首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high‐elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high‐elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high‐elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high‐elevation species to climatic changes.  相似文献   

2.
Aim We explore whether molecular phylogeny and biogeography can complement evolutionary ecology in developing a method to address a long-standing issue in the evolution of migration: have migrations between breeding and non-breeding grounds, which may be on different continents, evolved through origins in the breeding grounds with successive shifts of the non-breeding distribution or vice versa? Methods To accommodate the biology of migration, we treated breeding and non-breeding distributions as characters to be mapped onto a phylogeny derived from mitochondrial DNA sequence data and so examined the ancestral home issue as a study in the direction of character evolution. Results Our main findings from applying this approach to a subset of the Charadrius complex of shorebirds (Aves: Charadriinae) are that a case can be made for shifts of breeding distributions having occurred in the ancestries of C. alexandrinus and C. veredus as those species evolved their present migration patterns. Our results also argue for a southern hemisphere origin (specifically South America) for the Charadrius complex as a whole. A South American origin implies other shifts in breeding distributions having occurred in the evolution of the species C. semipalmatus and C. vociferus. On applying the methods we developed for dealing with phylogenetic uncertainty, these results are reinforced and the merit of testing them further is suggested. Conclusions By way of a new approach to the evolution of migration, our study adds to a consensus emerging from the evolutionary ecology of migrant birds, arguing that shifts of breeding distributions are commonly, though not necessarily exclusively, involved in the evolution of migration.  相似文献   

3.
Zooplankton species are generally considered poor candidates for allopatric speciation because of their broad distributions and capabilities for long-distance dispersal. We examined the validity of this conclusion by determining both species distributions and the extent of gene frequency divergence in the Daphnia fauna of southeastern Australia, a mature landscape dominated by members of the carinata complex. Although delimitation of species boundaries was complicated by the prevalence of interspecific hybrids and variation in breeding systems, allozyme analysis of 187 populations indicated the presence of at least seven species. All of these species had restricted distributions, and several were narrowly endemic. Gene frequency divergence was often apparent between populations separated by only a few kilometers but was least prominent in species from inland areas. The extent of regional gene frequency shifts varied among species—two narrowly distributed (projecta, thomsoni) and one broadly distributed (carinata) species showed little divergence between sites, but two other common species (cephalata, longicephala) showed marked gene frequency shifts coincident with physiographic barriers. Together, the limited species distributions and regional gene-pool fragmentation suggest that allopatric speciation has played an important role in the origin of taxon diversity in the Daphnia carinata complex.  相似文献   

4.
This paper advances an hypothesis that the primary adaptive driver of seasonal migration is maintenance of site fidelity to familiar breeding locations. We argue that seasonal migration is therefore principally an adaptation for geographic persistence when confronted with seasonality – analogous to hibernation, freeze tolerance, or other organismal adaptations to cyclically fluctuating environments. These ideas stand in contrast to traditional views that bird migration evolved as an adaptive dispersal strategy for exploiting new breeding areas and avoiding competitors. Our synthesis is supported by a large body of research on avian breeding biology that demonstrates the reproductive benefits of breeding‐site fidelity. Conceptualizing migration as an adaptation for persistence places new emphasis on understanding the evolutionary trade‐offs between migratory behaviour and other adaptations to fluctuating environments both within and across species. Seasonality‐induced departures from breeding areas, coupled with the reproductive benefits of maintaining breeding‐site fidelity, also provide a mechanism for explaining the evolution of migration that is agnostic to the geographic origin of migratory lineages (i.e. temperate or tropical). Thus, our framework reconciles much of the conflict in previous research on the historical biogeography of migratory species. Although migratory behaviour and geographic range change fluidly and rapidly in many populations, we argue that the loss of plasticity for migration via canalization is an overlooked aspect of the evolutionary dynamics of migration and helps explain the idiosyncratic distributions and migratory routes of long‐distance migrants. Our synthesis, which revolves around the insight that migratory organisms travel long distances simply to stay in the same place, provides a necessary evolutionary context for understanding historical biogeographic patterns in migratory lineages as well as the ecological dynamics of migratory connectivity between breeding and non‐breeding locations.  相似文献   

5.
Climate change (CC) and sea level rise (SLR) are phenomena that could have severe impacts on the distribution of coastal dune vegetation. To explore this we modeled the climatic niches of six coastal dunes plant species that grow along the shoreline of the Gulf of Mexico and the Yucatan Peninsula, and projected climatic niches to future potential distributions based on two CC scenarios and SLR projections. Our analyses suggest that distribution of coastal plants will be severely limited, and more so in the case of local endemics (Chamaecrista chamaecristoides, Palafoxia lindenii, Cakile edentula). The possibilities of inland migration to the potential ‘new shoreline’ will be limited by human infrastructure and ecosystem alteration that will lead to a ‘coastal squeeze’ of the coastal habitats. Finally, we identified areas as future potential refuges for the six species in central Gulf of Mexico, and northern Yucatán Peninsula especially under CC and SLR scenarios.  相似文献   

6.
Ecological niche modeling (ENM) is used widely to study species’ geographic distributions. ENM applications frequently involve transferring models calibrated with environmental data from one region to other regions or times that may include novel environmental conditions. When novel conditions are present, transferability implies extrapolation, whereas, in absence of such conditions, transferability is an interpolation step only. We evaluated transferability of models produced using 11 ENM algorithms from the perspective of interpolation and extrapolation in a virtual species framework. We defined fundamental niches and potential distributions of 16 virtual species distributed across Eurasia. To simulate real situations of incomplete understanding of species’ distribution or existing fundamental niche (environmental conditions suitable for the species contained in the study area; N* F ), we divided Eurasia into six regions and used 1–5 regions for model calibration and the rest for model evaluation. The models produced with the 11 ENM algorithms were evaluated in environmental space, to complement the traditional geographic evaluation of models. None of the algorithms accurately estimated the existing fundamental niche (N* F ) given one region in calibration, and model evaluation scores decreased as the novelty of the environments in the evaluation regions increased. Thus, we recommend quantifying environmental similarity between calibration and transfer regions prior to model transfer, providing an avenue for assessing uncertainty of model transferability. Different algorithms had different sensitivity to completeness of knowledge of N* F , with implications for algorithm selection. If the goal is to reconstruct fundamental niches, users should choose algorithms with limited extrapolation when N* F is well known, or choose algorithms with increased extrapolation when N* F is poorly known. Our assessment can inform applications of ecological niche modeling transference to anticipate species invasions into novel areas, disease emergence in new regions, and forecasts of species distributions under future climate conditions.  相似文献   

7.
Theory and empirical data suggest the areas of origin of a crop to be the general area of origin of its coevolved weeds. These longer evolved weeds would have an advantage over species with a shorter evolutionary time and migrate more successfully. We seek to identify patterns by comparing two regions with a shared crop, similar physiographic traits, but little direct contact, one of which is the area of origin of the crop. We compared the diversity of the maize weed flora and its edible components between two rural villages each of Oaxaca, Mexico, and Honde Valley, Zimbabwe, using vegetation sampling, interviews and participatory observation. The Mexican fields had higher species richness and diversity than the Zimbabwean ones. Species richness and densities were higher in the villages that receive more rainfall. Mexican fields had a mainly native weed flora with almost 80% American species and very few of African origin, whereas Zimbabwe had 32% of American and 50% of African origin. The regions shared seven American species and one of African origin. American/Mesoamerican agrestal weeds appear to be more successful in maize. Subsistence farmers in both study areas consumed about 19 edible weed species of which four were common to all villages. Our results also suggest that the presence of 3–4 species of edible weeds per field may be a general pattern in the maize-based systems, and that people not necessarily want or need more, so usefulness—at least as an edible plant—would have a limited influence on migration success.  相似文献   

8.

Aim

The hypotheses proposed to explain the high percentage of bipolar lichens in Antarctica have never been explicitly tested. We used the strictly bipolar, coastal lichenized fungus Mastodia tessellata (Verrucariaceae, Ascomycota) and its photobionts (Prasiola, Trebouxiophyceae, Chlorophyta) as model species to discern whether this extraordinary disjunction originated from vicariance or long‐distance dispersal.

Location

Coasts of Antarctica, Tierra del Fuego (Chile), Alaska (USA) and British Columbia (Canada).

Methods

Based on a comprehensive geographical (315 specimens and 16 populations from Antarctica, Tierra del Fuego and North America) and molecular sampling (three and four loci for the fungus and algae respectively), we implemented explicit Bayesian methods to compare alternative hypotheses of speciation and migration, and performed dating analyses for the fungal and algal partner, in order to infer the timing of the colonization events and the direction of gene flow among distant, disjunct areas.

Results

Mastodia tessellata comprises two fungal species which in turn associate with three photobiont lineages along the studied distribution range. Independent estimation of divergence ages for myco‐ and photobionts indicated a middle to latest Miocene species split in the Southern Hemisphere, and a late Miocene to Pleistocene acquisition of the bipolar distribution. Comparison of migration models and genetic diversity patterns suggested an austral origin for the bipolar species.

Main conclusions

The complex evolutionary history of Mastodia tessellata s.l. can be explained by a combination of vicariant and long‐distance dispersal mechanisms. We provide novel evidence of a pre‐Pleistocene long‐term evolution of lichens in Antarctica as well as for bipolar distributions shaped by Southern to Northern Hemisphere migratory routes without the need for stepping stones.  相似文献   

9.
Aim Climate change causes shifts in species distributions, or ‘migrations’. Despite the centrality of species distributions to biodiversity conservation, the demonstrated large migration of tropical plant species in response to climate change in the past, and the expected sensitivity of species distributions to modern climate change, no study has tested for modern species migrations in tropical plants. Here we conduct a first test of the hypothesis that increasing temperatures are causing tropical trees to migrate to cooler areas. Location Tropical Andes biodiversity hotspot, south‐eastern Peru, South America. Methods We use data from repeated (2003/04–2007/08) censuses of 14 1‐ha forest inventory plots spanning an elevational gradient from 950 to 3400 m in Manu National Park in south‐eastern Peru, to characterize changes in the elevational distributions of 38 Andean tree genera. We also analyse changes in the genus‐level composition of the inventory plots through time. Results We show that most tropical Andean tree genera shifted their mean distributions upslope over the study period and that the mean rate of migration is approximately 2.5–3.5 vertical metres upslope per year. Consistent with upward migrations we also find increasing abundances of tree genera previously distributed at lower elevations in the majority of study plots. Main conclusions These findings are in accord with the a priori hypothesis of upward shifts in species ranges due to elevated temperatures, and are potentially the first documented evidence of present‐day climate‐driven migrations in a tropical plant community. The observed mean rate of change is less than predicted from the temperature increases for the region, possibly due to the influence of changes in moisture or non‐climatic factors such as substrate, species interactions, lags in tree community response and/or dispersal limitations. Whatever the cause(s), continued slower‐than‐expected migration of tropical Andean trees would indicate a limited ability to respond to increased temperatures, which may lead to increased extinction risks with further climate change.  相似文献   

10.
The tempo, mode, and geography of allopolyploid speciation are influenced by natural variation in the ability of parental species to express postzygotic reproductive phenotypes that affect hybrid fertility. To shed light on the impact of such natural variations, we used allohexaploid Triticum aestivum wheats’ evolution as a model and analyzed the geographic and phylogenetic distributions of Aegilops tauschii (diploid progenitor) accessions involved in the expression of abnormality and fertility in triploid F1 hybrids with Triticum turgidum (tetraploid progenitor). Artificial-cross experiments and chloroplast-DNA-based evolutionary analyses showed that hybrid-abnormality-causing accessions had limited geographic and phylogenetic distributions, indicative that postzygotic hybridization barriers are underdeveloped between these species. In contrast, accessions that are involved with fertile triploid F1 hybrid formation have wide geographic and phylogenetic distributions, indicative of a deep evolutionary origin. Wide-spread hybrid-fertilizing accessions support the theory that T. aestivum speciation occurred at multiple sites within the species range of Ae. tauschii, in which existing conditions enabled natural hybridization with T. turgidum. Implications of our findings on how natural variation in the ability of Ae. tauschii to express those postzygotic reproductive phenotypes diversified and contributed to the speciation of T. aestivum are discussed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Aim To relate the dispersal limitation of endemic terrestrial mammals in Mexico to species life‐history traits and latitude. Location Mexico. Methods We modelled species ecological niches projected as potential distributions (P) using point occurrence data and 19 environmental variables for 89 endemic mammal species, and compared the areas covered by these ecological niche models with maps of species actual distributions (R) based on minimum convex polygons connecting marginal records based on museum specimens. We correlated body mass, food habits (herbivore, omnivore, insectivore, frugivore/granivore), volant and non‐volant (fossorial, arboreal, terrestrial) habits and mean latitude to the proportion of occupancy of species potential distributional areas (R/P). Results R and P were significantly positively correlated, with an overall average R/P ratio of 0.49. Less than half of the endemics (41 species) had a high occupancy (R/P values ranging from 0.50 to 0.90); a few (four species) showed full occupancy (> 0.90). Body mass and food habits were not correlated with R/P, but latitude showed significant correlations with R/P; volant mammals tended to show higher R/P values than non‐volant mammals. Main conclusions Few species filled most of the spatial extent of their ecological niches. Life‐history traits were generally poor predictors of proportional occupancy of species potential distributions. Endemics occurring at higher latitudes showed higher occupancy, suggesting that abiotic factors are likely to limit their distributions. Conversely, species at lower latitudes showed lower occupancy, suggesting that their distributions are limited by biotic factors and/or by geographical or historical barriers that prevent dispersal. The dispersal abilities of volant compared with non‐volant endemics can explain the higher occupancy in species potential distributions in the former group. These trends provide a baseline for exploring the importance of life‐history traits and abiotic versus biotic factors in limiting species distributions.  相似文献   

12.
13.
Climate change is expected to have significant and complex impacts on ecological communities. In addition to direct effects of climate on species, there can also be indirect effects through an intermediary species, such as in host–plant interactions. Indirect effects are expected to be more pronounced in alpine environments because these ecosystems are sensitive to temperature changes and there are limited areas for migration of both species (i.e. closed systems), and because of simpler trophic interactions. We tested the hypothesis that climate change will reduce the range of an alpine butterfly (Parnassius smintheus) because of indirect effects through its host plant (Sedum sp.). To test for direct and indirect effects, we used the simulations of climate change to assess the distribution of P. smintheus with and without Sedum sp. We also compared the projected ranges of P. smintheus to four other butterfly species that are found in the alpine, but that are generalists feeding on many plant genera. We found that P. smintheus gained distributional area in climate‐only models, but these gains were significantly reduced with the inclusion of Sedum sp. and in dry‐climate scenarios which resulted in a reduction in net area. When compared to the more generalist butterfly species, P. smintheus exhibited the largest loss in suitable habitat. Our findings support the importance of including indirect effects in modelling species distributions in response to climate change. We highlight the potentially large and still neglected impacts climate change can have on the trophic structure of communities, which can lead to significant losses of biodiversity. In the future, communities will continue to favour species that are generalists as climate change induces asynchronies in the migration of species.  相似文献   

14.
In the 10 years since we published our first full analysis of mitochondrial DNA (mtDNA) variation in Rattus exulans as a means for tracking human migration in Polynesia, we have extended the commensal approach through time and space with the use of ancient DNA (aDNA) and by analysing samples from across the Pacific. Not only can mtDNA phylogenies provide information regarding population origins and paths of migration, they have also provided information regarding degrees of contact and interaction between islands. An important extension of the R. exulans project is the creation and on-going development of a genetic database for the identification of Rattus species based on mtDNA sequences. The phylogenetic analysis of sequences from 18 species and 1 subspecies of Rattus thus far have raised some questions regarding species identification and species distributions in the Pacific.  相似文献   

15.
Aim Data on geographical ranges are essential when defining the conservation status of a species, and in evaluating levels of human disturbance. Where locality data are deficient, presence‐only ecological niche modelling (ENM) can provide insights into a species’ potential distribution, and can aid in conservation planning. Presence‐only ENM is especially important for rare, cryptic and nocturnal species, where absence is difficult to define. Here we applied ENM to carry out an anthropogenic risk assessment and set conservation priorities for three threatened species of Asian slow loris (Primates: Nycticebus). Location Borneo, Java and Sumatra, Southeast Asia. Methods Distribution models were built using maximum entropy (MaxEnt) ENM. We input 20 environmental variables comprising temperature, precipitation and altitude, along with species locality data. We clipped predicted distributions to forest cover and altitudinal data to generate remnant distributions. These were then applied to protected area (PA) and human land‐use data, using specific criteria to define low‐, medium‐ or high‐risk areas. These data were analysed to pinpoint priority study sites, suitable reintroduction zones and protected area extensions. Results A jackknife validation method indicated highly significant models for all three species with small sample sizes (n = 10 to 23 occurrences). The distribution models represented high habitat suitability within each species’ geographical range. High‐risk areas were most prevalent for the Javan slow loris (Nycticebus javanicus) on Java, with the highest proportion of low‐risk areas for the Bornean slow loris (N. menagensis) on Borneo. Eighteen PA extensions and 23 priority survey sites were identified across the study region. Main conclusions Discriminating areas of high habitat suitability lays the foundations for planning field studies and conservation initiatives. This study highlights potential reintroduction zones that will minimize anthropogenic threats to animals that are released. These data reiterate the conclusion of previous research, showing MaxEnt is a viable technique for modelling species distributions with small sample sizes.  相似文献   

16.
Populational-genetic analysis of four species of lanternfish (Myctophidae), mass mesopelagic fish, was made for elucidation of mechanisms of isolation in the pelagial of the open ocean and participation in this process of large-scale and local populations. The analysis was based on samples from trawl catches in the course of the 29th cruise of RV Akademik Ioffe in 2009 to regions of the Mid-Atlantic Ridge and the Walvis Ridge. By means of several microsatellite loci, various types of intraspecies structure in ecologically similar species are shown in the areas of their sympatric life. Estimations of genetic differentiation in term of F ST vary from 0 to 0.120. High estimations of interpopulational differences indicate that homogenizing influence of large-scale circulations in some species may be limited. Various adaptive strategies which may prevent considerable migration are considered as a preliminary hypothesis. Evidence of a potential differentiating role of local circulations in zones of underwater rises is obtained.  相似文献   

17.
Migrant birds face a number of threats throughout their annual cycle, including persecution, collision with energy infrastructure, and habitat and climate change. A key challenge for the conservation of migrants is the identification of important habitat, including migratory concentration areas, because species survival rates may be determined by events in geographically very limited areas. Remote‐tracking technology is facilitating the identification of such critical habitat, although the strategic identification of important sites and incorporation of such knowledge in conservation planning remains limited. We tracked 45 individuals of an endangered, soaring migrant (Egyptian vulture Neophron percnopterus), over 75 complete migrations that traversed three continents along the Red Sea Flyway. We summarize and contextualize migration statistics by season and age class, including migration start, midpoint, and end dates, as well as linear and cumulative migration distance, migration duration and speed, and route straightness. Then, using dynamic Brownian bridge movement models, we quantified space use to identify the most important migratory bottlenecks and high‐use areas on the flyway. These areas each accounted for < 5% of the overall movement range of the tracked birds, yet > 20% of all tracks passed through bottlenecks, and > 50% of the overall vulture time spent on migration fell within high‐use areas. The most important sites were located at the southeastern Red Sea coast and Bab‐el‐Mandeb Strait (Saudi Arabia, Yemen, Djibouti), the Suez Canal zone (Egypt), and the Gulf of Iskenderun (Turkey). Discouragingly however, none of the area within the major migratory bottlenecks was protected and < 13% of the high‐use areas were protected. This demonstrates a very concerning gap in the protected area network for migratory soaring birds along the Red Sea Flyway. Because reducing threats at migratory concentrations can be a very efficient approach to protect populations, our work provides clear guidelines where conservation investment is urgently needed to benefit as many as 35 migratory soaring‐bird species that regularly use the Red Sea Flyway.  相似文献   

18.
The Casiquiare River is a unique biogeographic corridor between the Orinoco and Amazonas basins. We investigated the importance of this connection for Neotropical fishes using peacock cichlids (Cichla spp.) as a model system. We tested whether the Casiquiare provides a conduit for gene flow between contemporary populations, and investigated the origin of biogeographic distributions that span the Casiquiare. Using sequences from the mitochondrial control region of three focal species (C. temensis, C. monoculus, and C. orinocensis) whose distributions include the Amazonas, Orinoco, and Casiquiare, we constructed maximum likelihood phylograms of haplotypes and analyzed the populations under an isolation‐with‐migration coalescent model. Our analyses suggest that populations of all three species have experienced some degree of gene flow via the Casiquiare. We also generated a mitochondrial genealogy of all Cichla species using >2000 bp and performed a dispersal‐vicariance analysis (DIVA) to reconstruct the historical biogeography of the genus. This analysis, when combined with the intraspecific results, supports two instances of dispersal from the Amazonas to the Orinoco. Thus, our results support the idea that the Casiquiare connection is important across temporal scales, facilitating both gene flow and the dispersal and range expansion of species.  相似文献   

19.
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号