首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mast cells (MCs) are important sentinels of the host defence against invading pathogens. We previously reported that Staphylococcus aureus evaded the extracellular antimicrobial activities of MCs by promoting its internalization within these cells via β1 integrins. Here, we investigated the molecular mechanisms governing this process. We found that S. aureus responded to the antimicrobial mediators released by MCs by up‐regulating the expression of α‐hemolysin (Hla), fibronectin‐binding protein A and several regulatory systems. We also found that S. aureus induced the up‐regulation of β1 integrin expression on MCs and that this effect was mediated by Hla‐ADAM10 (a disintegrin and metalloproteinase 10) interaction. Thus, deletion of Hla or inhibition of Hla‐ADAM10 interaction significantly impaired S. aureus internalization within MCs. Furthermore, purified Hla but not the inactive HlaH35L induced up‐regulation of β1 integrin expression in MCs in a dose‐dependent manner. Our data support a model in which S. aureus counter‐reacts the extracellular microbicidal mechanisms of MCs by increasing expression of fibronectin‐binding proteins and by inducing Hla‐ADAM10‐mediated up‐regulation of β1 integrin in MCs. The up‐regulation of bacterial fibronectin‐binding proteins, concomitantly with the increased expression of its receptor β1 integrin on the MCs, resulted in enhanced S. aureus internalization through the binding of fibronectin‐binding proteins to integrin β1 via fibronectin.  相似文献   

2.
CD163 is a multi-ligand scavenger receptor exclusively expressed by monocytes and macrophages, which is released after their activation during sepsis (sCD163). The biological relevance of sCD163, however, is not yet clear. We now demonstrate that sCD163 exhibits direct antimicrobial effects by recognizing a specific subfragment ((6) F1(1) F2(2) F2(7) F1) of fibronectin (FN) bound to staphylococcal surface molecules. Moreover, contact with staphylococci promotes sCD163-shedding from monocyte surface via induction of metalloproteinases ADAM10 and ADAM17. sCD163 subsequently binds to Staphylococcus aureus via FN peptides and strongly amplifies phagocytosis as well as killing by monocytes and to a lesser extend by neutrophils. This mechanism exhibits additional paracrine effects because staphylococci additionally opsonized by sCD163 induce higher activation and more efficient killing activity of non-professional phagocytes like endothelial cells. Targeting pathogen-bound FN by sCD163 would be a very sophisticated strategy to attack S. aureus as any attempt of the pathogen to avoid this defence mechanism will automatically bring about loss of adherence to the host protein FN, which is a pivotal patho-mechanism of highly invasive staphylococcal strains. Thus, we report a novel function for sCD163 that is of particular importance for immune defence of the host against S. aureus infections.  相似文献   

3.
Staphylococcus aureus (S. aureus) is a frequent cause of infections in both humans and animals. Probiotics are known to inhibit colonization of pathogens on host tissues. However, mechanisms for the inhibition are still elusive due to complex host–microbe and microbe–microbe interactions. Here, we show that reduced abilities of S. aureus to infect mammary glands in the presence of Weissella cibaria (W. cibaria) were correlated with its poor adherence to mammary epithelial cells. Such inhibition by W. cibaria isolates was at least partially attributed to a fibronectin‐binding protein (FbpA) on this lactic acid bacterium. Three Wcibaria isolates containing fbpA had higher inhibitory abilities than other three LAB isolates without the gene. The fbpA‐deficient mutant of Wcibaria isolate LW1, LW1ΔfbpA, lost the inhibitory activity to reduce the adhesion of Saureus to mammary epithelial cells and was less able to reduce the colonization of Saureus in mammary glands. Expression of FbpA to the surface of LW1ΔfbpA reversed its inhibitory activities. Furthermore, addition of purified FbpA inhibited Saureus biofilm formation. Our results suggest that Wcibaria FbpA hinders Saureus colonization and infection through interfering with the Saureus invasion pathway mediated by fibronectin‐binding proteins and inhibiting biofilm formation of Saureus.  相似文献   

4.
Both cluster of differentiation (CD)4+ and CD8+ T lymphocytes play key roles in immunity to Brucella, in part because they secrete interferon (IFN)‐γ and activate bactericidal functions in macrophages. Therefore, use of markers of macrophage activation may have diagnostic and prognostic significance. High‐mobility group‐box 1 protein (HMGB1), a late‐onset pro‐inflammatory cytokine, is secreted by activated macrophages. Soluble hemoglobin scavenger receptor (sCD163) is a specific marker of anti‐inflammatory macrophages. The aim of this study was to investigate the diagnostic value of HMGB1 and sCD163 concentrations in brucellosis and its various clinical forms. Serum HMGB1 and sCD163 concentrations in 49 brucellosis patients were compared with those in 52 healthy control subjects. Both serum HMGB1 and sCD163 concentrations were significantly higher in brucellosis patients than in healthy controls (P < 0.001). There were no statistically significant differences in serum concentrations of HMGB1 and sCD163 between cases of acute, subacute and chronic brucellosis. Additionally, serum HMGB1 concentrations were positively correlated with sCD163 concentrations, whereas neither HMGB1 nor sCD163 concentrations were correlated with C‐reactive protein concentrations, white cell counts or erythrocyte sedimentation rates. Therefore, serum concentrations of HMGB1 and sCD163 may be diagnostic markers for brucellosis, but neither can be used to differentiate the three different forms of this disease (acute, subacute and chronic).  相似文献   

5.
The acquisition and metabolism of iron (Fe) by the human pathogen Staphylococcus aureus is critical for disease progression. S. aureus requires Fe to synthesize inorganic cofactors called iron‐sulfur (Fe‐S) clusters, which are required for functional Fe‐S proteins. In this study we investigated the mechanisms utilized by S. aureus to metabolize Fe‐S clusters. We identified that S. aureus utilizes the Suf biosynthetic system to synthesize Fe‐S clusters and we provide genetic evidence suggesting that the sufU and sufB gene products are essential. Additional biochemical and genetic analyses identified Nfu as an Fe‐S cluster carrier, which aids in the maturation of Fe‐S proteins. We find that deletion of the nfu gene negatively impacts staphylococcal physiology and pathogenicity. A nfu mutant accumulates both increased intracellular non‐incorporated Fe and endogenous reactive oxygen species (ROS) resulting in DNA damage. In addition, a strain lacking Nfu is sensitive to exogenously supplied ROS and reactive nitrogen species. Congruous with ex vivo findings, a nfu mutant strain is more susceptible to oxidative killing by human polymorphonuclear leukocytes and displays decreased tissue colonization in a murine model of infection. We conclude that Nfu is necessary for staphylococcal pathogenesis and establish Fe‐S cluster metabolism as an attractive antimicrobial target.  相似文献   

6.
The human pathogen Staphylococcus aureus has a plethora of virulence factors that promote its colonization and survival in the host. Among such immune modulators are staphylococcal superantigen‐like (SSL) proteins, comprising a family of 14 small, secreted molecules that seem to interfere with the host innate immune system. SSL7 has been described to bind immunoglobulin A (IgA) and complement C5, thereby inhibiting IgA‐FcαRI binding and serum killing of Escherichia coli. As C5a generation, in contrast to C5b‐9‐mediated lysis, is crucial for immune defence against staphylococci, we investigated the impact of SSL7 on staphylococcal‐induced C5a‐mediated effects. Here, we show that SSL7 inhibits C5a generation induced by staphylococcal opsonization, slightly enhanced by its IgA‐binding capacity. Moreover, we demonstrate a strong protective activity of SSL7 against staphylococcal clearance in human whole blood. SSL7 strongly inhibited the C5a‐induced phagocytosis of S. aureus and oxidative burst in an in vitro whole‐blood inflammation model. Furthermore, we found that SSL7 affects all three pathways of complement activation and inhibits the cleavage of C5 by interference of its binding to C5 convertases. Finally, SSL7 effects were also demonstrated in vivo. In a murine model of immune complex peritonitis, SSL7 abrogated the C5a‐driven influx of neutrophils in mouse peritoneum.  相似文献   

7.
Staphylococcus aureus is a common skin commensal but is also associated with various skin and soft tissue pathologies. Upon invasion, S. aureus is detected by resident innate immune cells through pattern‐recognition receptors (PRRs), although a comprehensive understanding of the specific molecular interactions is lacking. Recently, we demonstrated that the PRR langerin (CD207) on epidermal Langerhans cells senses the conserved β‐1,4‐linked N‐acetylglucosamine (GlcNAc) modification on S. aureus wall teichoic acid (WTA), thereby increasing skin inflammation. Interestingly, the S. aureus ST395 lineage as well as certain species of coagulase‐negative staphylococci (CoNS) produce a structurally different WTA molecule, consisting of poly‐glycerolphosphate with α‐O‐N‐acetylgalactosamine (GalNAc) residues, which are attached by the glycosyltransferase TagN. Here, we demonstrate that S. aureus ST395 strains interact with the human Macrophage galactose‐type lectin (MGL; CD301) receptor, which is expressed by dendritic cells and macrophages in the dermis. MGL bound S. aureus ST395 in a tagN‐ and GalNAc‐dependent manner but did not interact with different tagN‐positive CoNS species. However, heterologous expression of Staphylococcus lugdunensis tagN in S. aureus conferred phage infection and MGL binding, confirming the role of this CoNS enzyme as GalNAc‐transferase. Functionally, the detection of GalNAc on S. aureus ST395 WTA by human monocyte‐derived dendritic cells significantly enhanced cytokine production. Together, our findings highlight differential recognition of S. aureus glycoprofiles by specific human innate receptors, which may affect downstream adaptive immune responses and pathogen clearance.  相似文献   

8.
Bacterial pathogens can induce an inflammatory response from epithelial tissues due to secretion of the pro‐inflammatory chemokine interleukin‐8 (IL‐8). Many bacterial pathogens manipulate components of the focal complex (FC) to induce signalling events in host cells. We examined the interaction of several bacterial pathogens with host cells, including Campylobacter jejuni, to determine if the FC is required for induction of chemokine signalling in response to bacterial pathogens. Our data indicate that secretion of IL‐8 is triggered by C. jejuni, Helicobacter pylori and Salmonella enterica serovar Typhimurium in response to engagement of β1 integrins. Additionally, we found that the secretion of IL‐8 from C. jejuni infected epithelial cells requires FAK, Src and paxillin, which in turn are necessary for Erk 1/2 recruitment and activation. Targeting the FC component paxillin with siRNA prevented IL‐8 secretion from cells infected with several bacterial pathogens, including C. jejuni, Helicobacter pylori, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio parahaemolyticus. Our findings indicate that maximal IL‐8 secretion from epithelial cells in response to bacterial infection is dependent on the FC. Based on the commonality of the host response to bacterial pathogens, we propose that the FC is a signalling platform for an epithelial cell response to pathogenic organisms.  相似文献   

9.
Objective: Soluble CD163 (sCD163) is a new macrophage‐specific serum marker elevated in inflammatory conditions. sCD163 is elevated in obesity and found to be a strong predictor of the development of type 2 diabetes. We investigated whether dietary intervention and moderate exercise was related to changes in sCD163 and how sCD163 is associated to insulin resistance in obesity. Design and Methods: Ninety‐six obese subjects were enrolled: 62 followed a very low energy diet (VLED) program for 8 weeks followed by 3‐4 weeks of weight stabilization, 20 followed a moderate exercise program for 12 weeks, and 14 were included without any intervention. Fasting blood samples and anthropometric measures were taken at baseline and after intervention. Thirty‐six lean subjects were included in a control group. Results: sCD163 was significantly higher in obese subjects (2.3 ± 1.0 mg/l) compared with lean (1.6 ± 0.4 mg/l, P < 0.001). Weight loss (11%) induced by VLED resulted in a reduction and partial normalization of sCD163 to 2.0 ± 0.9 mg/l (P < 0.001). Exercise for 12 weeks had no effect on sCD163. At baseline, sCD163 was significantly correlated with BMI (r = 0.46), waist circumference (r = 0.40), insulin resistance measured by the homeostasis model assessment (HOMA‐IR; r = 0.41; all P < 0.001), and the leptin‐to‐adiponectin ratio (r = 0.28, P < 0.05). In a multivariate linear regression analysis with various inflammatory markers, sCD163 (β = 0.25), adiponectin (β = ?0.24), and high sensitivity C‐reactive protein (hs‐CRP; β = 0.20) remained independently and significantly associated to HOMA‐IR (all P < 0.05). After further adjustment for waist circumference, only sCD163 was associated with HOMA‐IR (P < 0.05). Conclusion: The macrophage‐specific serum marker sCD163 is increased in obesity and partially normalized by dietary‐induced weight loss but not by moderate exercise. Furthermore, we confirm that sCD163 is a good marker for obesity‐related insulin resistance.  相似文献   

10.
During the pathogenesis of early pulmonary arterial hypertension (PAH), pulmonary arterial adventitial fibroblast act as an initiator and mediator of inflammatory processes that predispose vessel walls to excessive vasoconstriction and pathogenic vascular remodeling. Emerging studies report that Yin Yang‐1 (YY‐1) plays important roles in inflammatory response and vascular injury. Our recent study finds that activation of CD40 ligand (CD40L)–CD40 signaling promotes pro‐inflammatory phenotype of pulmonary adventitial fibroblasts. However, whether YY‐1 is involved in CD40L–CD40 signaling‐triggered inflammatory response in pulmonary adventitial fibroblasts and its underlying mechanism is still unclear. Here, we show that soluble CD40L (sCD40L) stimulation promotes YY‐1 protein expression and suppresses anti‐inflammatory cytokine, interleukin 10 (IL‐10) expression in pulmonary adventitial fibroblasts, while YY‐1 knockdown prevents sCD40L‐mediated reduction of IL‐10 expression via enhancing IL‐10 gene transactivation. Further, we find that sCD40L stimulation significantly increases histone H3 tri‐methylation at lysine 27 (H3K27me3) modification on IL‐10 promoter in pulmonary adventitial fibroblasts, and YY‐1 knockdown prevents the effect of sCD40L on IL‐10 promoter by reducing the interaction with enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, binding to IL‐10 promoter. Moreover, we find that sCD40L stimulation promotes YY‐1 protein, but not messenger RNA (mRNA) expression, via decreasing N6‐methyladenosine methylation on YY‐1 mRNA to suppress YTHDF2‐medicated mRNA decay. Overall, this in‐depth study shows that the activation of CD40L‐CD40 signaling upregulates YY‐1 protein expression in pulmonary adventitial fibroblasts, which results in increasing YY‐1 and EZH2 binding to the IL‐10 promoter region to enhance H3K27me3 modification, eventually leading to suppression of IL‐10 transactivation. This study first uncovers the roles of YY‐1 on CD40L‐CD40 signaling‐triggered inflammatory response in pulmonary adventitial fibroblasts.  相似文献   

11.
The inflammasome is a multiprotein complex that mediates caspase‐1 activation with subsequent maturation of the proinflammatory cytokines IL‐1β and IL‐18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase‐1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent‐labeled inhibitor of caspase‐1), while IL‐1β and IL‐18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase‐1), and IL1B (pro‐IL‐1β) was analyzed by quantitative PCR. We found induced caspase‐1 activity in innate immune cells with subsequent release of IL‐18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase‐1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient.  相似文献   

12.
13.
Invasive Staphylococcus aureus infection frequently involves bacterial seeding from the bloodstream to other body tissues, a process necessarily involving interactions between circulating bacteria and vascular endothelial cells. Staphylococcus aureus fibronectin‐binding protein is central to the invasion of endothelium, fibronectin forming a bridge between bacterial fibronectin‐binding proteins and host cell receptors. To dissect further the mechanisms of invasion of endothelial cells by S. aureus, a series of truncated FnBPA proteins that lacked one or more of the A, B, C or D regions were expressed on the surface of S. aureus and tested in fibronectin adhesion, endothelial cell adhesion and invasion assays. We found that this protein has multiple, substituting, fibronectin‐binding regions, each capable of conferring both adherence to fibronectin and endothelial cells, and endothelial cell invasion. By expressing S. aureus FnBPA on the surface of the non‐invasive Gram‐positive organism Lactococcus lactis, we have found that no other bacterial factor is required for invasion. Furthermore, we have demonstrated that, as with other cell types, invasion of endothelial cells is mediated by integrin α5β1. These findings may be of relevance to the development of preventive measures against systemic infection, and bacterial spread in the bacteraemic patient.  相似文献   

14.
Bacterial super‐infections are a major complication in influenza virus‐infected patients. In response to infection with influenza viruses and bacteria, a complex interplay of cellular signalling mechanisms is initiated, regulating the anti‐pathogen response but also pathogen‐supportive functions. Here, we show that influenza viruses replicate to a higher efficiency in cells co‐infected with Staphylococcus aureus (S. aureus). While cells initially respond with increased induction of interferon beta upon super‐infection, subsequent interferon signalling and interferon‐stimulated gene expression are rather impaired due to a block of STAT1‐STAT2 dimerization. Thus, S. aureus interrupts the first line of defence against influenza viruses, resulting in a boost of viral replication, which may lead to enhanced viral pathogenicity.  相似文献   

15.
Staphylococcus aureus is an important human pathogen that causes infections that may present high morbidity and mortality. Among its many virulence factors protein A (SpA) and Staphylococcal binding immunoglobulin protein (Sbi) bind the Fc portion of IgG interfering with opsonophagocytosis. We have previously demonstrated that SpA interacts with the TNF-α receptor (TNFR) 1 through each of the five IgG binding domains and induces the production of pro-inflammatory cytokines and chemokines. The IgG binding domains of Sbi are homologous to those of SpA, which allow us to hypothesize that Sbi might also have a role in the inflammatory response induced by S. aureus. We demonstrate that Sbi is a novel factor that participates in the induction of the inflammatory response during staphylococcal infections via TNFR1 and EGFR mediated signaling as well as downstream MAPKs. The expression of Sbi significantly contributed to IL-6 production and modulated CXCL-1 expression as well as neutrophil recruitment to the site of infection, thus demonstrating for the first time its relevance as a pro-inflammatory staphylococcal antigen in an in vivo model.  相似文献   

16.
We investigated the interplay occurring between pathogens in the course of dual infections, using an in vitro model in which the THP‐1 monocytic cell line is first infected with HSV‐1 and then exposed to Ca or Cn. These three pathogens share some pathogenic features: they cause opportunistic infections, target macrophages and are neurotropic. Here, we show that HSV‐1‐infected THP‐1 cells exhibited augmented phagocytosis against the two opportunistic fungi but reduced capability to counteract fungal infection: the better ingestion by monocytes was followed by facilitated fungal survival and replication. Reduced IL‐12 production was also observed. Cytofluorimetric analysis showed that HSV‐1‐infected monocytes exhibit: (i) downregulated TLR‐2 and TLR‐4, critical structures in fungal recognition; (ii) reduced expression of CD38 and CD69, known to be important markers of monocyte activation; and (iii) enhanced expression of apoptosis and necrosis markers, in the absence of altered cell proliferation. Overall, these findings imply that HSV‐1 infection prevents monocyte activation, thus leading to a significant dysfunction of the monocyte‐mediated anti‐Candida response; HSV‐1 induced apoptosis and necrosis of monocytes further contribute to this impairment.  相似文献   

17.
Klebsiella pneumoniae is an important cause of community‐acquired and nosocomial pneumonia. Subversion of inflammation is essential for pathogen survival during infection. Evidence indicates that K. pneumoniae infections are characterized by lacking an early inflammatory response although the molecular bases are currently unknown. Here we unveil a novel strategy employed by a pathogen to counteract the activation of inflammatory responses. K. pneumoniae attenuates pro‐inflammatory mediators‐induced IL‐8 secretion. Klebsiella antagonizes the activation of NF‐κB via the deubiquitinase CYLD and blocks the phosphorylation of mitogen‐activated protein kinases (MAPKs) via the MAPK phosphatase MKP‐1. Our studies demonstrate that K. pneumoniae has evolved the capacity to manipulate host systems dedicated to control the immune balance. To exert this anti‐inflammatory effect, Klebsiella engages NOD1. In NOD1 knock‐down cells, Klebsiella neither induces the expression of CYLD and MKP‐1 nor blocks the activation of NF‐κB and MAPKs. Klebsiella inhibits Rac1 activation; and inhibition of Rac1 activity triggers a NOD1‐mediated CYLD and MKP‐1 expression which in turn attenuates IL‐1β‐induced IL‐8 secretion. A capsule (CPS) mutant does not attenuate the inflammatory response. However, purified CPS neither reduces IL‐1β‐induced IL‐8 secretion nor induces the expression of CYLD and MKP‐1 thereby indicating that CPS is necessary but not sufficient to attenuate inflammation.  相似文献   

18.
Staphylococcus aureus, a versatile Gram‐positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase‐1 that proteolytically matures and promotes the secretion of mature IL‐1β and IL‐18. The role of inflammasomes and caspase‐1 in the secretion of mature IL‐1β and in the defence of S. aureus‐infected osteoblasts has not yet been fully investigated. We show here that S. aureus‐infected osteoblast‐like MG‐63 but not caspase‐1 knock‐out CASP1 ?/?MG‐63 cells, which were generated using CRISPR‐Cas9 technology, activate the inflammasome as monitored by the release of mature IL‐1β. The effect was strain‐dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes‐related IL‐1β production. Furthermore, we found that the lack of caspase‐1 in CASP1 ?/?MG‐63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 ?/? MG‐63 compared to wild‐type cells. Our results demonstrate that osteoblast‐like MG‐63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase‐1 in bacterial clearance.  相似文献   

19.
Soluble virulence‐associated factors of Staphylococcus aureus like haemolysin A (Hla) induce secretion of chemo/cytokines from airway epithelial cells. To elucidate the potential roles of specific signalling pathways in this response, we treated 16HBE14o‐, S9 or A549 cells with recombinant Hla (rHla). In a dose‐dependent manner, rHla induced secretion of IL‐8 in all three cell types, but IL‐6 release only in 16HBE14o‐ and S9 cells. rHla‐mediated secretion of IL‐8 and IL‐6 was suppressed by pre‐incubation of cells with inhibitors of Erk type or p38 MAP kinases, indicating that activation of these signalling pathways is essential for IL‐8 release in all three cell types and for IL‐6 release in 16HBE14o‐ and S9 cells. The rHla‐mediated phosphorylation and activation of p38 MAP kinase seem to depend on elevations in [Ca2+]i, an early response in rHla‐treated cells. Inhibitors of calmodulin or calcium/calmodulin‐dependent kinase II attenuated rHla‐mediated release of IL‐8 in 16HBE14o‐ and A549 cells and of IL‐6 in 16HBE14o‐ cells. This indicates that rHla may mediate simultaneous activation of calmodulin‐dependent processes as additional prerequisites for chemo/cytokine secretion.However, the inhibitors of calmodulin‐dependent signalling did not affect rHla‐induced p38 MAP kinase phosphorylation, indicating that this pathway works in parallel with p38 MAP kinase.  相似文献   

20.
Neutrophils contribute to the pathological processes of a number of inflammatory disorders, including rheumatoid arthritis, sepsis and cystic fibrosis. Neutrophils also play prominent roles in schistosomiasis japonica liver fibrosis, being central mediators of inflammation following granuloma formation. In this study, we investigated the interaction between Schistosoma japonicum eggs and neutrophils, and the effect of eggs on the inflammatory phenotype of neutrophils. Our results showed significant upregulated expression of pro‐inflammatory cytokines (IL‐1α, IL‐1β and IL‐8) and chemokines (CCL3, CCL4 and CXCL2) in neutrophils after 4 h in vitro stimulation with S. japonicum eggs. Furthermore, mitochondrial DNA was released by stimulated neutrophils, and induced the production of matrix metalloproteinase 9 (MMP‐9), a protease involved in inflammation and associated tissue destruction. We also found that intact live eggs and isolated soluble egg antigen (SEA) triggered the release of neutrophil extracellular traps (NETs), but, unlike those reported in bacterial or fungal infection, NETs did not kill schistosome eggs in vitro. Together these show that S. japonicum eggs can induce the inflammatory phenotype of neutrophils, and further our understanding of the host–parasite interplay that takes place within the in vivo microenvironment of schistosome‐induced granuloma. These findings represent novel findings in a metazoan parasite, and confirm characteristics of NETs that have until now, only been observed in response to protozoan pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号