated by D. evanida spiders but A. australis bees were more likely to reject flowers with more contrasting T. spectabilis spiders. 4. Our study suggests that some of the spider colour variation that we encounter in the field may be partly explained by the spider's ability to adjust the reflectance properties of its colour relative to the behaviour of the species of prey available.  相似文献   

14.
15.
16.
Prey modify their behaviour to avoid predation, but dilemmas arise when predators vary in hunting style. Behaviours that successfully evade one predator sometimes facilitate exposure to another predator, forcing the prey to choose the lesser of two evils. In such cases, we need to quantify behavioural strategies in a mix of predators. We model optimal behaviour of Atlantic cod Gadus morhua larvae in a water column, and find the minimal vulnerability from three common predator groups with different hunting modes; 1) ambush predators that sit‐and‐wait for approaching fish larvae; 2) cruising invertebrates that eat larvae in their path; and 3) fish which are visually hunting predators. We use a state‐dependent model to find optimal behaviours (vertical position and swimming speed over a diel light cycle) under any given exposure to the three distinct modes of predation. We then vary abundance of each predator and quantify direct and indirect effects of predation. The nature and strength of direct and indirect effects varied with predator type and abundance. Larvae escaped about half the mortality from fish by swimming deeper to avoid light, but their activity level and cumulative predation from ambush predators increased. When ambush invertebrates dominated, it was optimal to be less active but in more lit habitats, and predation from fish increased. Against cruising predators, there was no remedy. In all cases, the shift in behaviour allowed growth to remain almost the same, while total predation were cut by one third. In early life stages with high and size‐dependent mortality rates, growth rate can be a poor measure of the importance of behavioural strategies.  相似文献   

17.
Size structure of organisms at logarithmic scale (i.e. size spectrum) can often be described by a linear function with a negative slope; however, substantial deviations from linearity have often been found in natural systems. Theoretical studies suggest that greater nonlinearity in community size spectrum is associated with high predator–prey size ratios but low predator–prey abundance ratios; however, empirical evaluation of the effects of predator–prey interactions on nonlinear structures remains scarce. Here, we aim to empirically explore the pattern of the size‐specific residuals (i.e. deviations from the linear regression between the logarithmic fish abundance and the logarithmic mean fish size) by using size spectra of fish communities in 74 German lakes. We found that nonlinearity was strong in lakes with high predator–prey abundance ratios but at low predator–prey size ratios. More specifically, our results suggest that only large predators, even if occurring in low abundances, can control the density of prey fishes in a broad range of size classes in a community and thus promote linearity in the size spectrum. In turn, the lack of large predator fishes may cause high abundances of fish in intermediate size classes, resulting in nonlinear size spectra in these lakes. Moreover, these lakes were characterized by a more intense human use including high fishing pressure and high total phosphorus concentrations, which have negative impacts on the abundance of large, predatory fish. Our findings indicate that nonlinear size spectra may reflect dynamical processes potentially caused by predator–prey interactions. This opens a new perspective in the research on size spectrum, and can be relevant to further quantify the efficiency of energy transfer in aquatic food webs.  相似文献   

18.
  • 1 The Eurasian lynx Lynx lynx occupies a variety of environmental and climatic conditions, and the majority of present‐day European populations have either recovered from severe demographic bottlenecks, or are living in fragmented habitat. These factors may have affected the genetic variability of lynx populations. We summarize available data on genetics, population status and ecology of these felids to shed light on the pattern and mechanisms behind their genetic variability and population differentiation in Europe.
  • 2 Genetic studies conducted so far, based on mtDNA and microsatellites, have shown that the Eurasian lynx has low to moderate genetic variability. Variability is lowest in the north (Scandinavian bottlenecked population), but is also low in the Carpathian region. A trend towards loss of genetic variation has been noted in fragmented and reintroduced populations. Genetically, the populations are highly differentiated from each other.
  • 3 There are clear relationships between the pattern of lynx genetic variability, differentiation between the populations, and such factors as population history (demographic bottlenecks), social interactions and habitat fragmentation. The genetic divergence between lynx populations is also strongly correlated with the depth and duration of snow cover.
  • 4 Our review provides evidence that the lynx is undergoing significant genetic differentiation, due to several factors. To enable better planning of conservation programmes for the Eurasian lynx, researchers should identify the Evolutionarily Significant Units among its populations, using different classes of molecular markers.
  相似文献   

19.
Aquatic and terrestrial ecosystems are linked by fluxes of carbon and nutrients in riparian areas. Processes that alter these fluxes may therefore change the diet and composition of consumer communities. We used stable carbon isotope (δ13C) analyses to test whether the increased abundance of aquatic prey observed in a previous study led to a dietary shift in riparian consumers in areas illuminated by artificial light at night (ALAN). We measured the contribution of aquatic‐derived carbon to diets in riparian arthropods in experimentally lit and unlit sites along an agricultural drainage ditch in northern Germany. The δ13C signature of the spider Pachygnatha clercki (Tetragnathidae) was 0.7‰ lower in the ALAN‐illuminated site in summer, indicating a greater assimilation of aquatic prey. Bayesian mixing models also supported higher intake of aquatic prey under ALAN in spring (34% versus 21%). In contrast, isotopic signatures for P. clercki (0.3‰) and Pardosa prativaga (0.7‰) indicated a preference for terrestrial prey in the illuminated site in spring. Terrestrial prey intake increased in spring for P. clercki under ALAN (from 70% to 74%) and in spring and autumn for P. prativaga (from 68% to 77% and from 67% to 72%) and Opiliones (from 68% to 72%; 68% to 75%). This was despite most of the available prey (up to 80%) being aquatic in origin. We conclude that ALAN changed the diet of riparian secondary consumers by increasing the density of both aquatic and terrestrial prey. Dietary changes were species‐ and season‐specific, indicating that the effects of ALAN may interact with phenology and feeding strategy. Because streetlights can occur in high density near freshwaters, ALAN may have widespread effects on aquatic–terrestrial ecosystem linkages.  相似文献   

20.
The structure of the food web including the endangered lycaenid butterfly Shijimiaeoides divinus asonis (Matsumura) was analyzed to identify species contributing most to maintaining the equilibrium of the food web. Twenty‐seven species belonging to 17 families fed on Sophora flavescens Aiton, the host‐plant of S. divinus asonis: 15 species were leaf and stem feeders, seven (including S. divinus asonis) fed on flower buds, four were flower feeders and one fed on the seeds of So. flavescens. Of these 27 species, four were omnivores. The natural enemies of S. divinus asonis comprised six insect species, 11 spider species and one entomopathogenic fungus species, including six new predator records. The linkage density, total number of trophic links, connectance, average chain length and predator–prey ratio were 1.617, 97, 0.0548, 2.267 and 0.694, respectively. Exclusion of any of the 15 species with four or more trophic links reduced the connectance of the food web. These 15 species included facultative mutualistic attendant ants and predators of S. divinus asonis, herbivores to So. flavescens, an omnivore feeding on S. divinus asonis and So. flavescens, and prey insects. Therefore, future studies should monitor these 15 species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号