首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Spatial structures strongly influence ecological processes. Connectivity is known to positively influence metapopulation demography and genetics by increasing the rescue effect and thus favoring individual and gene flow between populations. This result has not been tested in the special case of dendritic networks, which encompass stream and cave ecosystem for instance. We propose a first approach using an individual based model to explore the population demography and genetics in various dendritic networks. To do so, we first generate a large number of different networks, and we analyze the relationship between their hydrographical characteristics and connectivity. We show that connectivity mean and variance of connectivity are strongly correlated in dendritic networks. Connectivity segregates two types of networks: Hortonian and non‐Hortonian networks. We then simulate the population dynamics for a simple life cycle in each of the generated networks, and we analyze persistence time as well as populations structure at quasi‐stationary state. Our main results show that connectivity in dendritic networks can promote local extinction and genetic isolation by distance at low dispersal and diminish the size of the metapopulation at high dispersal. We discuss these unexpected findings in the light of connectivity spatial distribution in dendritic networks in the case of our model.  相似文献   

3.
The genetic structure of small semiaquatic animals may be influenced by dispersal across both rivers and land. The relative importance of these two modes of dispersal may vary across different species and with ecological conditions and evolutionary periods. The Pyrenean desman (Galemys pyrenaicus) is an endemic mammal of the Iberian Peninsula with a strong phylogeographic structure and semiaquatic habits, thus making it an ideal model to study the effects of river and overland dispersal on its genetic structure. Thanks to different types of noninvasive samples, we obtained an extensive sampling of the Pyrenean desman from the northwestern region of the Iberian Peninsula and sequenced two mitochondrial DNA fragments. We then analyzed, using an isolation‐by‐distance approach, the correlation between phylogenetic distances and geographical distances measured along both river networks and land to infer the relative importance of river and overland dispersal. We found that the correlations in the whole area and in a large basin were consistent with an effect of overland dispersal, which may be due to the postglacial colonization of new territories using terrestrial corridors and, possibly, a more extensive fluvial network that may have been present during the Holocene. However, in a small basin, likely to be less influenced by the impact of ancient postglacial dispersal, the correlations suggested significant overall effects of both overland and river dispersal, as expected for a semiaquatic mammal. Therefore, different scales and geographical regions reflect different aspects of the evolutionary history and ecology of this semiaquatic species using this isolation‐by‐distance method. The results we obtained may have crucial implications for the conservation of the Pyrenean desman because they reinforce the importance of interbasin dispersal for this species in the studied area and the need to protect the whole riverine ecosystem, including rivers, upland streams and terrestrial corridors between basins.  相似文献   

4.
We formulated a mathematical model in order to study the joint influence of demographic and genetic processes on metapopulation viability. Moreover, we explored the influence of habitat structure, matrix quality and disturbance on the interplay of these processes. We showed that the conditions that allow metapopulation persistence under the synergistic action of genetic and demographic processes depart significantly from predictions based on a mere superposition of the effects of each process separately. Moreover, an optimal dispersal rate exists that maximizes the range of survival rates of dispersers under which metapopulation persists and at the same time allows the largest sustainable patch removal and patch‐size reduction. The relative impact of patch removal and patch‐size reduction depends both on matrix quality and the dispersal strategy of the species: metapopulation persistence is more affected by patch‐size reduction (patch removal) for low (high)‐dispersing species, in presence of a low (high) quality matrix. Avoidance of inbreeding, through increased dispersal when the rate of inbreeding in a population is large, has positive effects on low‐dispersing species, but impairs the persistence of high‐dispersing species. Finally, size heterogeneity between patches largely influences metapopulation dynamics; the presence of large patches, even at the expense of other patches being smaller, can have positive effects on persistence in particular for species of low dispersing ability.  相似文献   

5.
  1. Despite years of attention, the dynamics of species constrained to disperse within riverine networks are not well captured by existing metapopulation models, which often ignore local dynamics within branches.
  2. We develop a modelling framework, based on traditional metapopulation theory, for patch occupancy dynamics subject to local colonisation–extinction dynamics within branches and regional dispersal between branches in size-structured, bifurcating riverine networks. Using this framework, we investigate whether and how spatial variation in branch size affects species persistence for dendritic systems with directional dispersal, including one-way (up- or downstream only) and two-way (both up- and downstream) dispersal.
  3. Variation in branch size generally promotes species persistence more obviously at higher relative extinction rate, suggesting that previous studies ignoring differences in branch size in real riverine systems might overestimate species extinction risk.
  4. Two-way dispersal is not always superior to one-way dispersal as a strategy for metapopulation persistence especially at high relative extinction rate. The type of dispersal that maximises species persistence is determined by the hierarchical level of the largest, and hence most influential, branch within the network. When considering the interactive effects of up- and downstream dispersal, we find that moderate upstream-biased dispersal maximises metapopulation viability, mediated by spatial branch arrangement.
  5. Overall, these results suggest that both branch-size variation and species traits interact to determine species persistence, theoretically demonstrating the ecological significance of their interplay.
  相似文献   

6.
The processes behind the heterogeneous distribution of species involve a combination of environmental and spatial effects. In the spatial context, stream networks constitute appropriate systems to compare the relative importance of two dispersal modes in aquatic organisms: overland and watercourse dispersal. In the present study, we analyzed the distribution of ostracod species in a river network in the eastern Iberian Peninsula, with variation partitioning between environmental and spatial factors, using Moran and Asymmetric Eigenvector Maps (MEMs, AEMs) as spatial variables. Our aims were to determine the relative importance of environmental and spatial control and to compare the importance of overland and watercourse dispersal for species distribution of passively-dispersing aquatic organisms. Our results suggest that watercourse was the most important dispersal mode, favoring mass-effects. The role of species sorting was significant and related to temperature, stream width and water quality, measured as a biotic index (IBMWP). These results stress the major importance of connectivity, besides niche-related factors, in structuring riverine communities of passively-dispersing aquatic organisms.  相似文献   

7.
In this paper, we develop a stochastic, discrete, structured metapopulation model to explore the dynamics and patterns of biodiversity of riparian vegetation. In the model, individual plants spread along a branched network via directional dispersal and undergo neutral ecological drift. Simulation results suggest that in comparison to 2-D landscapes with non-directional dispersal, river networks with directional dispersal have lower local (alpha) and overall (gamma) diversities, but higher between-community (beta) diversity, implying that riparian species are distributed in a more localized pattern and more vulnerable to local extinction. The relative abundance patterns also change, such that higher percentages of species are in low-abundance, or rare, classes, accompanied by concave rank-abundance curves. In contrast to existing theories, the results suggest that in river networks, increased directional dispersal reduces alpha diversity. These altered patterns and trends result from the combined effects of directionality of dispersal and river network structure, whose relative importance is in need of continuing study. In addition, riparian communities obeying neutral dynamics seem to exhibit abrupt changes where large tributaries confluence; this pattern may provide a signature to identify types of interspecific dynamics in river networks.  相似文献   

8.
Ocean currents, prevailing winds, and the hierarchical structures of river networks are known to create asymmetries in re-colonization between habitat patches. The impacts of such asymmetries on metapopulation persistence are seldom considered, especially rarely in theoretical studies. Considering three classical models (the island, the stepping stone and the distance-dependent model), we explore how metapopulation persistence is affected by (i) asymmetry in dispersal strength, in which the colonization rate between two patches differs in direction, and (ii) asymmetry in connectivity, in which the overall colonization pattern displays asymmetry (circulating or dendritic networks). Viability can be drastically reduced when directional bias in dispersal strength is higher than 25%. Re-colonization patterns that allow for strong local connectivity provide the highest persistence compared to systems that allow circulation. Finally, asymmetry has relatively weak effects when metapopulations maintain strong general connectivity.  相似文献   

9.
Habitat destruction and land use change are making the world in which natural populations live increasingly fragmented, often leading to local extinctions. Although local populations might undergo extinction, a metapopulation may still be viable as long as patches of suitable habitat are connected by dispersal, so that empty patches can be recolonized. Thus far, metapopulations models have either taken a mean-field approach, or have modeled empirically-based, realistic landscapes. Here we show that an intermediate level of complexity between these two extremes is to consider random landscapes, in which the patches of suitable habitat are randomly arranged in an area (or volume). Using methods borrowed from the mathematics of Random Geometric Graphs and Euclidean Random Matrices, we derive a simple, analytic criterion for the persistence of the metapopulation in random fragmented landscapes. Our results show how the density of patches, the variability in their value, the shape of the dispersal kernel, and the dimensionality of the landscape all contribute to determining the fate of the metapopulation. Using this framework, we derive sufficient conditions for the population to be spatially localized, such that spatially confined clusters of patches act as a source of dispersal for the whole landscape. Finally, we show that a regular arrangement of the patches is always detrimental for persistence, compared to the random arrangement of the patches. Given the strong parallel between metapopulation models and contact processes, our results are also applicable to models of disease spread on spatial networks.  相似文献   

10.
Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability – conferred by fluctuation and synchronisation dampening – emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations.  相似文献   

11.
Different shapes of landscape boundaries can affect the habitat networks within them and consequently the spatial genetic-patterns of a metapopulation. In this study, we used a mechanistic framework to evaluate the effects of landscape shape, through watershed elongation, on genetic divergence among populations at the metapopulation scale. Empirical genetic data from four, sympatric stream-macroinvertebrates having aerial adults were collected from streams in Japan to determine the roles of species-specific dispersal strategies on metapopulation genetics. Simulation results indicated that watershed elongation allows the formation of river networks with fewer branches and larger topographic constraints. This results in decreased interpopulation connectivity but a lower level of spatial isolation of distal populations (e.g. those found in headwaters) occurring in the landscapes examined. Distal populations had higher genetic divergence when their downstream-biased dispersal (relative to upstream- and/or overland-biased dispersal) was high. This underscores the importance of distal populations influencing genetic divergence at the metapopulation scale for species having downstream-biased dispersal. In turn, lower genetic divergence was observed under watershed elongation when the genetic isolation of distal populations was decreased in such species. This strong association between landscape shape and evolutionary processes highlights the importance of natural, spatial architecture in assessing the effectiveness of conservation and management strategies.  相似文献   

12.
13.
Grüss A  Kaplan DM  Hart DR 《PloS one》2011,6(5):e19960
Movement of individuals is a critical factor determining the effectiveness of reserve networks. Marine reserves have historically been used for the management of species that are sedentary as adults, and, therefore, larval dispersal has been a major focus of marine-reserve research. The push to use marine reserves for managing pelagic and demersal species poses significant questions regarding their utility for highly-mobile species. Here, a simple conceptual metapopulation model is developed to provide a rigorous comparison of the functioning of reserve networks for populations with different admixtures of larval dispersal and adult movement in a home range. We find that adult movement produces significantly lower persistence than larval dispersal, all other factors being equal. Furthermore, redistribution of harvest effort previously in reserves to remaining fished areas ('fishery squeeze') and fishing along reserve borders ('fishing-the-line') considerably reduce persistence and harvests for populations mobile as adults, while they only marginally changes results for populations with dispersing larvae. Our results also indicate that adult home-range movement and larval dispersal are not simply additive processes, but rather that populations possessing both modes of movement have lower persistence than equivalent populations having the same amount of 'total movement' (sum of larval and adult movement spatial scales) in either larval dispersal or adult movement alone.  相似文献   

14.
15.
Gene flow in riverine species is constrained by the dendritic (branching) structure of the river network. Spatial genetic structure (SGS) of freshwater insects is particularly influenced by catchment characteristics and land use in the surroundings of the river. Gene flow also depends on the life cycle of organisms. Aquatic larvae mainly drift downstream whereas flying adults can disperse actively overland and along watercourses. In-stream movements can generate isolation by distance (IBD) at a local scale and differentiation between subcatchments. However, these patterns can be disrupted by overland dispersal. We studied SGS across the Loire River in the damselfly Calopteryx splendens which is able to disperse along and between watercourses. Our sampling design allowed us to test for overland dispersal effects on genetic differentiation between watercourses. Amplified fragment length polymorphism markers revealed high genetic differentiation at the catchment scale but the genetic structure did not reflect the geographical structure of sampling sites. We observed IBD patterns when considering the distance following the watercourse but also the Euclidean distance, i.e. the shortest distance, between pairs of sites. Altogether, our results support the hypothesis of overland dispersal between watercourses. From a conservation perspective, attention should be paid to the actual pathways of gene flow across complex landscapes such as river networks.  相似文献   

16.
1. Determined by landscape structure as well as dispersal‐related traits of species, connectivity influences various key aspects of population biology, ranging from population persistence to genetic structure and diversity. Here, we investigated differences in small‐scale connectivity in terms of gene flow between populations of two ecologically important invertebrates with contrasting dispersal‐related traits: an amphipod (Gammarus fossarum) with a purely aquatic life cycle and a mayfly (Baetis rhodani) with a terrestrial adult stage. 2. We used highly polymorphic markers to estimate genetic differentiation between populations of both species within a Swiss pre‐alpine catchment and compared these results to the broader‐scale genetic structure within the Rhine drainage. Landscape genetic approaches were used to test for correlations of genetic and geographical structures and in‐stream barrier effects. 3. We found overall very weak genetic structure in populations of B. rhodani. In contrast, G. fossarum showed strong genetic differentiation, even at spatial scales of a few kilometres, and a clear pattern of isolation by distance. Genetic diversity decreased from downstream towards upstream populations of G. fossarum, suggesting asymmetric gene flow. Correlation of genetic structure with landscape topography was more pronounced in the amphipod. Our study also indicates that G. fossarum might be capable of dispersing overland in headwater regions and of crossing small in‐stream barriers. 4. We speculate that differences in dispersal capacity but also habitat specialisation and potentially the extent of local adaptation could be responsible for the differences in genetic differentiation found between the two species. These results highlight the importance of taking into account dispersal‐related traits when planning management and conservation strategies.  相似文献   

17.
Transgenes may spread from crops into the environment via the establishment of feral populations, often initiated by seed spill from transport lorries or farm machinery. Locally, such populations are often subject to large environmental variability and usually do not persist longer than a few years. Because secondary feral populations may arise from seed dispersal to adjacent sites, the dynamics of such populations should be studied in a metapopulation context. We study a structured metapopulation model with local dispersal, mimicking a string of roadside subpopulations of a feral crop. Population growth is assumed to be subject to local disturbances, introducing spatially random environmental stochasticity. Our aim is to understand the role of dispersal and environmental variability in the dynamics of such ephemeral populations. We determine the effect of dispersal on the extinction boundary and on the distribution of persistence times, and investigate the influence of spatially correlated disturbances as opposed to spatially random disturbances. We find that, given spatially random disturbances, dispersal slows down the decline of the metapopulation and results in the occurrence of long-lasting local populations which remain more or less static in space. We identify which life history traits, if changed by genetic modification, have the largest impact on the population growth rate and persistence times. For oilseed rape, these are seed bank survival and dormancy. Combining our findings with literature data on transgene-induced life history changes, we predict that persistence is promoted by transgenes for oil-modifications (high stearate or high laurate) and, possibly, for insect resistence (Bt). Transgenic tolerance to glufosinate herbicide is predicted to reduce persistence.  相似文献   

18.
A spatial metapopulation is a mosaic of interconnected patch populations. The complex routes of colonization between the patches are governed by the metapopulation''s dispersal network. Over the past two decades, there has been considerable interest in uncovering the effects of dispersal network topology and its symmetry on metapopulation persistence. While most studies find that the level of symmetry in dispersal pattern enhances persistence, some have reached the conclusion that symmetry has at most a minor effect. In this work, we present a new perspective on the debate. We study properties of the in- and out-degree distribution of patches in the metapopulation which define the number of dispersal routes into and out of a particular patch, respectively. By analysing the spectral radius of the dispersal matrices, we confirm that a higher level of symmetry has only a marginal impact on persistence. We continue to analyse different properties of the in–out degree distribution, namely the ‘in–out degree correlation’ (IODC) and degree heterogeneity, and find their relationship to metapopulation persistence. Our analysis shows that, in contrast to symmetry, the in–out degree distribution and particularly, the IODC are dominant factors controlling persistence.  相似文献   

19.
Allee效应与种群的灭绝密切相关,其研究对生态保护和管理至关重要。Allee效应对物种续存是潜在的干扰因素,濒危物种更容易受其影响,可能会增加生存于生境破碎化斑块的濒危物种的死亡风险,因此研究Allee效应对种群的动态和续存的影响是必要的。从包含由生物有机体对环境的修复产生的Allee效应的集合种群模型出发,引入由其他机制形成的Allee效应,建立了常微分动力系统模型和基于网格模型的元胞自动机模型。通过理论分析和计算机模拟表明:(1)强Allee效应不利于具有生境恢复的集合种群的续存;(2)生境恢复有利于种群续存;(3)局部扩散影响了集合种群的空间结构、动态行为和稳定性,生境斑块之间的局部作用将会减缓或消除集合种群的Allee效应,有利于集合种群的续存。  相似文献   

20.
Habitat network connectivity influences colonization dynamics, species invasions, and biodiversity patterns. Recent theoretical work suggests dendritic networks, such as those found in rivers, alter expectations regarding colonization and dispersal dynamics compared with other network types. As many native and non‐native species are spreading along river networks, this may have important ecological implications. However, experimental studies testing the effects of network structure on colonization and diversity patterns are scarce. Up to now, experimental studies have only considered networks where sites are connected with small corridors, or dispersal was experimentally controlled, which eliminates possible effects of species interactions on colonization dynamics. Here, we tested the effect of network connectivity and species interactions on colonization dynamics using continuous linear and dendritic (i.e., river‐like) networks, which allow for active dispersal. We used a set of six protist species and one rotifer species in linear and dendritic microcosm networks. At the start of the experiment, we introduced species, either singularly or as a community within the networks. Species subsequently actively colonized the networks. We periodically measured densities of species throughout the networks over 2 weeks to track community dynamics, colonization, and diversity patterns. We found that colonization of dendritic networks was faster compared with colonization of linear networks, which resulted in higher local mean species richness in dendritic networks. Initially, community similarity was also greater in dendritic networks compared with linear networks, but this effect vanished over time. The presence of species interactions increased community evenness over time, compared with extrapolations from single‐species setups. Our experimental findings confirm previous theoretical work and show that network connectivity, species‐specific dispersal ability, and species interactions greatly influence the dispersal and colonization of dendritic networks. We argue that these factors need to be considered in empirical studies, where effects of network connectivity on colonization patterns have been largely underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号