首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The causative agent of Legionnaires'' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.  相似文献   

2.
Legionella species are ubiquitous, waterborne bacteria that thrive in numerous ecological niches. Yet, in contrast to many other environmental bacteria, Legionella spp. are also able to grow intracellularly in predatory protozoa. This feature mainly accounts for the pathogenicity of Legionella pneumophila, which causes the majority of clinical cases of a severe pneumonia termed Legionnaires' disease. The pathomechanism underlying L. pneumophila infection is based on macrophage resistance, which in turn is largely defined by the opportunistic pathogen's resistance towards amoebae. L. pneumophila replicates in macrophages or amoebae in a unique membrane‐bound compartment, the Legionella‐containing vacuole (LCV). LCV formation requires the bacterial intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and involves a plethora of translocated effector proteins, which subvert pivotal processes in the host cell. Of the ca. 300 different experimentally validated Icm/Dot substrates, about 50 have been studied and attributed a cellular function to date. The versatility and ingenuity of these effectors' mode of actions is striking. In this review, we summarize insight into the cellular functions and biochemical activities of well‐characterized L. pneumophila effector proteins and the host pathways they target. Recent studies not only substantially increased our knowledge about pathogen–host interactions, but also shed light on novel biological mechanisms.  相似文献   

3.
The opportunistic pathogen Legionella pneumophila employs the Icm/Dot type IV secretion system and ~300 different effector proteins to replicate in macrophages and amoebae in a distinct ‘Legionella‐containing vacuole’ (LCV). LCVs from infected RAW 264.7 macrophages were enriched by immuno‐affinity separation and density gradient centrifugation, using an antibody against the L. pneumophila effector SidC, which specifically binds to the phosphoinositide PtdIns(4)P on the pathogen vacuole membrane. The proteome of purified LCVs was determined by mass spectro‐metry (data are available via ProteomeXchange with identifier PXD000647). The proteomics analysis revealed more than 1150 host proteins, including 13 small GTPases of the Rab family. Using fluorescence microscopy, 6 novel Rab proteins were confirmed to localize on pathogen vacuoles harbouring wild‐type but not ΔicmT mutant L. pneumophila. Individual depletion of 20 GTPases by RNA interference indicated that endocytic GTPases (Rab5a, Rab14 and Rab21) restrict intracellular growth of L. pneumophila, whereas secretory GTPases (Rab8a, Rab10 and Rab32) implicated in Golgi‐endosome trafficking promote bacterial replication. Upon silencing of Rab21 or Rab32, fewer LCVs stained positive for Rab4 or Rab9, implicated in secretory or retrograde trafficking respectively. Moreover, depletion of Rab8a, Rab14 or Rab21 significantly decreased the number of SidC‐positive LCVs, suggesting that PtdIns(4)P is reduced under these conditions. L. pneumophila proteins identified in purified LCVs included proteins putatively implicated in phosphorus metabolism and as many as 60 Icm/Dot‐translocated effectors, which are likely required early during infection. Taken together, the phagocyte and Legionella proteomes of purified LCVs lay the foundation for further hypothesis‐driven investigations of the complex process of pathogen vacuole formation.  相似文献   

4.
Type IV secretion systems (T4SSs) are large macromolecular machines that translocate protein and DNA and are involved in the pathogenesis of multiple human diseases. Here, using electron cryotomography (ECT), we report the in situ structure of the Dot/Icm type IVB secretion system (T4BSS) utilized by the human pathogen Legionella pneumophila. This is the first structure of a type IVB secretion system, and also the first structure of any T4SS in situ. While the Dot/Icm system shares almost no sequence similarity with type IVA secretion systems (T4ASSs), its overall structure is seen here to be remarkably similar to previously reported T4ASS structures (those encoded by the R388 plasmid in Escherichia coli and the cag pathogenicity island in Helicobacter pylori). This structural similarity suggests shared aspects of mechanism. However, compared to the negative‐stain reconstruction of the purified T4ASS from the R388 plasmid, the L. pneumophila Dot/Icm system is approximately twice as long and wide and exhibits several additional large densities, reflecting type‐specific elaborations and potentially better structural preservation in situ.  相似文献   

5.
Legionella pneumophila, the causative agent of a severe pneumonia termed Legionnaires’ Disease, survives and replicates within both protozoan hosts and human alveolar macrophages. Intracellular survival is dependent upon secretion of a plethora of protein effectors that function to form a replicative vacuole, evade the endocytic pathway and subvert host immune defenses. Export of these factors requires a type IV secretion system (T4SS) called Dot/Icm that is composed of twenty-seven proteins. This report focuses on the DotF protein, which was previously postulated to have several different functions, one of which centered on binding Dot/Icm substrates. In this report, we examined if DotF functions as the T4SS inner membrane receptor for Dot/Icm substrates. Although we were able to recapitulate the previously published bacterial two-hybrid interaction between DotF and several substrates, the interaction was not dependent on the Dot/Icm substrates’ signal sequences as predicted for a substrate:receptor interaction. In addition, binding did not require the cytoplasmic domain of DotF, which was anticipated to be involved in recognizing substrates in the cytoplasm. Finally, inactivation of dotF did not abolish intracellular growth of L. pneumophila or translocation of substrates, two phenotypes dependent on the T4SS receptor. These data strongly suggest that DotF does not act as the major receptor for Dot/Icm substrates and therefore likely performs an accessory function within the core-transmembrane subcomplex of the L. pneumophila Dot/Icm type IV secretion system.  相似文献   

6.
Upon infection, Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate effector proteins from the Legionella‐containing vacuole (LCV) into the host cell cytoplasm. The effectors target a wide array of host cellular processes that aid LCV biogenesis, including the manipulation of membrane trafficking. In this study, we used a hidden Markov model screen to identify two novel, non‐eukaryotic s oluble N SF a ttachment protein re ceptor (SNARE) homologs: the bacterial Legionella SNARE effector A (LseA) and viral SNARE homolog A proteins. We characterized LseA as a Dot/Icm effector of L. pneumophila, which has close homology to the Qc‐SNARE subfamily. The lseA gene was present in multiple sequenced L. pneumophila strains including Corby and was well distributed among L. pneumophila clinical and environmental isolates. Employing a variety of biochemical, cell biological and microbiological techniques, we found that farnesylated LseA localized to membranes associated with the Golgi complex in mammalian cells and LseA interacted with a subset of Qa‐, Qb‐ and R‐SNAREs in host cells. Our results suggested that LseA acts as a SNARE protein and has the potential to regulate or mediate membrane fusion events in Golgi‐associated pathways.  相似文献   

7.
The Legionella pneumophila Dot/Icm T4SS injects ~ 300 protein effector proteins into host cells. Dot/Icm substrates have been proposed to contain a carboxy‐terminal signal sequence that is necessary and sufficient for export, although both traits have been demonstrated for only a small fraction of these proteins. In this study, we discovered that export of the substrate SidJ is mediated by dual signal sequences that include a conventional C‐terminal domain and a novel internal motif. The C‐terminal signal sequence facilitates secretion of SidJ into host cells at early points of infection, whereas the internal signal sequence mediates secretion at later time points. Interestingly, only the internal signal sequence is necessary for complementation of the intracellular growth defect of a ΔsidJ mutant. Although this is the first report of a Dot/Icm substrate being secreted by an internal signal sequence, many other substrates may be exported in a similar manner. In addition, efficient translocation of SidJ is dependent on the chaperone‐like type IV adaptors IcmS/IcmW. Five IcmS/IcmW binding domains that are distinct from both signal sequences were elucidated and, interestingly, only secretion mediated by the internal signal sequence requires IcmS/IcmW. Thus, Legionella employs multiple sophisticated molecular mechanisms to regulate the export of SidJ.  相似文献   

8.
The ability of Salmonella to survive and replicate within mammalian host cells involves the generation of a membranous compartment known as the Salmonella‐containing vacuole (SCV). Salmonella employs a number of effector proteins that are injected into host cells for SCV formation using its type‐3 secretion systems encoded in SPI‐1 and SPI‐2 (T3SS‐1 and T3SS‐2, respectively). Recently, we reported that S. Typhimurium requires T3SS‐1 and T3SS‐2 to survive in the model amoeba Dictyostelium discoideum. Despite these findings, the involved effector proteins have not been identified yet. Therefore, we evaluated the role of two major S. Typhimurium effectors SopB and SifA during D. discoideum intracellular niche formation. First, we established that S. Typhimurium resides in a vacuolar compartment within D. discoideum. Next, we isolated SCVs from amoebae infected with wild type or the ΔsopB and ΔsifA mutant strains of S. Typhimurium, and we characterised the composition of this compartment by quantitative proteomics. This comparative analysis suggests that S. Typhimurium requires SopB and SifA to modify the SCV proteome in order to generate a suitable intracellular niche in D. discoideum. Accordingly, we observed that SopB and SifA are needed for intracellular survival of S. Typhimurium in this organism. Thus, our results provide insight into the mechanisms employed by Salmonella to survive intracellularly in phagocytic amoebae.  相似文献   

9.
Legionella pneumophila has become a model system to decipher the non‐apoptotic functions of caspases and their role in immunity. In permissive cells, the L. pneumophila‐containing vacuole evades endosomal traffic and is remodelled by the endoplasmic reticulum. Evasion of the endosomes is mediated by the Dot/Icm type IV secretion system. Upon L. pneumophila infection of genetically restrictive cells such as wild‐type (WT) C57Bl/6J murine macrophages, flagellin is sensed by the NOD‐like receptor Nlrc4 leading to caspase‐1 activation by the inflammasome complex. Then, caspase‐7 is activated downstream of the Nlrc4 inflammasome, promoting non‐apoptotic functions such as L. pneumophila‐containing phagosome maturation and bacterial degradation. Interestingly, caspase‐3 is activated in permissive cells during early stages of infection. However, caspase‐3 activation does not lead to apoptosis until late stages of infection because it is associated with potent Dot/Icm‐mediated anti‐apoptotic stimuli that render the infected cells resistant to external apoptotic inducers. Therefore, the role of caspase‐1 and non‐apoptotic functions of executioner caspases are temporally and spatially modulated during infection by L. pneumophila, which determine permissiveness to intracellular bacterial proliferation. This review will examine the novel activation pathways of caspases by L. pneumophila and discuss their role in genetic restriction and permissiveness to infection.  相似文献   

10.
11.
The causative agent of Legionnaires'' pneumonia, Legionella pneumophila, colonizes diverse environmental niches, including biofilms, plant material, and protozoa. In these habitats, myo-inositol hexakisphosphate (phytate) is prevalent and used as a phosphate storage compound or as a siderophore. L. pneumophila replicates in protozoa and mammalian phagocytes within a unique “Legionella-containing vacuole.” The bacteria govern host cell interactions through the Icm/Dot type IV secretion system (T4SS) and ∼300 different “effector” proteins. Here we characterize a hitherto unrecognized Icm/Dot substrate, LppA, as a phytate phosphatase (phytase). Phytase activity of recombinant LppA required catalytically essential cysteine (Cys231) and arginine (Arg237) residues. The structure of LppA at 1.4 Å resolution revealed a mainly α-helical globular protein stabilized by four antiparallel β-sheets that binds two phosphate moieties. The phosphates localize to a P-loop active site characteristic of dual specificity phosphatases or to a non-catalytic site, respectively. Phytate reversibly abolished growth of L. pneumophila in broth, and growth inhibition was relieved by overproduction of LppA or by metal ion titration. L. pneumophila lacking lppA replicated less efficiently in phytate-loaded Acanthamoeba castellanii or Dictyostelium discoideum, and the intracellular growth defect was complemented by the phytase gene. These findings identify the chelator phytate as an intracellular bacteriostatic component of cell-autonomous host immunity and reveal a T4SS-translocated L. pneumophila phytase that counteracts intracellular bacterial growth restriction by phytate. Thus, bacterial phytases might represent therapeutic targets to combat intracellular pathogens.  相似文献   

12.
Legionella pneumophila is a Gram-negative bacterium that replicates within human alveolar macrophages by evasion of the host endocytic pathway through the formation of a replicative vacuole. Generation of this vacuole is dependent upon the secretion of over 275 effector proteins into the host cell via the Dot/Icm type IVB secretion system (T4SS). The type IV coupling protein (T4CP) subcomplex, consisting of DotL, DotM, DotN, IcmS and IcmW, was recently defined. DotL is proposed to be the T4CP of the L. pneumophila T4SS based on its homology to known T4CPs, which function as inner-membrane receptors for substrates. As a result, DotL is hypothesized to play an integral role(s) in the L. pneumophila T4SS for the engagement and translocation of substrates. To elucidate this role, a genetic approach was taken to screen for dotL mutants that were unable to survive inside host cells. One mutant, dotLY725Stop, did not interact with the type IV adaptor proteins IcmS/IcmW (IcmSW) leading to the identification of an IcmSW-binding domain on DotL. Interestingly, the dotLY725Stop mutant was competent for export of one class of secreted effectors, the IcmSW-independent substrates, but exhibited a specific defect in secretion of IcmSW-dependent substrates. This differential secretion illustrates that DotL requires a direct interaction with the type IV adaptor proteins for the secretion of a major class of substrates. Thus, by identifying a new target for IcmSW, we have discovered that the type IV adaptors perform an additional role in the export of substrates by the L. pneumophila Dot/Icm T4SS.  相似文献   

13.
《Journal of molecular biology》2019,431(21):4321-4344
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome–lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.  相似文献   

14.
15.
Legionella pneumophila is an intracellular pathogen responsible for Legionnaires'' disease. This bacterium uses the Dot/Icm type IV secretion system to inject a large number of bacterial proteins into host cells to facilitate the biogenesis of a phagosome permissive for its intracellular growth. Like many highly adapted intravacuolar pathogens, L. pneumophila is able to maintain a neutral pH in the lumen of its phagosome, particularly in the early phase of infection. However, in all cases, the molecular mechanisms underlying this observation remain unknown. In this report, we describe the identification and characterization of a Legionella protein termed SidK that specifically targets host v-ATPase, the multi-subunit machinery primarily responsible for organelle acidification in eukaryotic cells. Our results indicate that after being injected into infected cells by the Dot/Icm secretion system, SidK interacts with VatA, a key component of the proton pump. Such binding leads to the inhibition of ATP hydrolysis and proton translocation. When delivered into macrophages, SidK inhibits vacuole acidification and impairs the ability of the cells to digest non-pathogenic E. coli. We also show that a domain located in the N-terminal portion of SidK is responsible for its interactions with VatA. Furthermore, expression of sidK is highly induced when bacteria begin to enter new growth cycle, correlating well with the potential temporal requirement of its activity during infection. Our results indicate that direct targeting of v-ATPase by secreted proteins constitutes a virulence strategy for L. pneumophila, a vacuolar pathogen of macrophages and amoebae.  相似文献   

16.
The Dot/Icm type IVB secretion system (T4BSS) is a pivotal determinant of Legionella pneumophila pathogenesis. L. pneumophila translocate more than 100 effector proteins into host cytoplasm using Dot/Icm T4BSS, modulating host cellular functions to establish a replicative niche within host cells. The T4BSS core complex spanning the inner and outer membranes is thought to be made up of at least five proteins: DotC, DotD, DotF, DotG and DotH. DotH is the outer membrane protein; its targeting depends on lipoproteins DotC and DotD. However, the core complex structure and assembly mechanism are still unknown. Here, we report the crystal structure of DotD at 2.0 Å resolution. The structure of DotD is distinct from that of VirB7, the outer membrane lipoprotein of the type IVA secretion system. In contrast, the C-terminal domain of DotD is remarkably similar to the N-terminal subdomain of secretins, the integral outer membrane proteins that form substrate conduits for the type II and the type III secretion systems (T2SS and T3SS). A short β-segment in the otherwise disordered N-terminal region, located on the hydrophobic cleft of the C-terminal domain, is essential for outer membrane targeting of DotH and Dot/Icm T4BSS core complex formation. These findings uncover an intriguing link between T4BSS and T2SS/T3SS.  相似文献   

17.
18.
The intracellular bacterial agent of Q fever, Coxiella burnetii, translocates effector proteins into its host cell cytosol via a Dot/Icm type IV secretion system (T4SS). The T4SS is essential for parasitophorous vacuole formation, intracellular replication, and inhibition of host cell death, but the effectors mediating these events remain largely undefined. Six Dot/Icm substrate-encoding genes were recently discovered on the C. burnetii cryptic QpH1 plasmid, three of which are conserved among all C. burnetii isolates, suggesting that they are critical for conserved pathogen functions. However, the remaining hypothetical proteins encoded by plasmid genes have not been assessed for their potential as T4SS substrates. In the current study, we further defined the T4SS effector repertoire encoded by the C. burnetii QpH1, QpRS, and QpDG plasmids that were originally isolated from acute-disease, chronic-disease, and severely attenuated isolates, respectively. Hypothetical proteins, including those specific to QpRS or QpDG, were screened for translocation using the well-established Legionella pneumophila T4SS secretion model. In total, six novel plasmid-encoded proteins were translocated into macrophage-like cells by the Dot/Icm T4SS. Four newly identified effectors are encoded by genes present only on the QpDG plasmid from severely attenuated Dugway isolates, suggesting that the presence of specific effectors correlates with decreased virulence. These results further support the idea of a critical role for extrachromosomal elements in C. burnetii pathogenesis.  相似文献   

19.
20.
Legionella pneumophila uses a single homodimeric disulfide bond (DSB) oxidoreductase DsbA2 to catalyze extracytoplasmic protein folding and to correct DSB errors through protein‐disulfide isomerase (PDI) activity. In Escherichia coli, these functions are separated to avoid futile cycling. In L. pneumophila, DsbA2 is maintained as a mixture of disulfides (S‐S) and free thiols (SH), but when expressed in E. coli, only the SH form is observed. We provide evidence to suggest that structural differences in DsbB oxidases (LpDsbB1 and LpDsbB2) and DsbD reductases (LpDsbD1 and LpDsbD2) (compared with E. coli) permit bifunctional activities without creating a futile cycle. LpdsbB1 and LpdsbB2 partially complemented an EcdsbB mutant while neither LpdsbD1 nor LpdsbD2 complemented an EcdsbD mutant unless DsbA2 was also expressed. When the dsb genes of E. coli were replaced with those of L. pneumophila, motility was restored and DsbA2 was present as a mixture of redox forms. A dominant‐negative approach to interfere with DsbA2 function in L. pneumophila determined that DSB oxidase activity was necessary for intracellular multiplication and assembly/function of the Dot/Icm Type IVb secretion system. Our studies show that a single‐player system may escape the futile cycle trap by limiting transfer of reducing equivalents from LpDsbDs to DsbA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号