首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant community composition and functional traits respond to chronic drivers such as climate change and nitrogen (N) deposition. In contrast, pulse disturbances from ecosystem management can additionally change resources and conditions. Community responses to combined environmental changes may further depend on land‐use legacies. Disentangling the relative importance of these global change drivers is necessary to improve predictions of future plant communities. We performed a multifactor global change experiment to disentangle drivers of herbaceous plant community trajectories in a temperate deciduous forest. Communities of five species, assembled from a pool of 15 forest herb species with varying ecological strategies, were grown in 384 mesocosms on soils from ancient forest (forested at least since 1850) and postagricultural forest (forested since 1950) collected across Europe. Mesocosms were exposed to two‐level full‐factorial treatments of warming, light addition (representing changing forest management) and N enrichment. We measured plant height, specific leaf area (SLA) and species cover over the course of three growing seasons. Increasing light availability followed by warming reordered the species towards a taller herb community, with limited effects of N enrichment or the forest land‐use history. Two‐way interactions between treatments and incorporating intraspecific trait variation (ITV) did not yield additional inference on community height change. Contrastingly, community SLA differed when considering ITV along with species reordering, which highlights ITV’s importance for understanding leaf morphology responses to nutrient enrichment in dark conditions. Contrary to our expectations, we found limited evidence of land‐use legacies affecting community responses to environmental changes, perhaps because dispersal limitation was removed in the experimental design. These findings can improve predictions of community functional trait responses to global changes by acknowledging ITV, and subtle changes in light availability. Adaptive forest management to impending global change could benefit the restoration and conservation of understorey plant communities by reducing the light availability.  相似文献   

2.
In this review, I first address the basics of gas exchange, water‐use efficiency and carbon isotope discrimination in C3 plant canopies. I then present a case study of water‐use efficiency in northern Australian tree species. In general, C3 plants face a trade‐off whereby increasing stomatal conductance for a given set of conditions will result in a higher CO2 assimilation rate, but a lower photosynthetic water‐use efficiency. A common garden experiment suggested that tree species which are able to establish and grow in drier parts of northern Australia have a capacity to use water rapidly when it is available through high stomatal conductance, but that they do so at the expense of low water‐use efficiency. This may explain why community‐level carbon isotope discrimination does not decrease as steeply with decreasing rainfall on the North Australian Tropical Transect as has been observed on some other precipitation gradients. Next, I discuss changes in water‐use efficiency that take place during leaf expansion in C3 plant leaves. Leaf phenology has recently been recognised as a significant driver of canopy gas exchange in evergreen forest canopies, and leaf expansion involves changes in both photosynthetic capacity and water‐use efficiency. Following this, I discuss the role of woody tissue respiration in canopy gas exchange and how photosynthetic refixation of respired CO2 can increase whole‐plant water‐use efficiency. Finally, I discuss the role of water‐use efficiency in driving terrestrial plant responses to global change, especially the rising concentration of atmospheric CO2. In coming decades, increases in plant water‐use efficiency caused by rising CO2 are likely to partially mitigate impacts on plants of drought stress caused by global warming.  相似文献   

3.
Investigating the many internal feedbacks within the climate system is a vital component of the effort to quantify the full effects of future anthropogenic climate change. The stomatal apertures of plants tend to close and decrease in number under elevated CO2 concentrations, increasing water‐use efficiency (WUE) and reducing canopy evapotranspiration. Experimental and modelling studies reveal huge variations in these changes such that the warming associated with reduced evapotranspiration (known as physiological forcing) is neither well understood or constrained. Palaeo‐observations of changes in stomatal response and plant WUE under rising CO2 might be used to better understand the processes underlying the physiological forcing feedback and to link measured changes in plant WUE to a specific physiological change in stomata. Here we use time series of tree ring (Pinus sylvestris L.) δ13C and subfossil leaf (Betula nana L.) measurements of stomatal density and geometry to derive records of changes in intrinsic water‐use efficiency (iWUE) and maximum stomatal conductance in the Boreal zone of northern Finland and Sweden. We investigate the rate of change in both proxies, over the recent past. The independent lines of evidence from these two different Boreal species indicate increased iWUE and reduced maximum stomatal conductance of similar magnitude from preindustrial times (ca. ad 1850) to around ad 1970. After this maximum stomatal conductance continues to decrease to ad 2000 in B. nana but iWUE in P. sylvestris reaches a plateau. We suggest that northern boreal P. sylvestris might have reached a threshold in its ability to increase WUE as CO2 rises.  相似文献   

4.
The Neotropical Bromeliaceae display an extraordinary level of ecological variety, with species differing widely in habit, photosynthetic pathway and growth form. Divergences in stomatal structure and function, hitherto understudied in treatments of bromeliad evolutionary physiology, could have been critical to the generation of variety in ecophysiological strategies among the bromeliads. Because humidity is a key factor in bromeliad niches, we focussed on stomatal responses to vapour pressure deficit (VPD). We measured the sensitivity of stomatal conductance and assimilation rate to VPD in eight C3 bromeliad species of contrasting growth forms and ecophysiological strategies and parameterised the kinetics of stomatal responses to a step change in VPD. Notably, three tank‐epiphyte species displayed low conductance, high sensitivity and fast kinetics relative to the lithophytes, while three xeromorphic terrestrial species showed high conductance and sensitivity but slow stomatal kinetics. An apparent feedforward response of transpiration to VPD occurred in the tank epiphytes, while water‐use efficiency was differentially impacted by stomatal closure depending on photosynthetic responses. Differences in stomatal responses to VPD between species of different ecophysiological strategies are closely linked to modifications of stomatal morphology, which we argue has been a pivotal component of the evolution of high diversity in this important plant family.  相似文献   

5.
This study was initiated to investigate effects of damage by 0, 5 and 10 aphids/plant on the physiology of faba bean plants throughout different feeding periods and at two plant development stages. Immediately following removal of Aphis fabae, measurements showed 84–229% increase in transpiration rate. These changes were proportional to the number of aphids and infestation duration. Injury by A. fabae caused the stomatal conductance to be much higher in the leaves of infested plants. Leaf stomatal conductance of the infested plants increased significantly by 51–224% depending on initial aphid densities and feeding intervals. This increase was proportional to the infestation level for each date. Length of infestation period and plant growth stage seemed to have no clear effect on stomatal apertures. Aphid feeding caused a damage of about 7–33% of crude protein levels in the leaf tissue. This reduction increased with increasing infestation levels and time, except for 28‐day‐old plants on 28 days. The physiological effects of aphid feeding on water vapour and chemical composition of damaged leaves are particularly serious when the population is high.  相似文献   

6.
Uptake of CO2 by the leaf is associated with loss of water. Control of stomatal aperture by volume changes of guard cell pairs optimizes the efficiency of water use. Under water stress, the protein kinase OPEN STOMATA 1 (OST1) activates the guard‐cell anion release channel SLOW ANION CHANNEL‐ASSOCIATED 1 (SLAC1), and thereby triggers stomatal closure. Plants with mutated OST1 and SLAC1 are defective in guard‐cell turgor regulation. To study the effect of stomatal movement on leaf turgor using intact leaves of Arabidopsis, we used a new pressure probe to monitor transpiration and turgor pressure simultaneously and non‐invasively. This probe permits routine easy access to parameters related to water status and stomatal conductance under physiological conditions using the model plant Arabidopsis thaliana. Long‐term leaf turgor pressure recordings over several weeks showed a drop in turgor during the day and recovery at night. Thus pressure changes directly correlated with the degree of plant transpiration. Leaf turgor of wild‐type plants responded to CO2, light, humidity, ozone and abscisic acid (ABA) in a guard cell‐specific manner. Pressure probe measurements of mutants lacking OST1 and SLAC1 function indicated impairment in stomatal responses to light and humidity. In contrast to wild‐type plants, leaves from well‐watered ost1 plants exposed to a dry atmosphere wilted after light‐induced stomatal opening. Experiments with open stomata mutants indicated that the hydraulic conductance of leaf stomata is higher than that of the root–shoot continuum. Thus leaf turgor appears to rely to a large extent on the anion channel activity of autonomously regulated stomatal guard cells.  相似文献   

7.
The sequence of physiological events during drought strongly impacts plants' overall performance. Here, we synthesized the global data of stomatal and hydraulic traits in leaves and stems of 202 woody species to evaluate variations in the water potentials for key physiological events and their sequence along the climatic gradient. We found that the seasonal minimum water potential, turgor loss point, stomatal closure point, and leaf and stem xylem vulnerability to embolism were intercorrelated and decreased with aridity, indicating that water stress drives trait co-selection. In xeric regions, the seasonal minimum water potential occurred at lower water potential than turgor loss point, and the subsequent stomatal closure delayed embolism formation. In mesic regions, however, the seasonal minimum water potential did not pose a threat to the physiological functions, and stomatal closure occurred even at slightly more negative water potential than embolism. Our study demonstrates that the sequence of water potentials for physiological dysfunctions of woody plants varies with aridity, that is, xeric species adopt a more conservative sequence to prevent severe tissue damage through tighter stomatal regulation (isohydric strategy) and higher embolism resistance, while mesic species adopt a riskier sequence via looser stomatal regulation (anisohydric strategy) to maximize carbon uptake at the cost of hydraulic safety. Integrating both aridity-dependent sequence of water potentials for physiological dysfunctions and gap between these key traits into the hydraulic framework of process-based vegetation models would improve the prediction of woody plants' responses to drought under global climate change.  相似文献   

8.
气孔导度对CO2浓度变化的模拟及其生理机制   总被引:2,自引:0,他引:2  
王建林  温学发 《生态学报》2010,30(17):4815-4820
基于气孔运动的生理生化机制重点进行了气孔导度(gs)对CO2浓度变化的响应机制分析,并推导得到气孔导度(gs)对CO2浓度变化响应模型,并以9种植物进行了模型验证。结果表明:随着CO2浓度的升高,气孔导度会逐渐降低,且下降的幅度会随着CO2浓度的升高而逐渐减弱。气孔导度对CO2浓度(Cs)变化的响应模型可以表达为gs=gmax/(1+Cs/Cs0),其中式中gmax是最大气孔导度和Cs0是实验常数。该模型较好地模拟了气孔导度随CO2浓度变化的规律,模型参数具有明确的生理意义,与Jarvis模型和Ball-Berry模型相比,该模型如何实现多种环境因子的耦合有待进一步突破。另外,模型是在短期改变叶片CO2浓度的条件下得出的,在CO2浓度长期胁迫下的适用性也有待进一步确认。  相似文献   

9.
植物叶脉和气孔性状的关系反映了叶片的水力特性, 对认识它们与植物水分利用有关的生理功能间的关系及其调控作用具有重要意义。该文利用GIS (geographic information system)与实验生态学相结合的方法, 采用标准化主轴估计方法, 研究了兰州市北山不同坡向人工林刺槐(Robinia pseudoacacia)叶脉密度与气孔密度、气孔大小的关系。结果表明: 随着坡向由南坡向东坡、西坡和北坡转变, 植被群落的郁闭度、高度和土壤含水量呈逐渐增加的趋势, 刺槐的净光合速率(Pn)、蒸腾速率(Tr)、光合有效辐射(PAR)、叶脉密度和气孔密度呈逐渐减小的趋势, 气孔与叶面积呈逐渐增大的趋势; 各个坡向的刺槐叶脉密度与气孔密度呈显著正相关关系, 与气孔大小呈显著负相关关系, 且在南坡达到极显著相关关系。生长在南坡的刺槐具有高的叶脉密度和密而小的气孔, 生长在北坡的刺槐具有低的叶脉密度和疏而大的气孔。不同坡向刺槐叶脉密度与气孔特征间的资源分配模式, 反映了植物在异质性生境中根据其功能需求在自身性状之间进行投资权衡机制的优化。  相似文献   

10.
Alterations in global and regional precipitation patterns are expected to affect plant and ecosystem productivity, especially in water‐limited ecosystems. This study examined the effects of natural and supplemental (25% increase) seasonal precipitation on a sotol grassland ecosystem in Big Bend National Park in the Chihuahuan Desert. Physiological responses – leaf photosynthesis at saturating light (Asat), stomatal conductance (gs), and leaf nitrogen [N] – of two species differing in their life form and physiological strategies (Dasylirion leiophyllum, a C3 shrub; Bouteloua curtipendula, a C4 grass) were measured over 3 years (2004–2006) that differed greatly in their annual and seasonal precipitation patterns (2004: wet, 2005: average, 2006: dry). Precipitation inputs are likely to affect leaf‐level physiology through the direct effects of altered soil water and soil nitrogen. Thus, the effects of precipitation, watering treatment, soil moisture, and nitrogen were quantified via multivariate hierarchical Bayesian models that explicitly linked the leaf and soil responses. The two species differed in their physiological responses to precipitation and were differentially controlled by soil water vs. soil nitrogen. In the relatively deeply rooted C3 shrub, D. leiophyllum, Asat was highest in moist periods and was primarily regulated by deep (16–30 cm) soil water. In the shallow‐rooted C4 grass, B. curtipendula, Asat was only coupled to leaf [N], both of which increased in dry periods when soil [N] was highest. Supplemental watering during the wet year generally decreased Asat and leaf [N] in D. leiophyllum, perhaps due to nutrient limitation, and physiological responses in this species were influenced by the cumulative effects of 5 years of supplemental watering. Both species are common in this ecosystem and responded strongly, yet differently, to soil moisture and nitrogen, suggesting that changes in the timing and magnitude of precipitation may have consequences for plant carbon gain, with the potential to alter community composition.  相似文献   

11.
The degree of plant iso/anisohydry, a widely used framework for classifying species‐specific hydraulic strategies, integrates multiple components of the whole‐plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD‐induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade‐off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.  相似文献   

12.
In the central Great Plains of North America, climate change predictions include increases in mean annual temperature of 1.5–5.5 °C by 2100. Ecosystem responses to increased temperatures are likely to be regulated by dominant plant species, such as the potential biofuel species Panicum virgatum (switchgrass) in the tallgrass prairie. To describe the potential physiological and whole‐plant responses of this species to future changes in air temperatures, we used louvered open‐sided chambers (louvered OSC; 1 × 1 m, adjustable height) to passively alter canopy temperature in native stands of P. virgatum growing in tallgrass prairie at varying topographic positions (upland/lowland). The altered temperature treatment decreased daily mean temperatures by 1 °C and maximum temperatures by 4 °C in May and June, lowered daytime stomatal conductance and transpiration, decreased tiller density, increased specific leaf area, and delayed flowering. Among topographic contrasts, aboveground biomass, flowering tiller density, and tiller weight were greater in lowland sites compared to upland sites, with no temperature treatment interactions. Differences in biomass production responded more to topography than the altered temperature treatment, as soil water status varied considerably between topographic positions. These results indicate that while water availability as a function of topography was a strong driver of plant biomass, many leaf‐level physiological processes were responsive to the small decreases in daily mean and maximum temperature, irrespective of landscape position. The varying responses of leaf‐level gas exchange and whole‐plant growth of P. virgatum in native stands to altered air temperature or topographic position illustrate that accurately forecasting yields for P. virgatum in mixed communities will require greater integration of physiological responses to simulated climate change (increased temperature) and resource availability over natural environmental gradients (soil moisture).  相似文献   

13.
Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species'' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants’ regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.  相似文献   

14.
Phenological responses to changing temperatures are known as “fingerprints of climate change,” yet these reactions are highly species specific. To assess whether different plant characteristics are related to these species‐specific responses in flowering phenology, we observed the first flowering day (FFD) of ten herbaceous species along two elevational gradients, representing temperature gradients. On the same populations, we measured traits being associated with (1) plant performance (specific leaf area), (2) leaf biochemistry (leaf C, N, P, K, and Mg content), and (3) water‐use efficiency (stomatal pore area index and stable carbon isotopes concentration). We found that as elevation increased, FFD was delayed for all species with a highly species‐specific rate. Populations at higher elevations needed less temperature accumulation to start flowering than populations of the same species at lower elevations. Surprisingly, traits explained a higher proportion of variance in the phenological data than elevation. Earlier flowering was associated with higher water‐use efficiency, higher leaf C, and lower leaf P content. In addition to that, the intensity of shifts in FFD was related to leaf N and K. These results propose that traits have a high potential in explaining phenological variations, which even surpassed the effect of temperature changes in our study. Therefore, they have a high potential to be included in future analyses studying the effects of climate change and will help to improve predictions of vegetation changes.  相似文献   

15.
The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long‐term, multi‐level and multi‐factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m?2) were applied and the higher level was combined with supplemental summer rain. We made plot‐level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ13C and NDVI to examine responses to our treatments at ecosystem‐ and leaf‐levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2‐C budgets. Low‐level warming increased the magnitude of the ecosystem C sink. Meanwhile, high‐level warming made the ecosystem a source of C to the atmosphere. When high‐level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low‐level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf‐level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf‐level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain.  相似文献   

16.
Given the magnitude and rate of ongoing climate change, the physiological capacity of species to tolerate extreme conditions will play a key role in influencing outcomes for biodiversity. It is also possible that species will respond to changes in climate by shifting their physiological tolerances, through genetic adaptation. How these processes influence biodiversity outcomes will be crucial in determining the most suitable management responses to retain diversity into the future. Here we assess how accounting for physiological tolerances, genetic adaptation and community assembly processes such as species replacement, influence projected climate change outcomes for the flora of Tasmania (all 2051 plant species). We incorporate these processes into the M‐SET metacommunity model and compare four different assumptions of species niches: realized niches, broader physiological tolerances and low or high capacity for genetic adaptation. Accounting for physiological tolerances rather than realized niches had the largest impact on projected outcomes, with 358 fewer species extinctions in the hottest climate scenario (mean = 30 extinctions). In contrast, adding the capacity for species physiological tolerances to shift through genetic adaptation resulted in little additional benefits for biodiversity outcomes, even under an optimistic level of adaptive capacity. We find that this is due largely to community assembly processes such as species replacement restricting the ability of species to persist and adapt in situ, as has been suggested from theoretical metacommunity models applied in simple artificial settings. Our results highlight the importance of accounting for species physiological tolerances and community‐level processes in biodiversity projections, while the potential role for genetic adaptation may be small, requiring further exploration in alternative contexts.  相似文献   

17.
Tropical forest responses are an important feedback on global change, but changes in forest composition with projected increases in CO2 and drought are highly uncertain. Here we determine shifts in the most competitive plant hydraulic strategy (the evolutionary stable strategy or ESS) from changes in CO2 and drought frequency and intensity. Hydraulic strategies were defined along a spectrum from drought avoidance to tolerance by physiology traits. Drought impacted competition more than CO2, with elevated CO2 reducing but not reversing drought‐induced shifts in the ESS towards more tolerant strategies. Trait plasticity and/or adaptation intensified these shifts by increasing the competitive ability of the drought tolerant relative to the avoidant strategies. These findings predict losses of drought avoidant evergreens from tropical forests under global change, and point to the importance of changes in precipitation during the dry season and constraints on plasticity and adaptation in xylem traits to forest responses.  相似文献   

18.
Selective consumption by herbivores influences the composition and structure of a range of plant communities. Anthropogenically driven global environmental changes, including increased atmospheric carbon dioxide (CO2), warming, increased precipitation, and increased N deposition, directly alter plant physiological properties, which may in turn modify herbivore consumption patterns. In this study, we tested the hypothesis that responses of annual grassland composition to global changes can be predicted exclusively from environmentally induced changes in the consumption patterns of a group of widespread herbivores, the terrestrial gastropods. This was done by: (1) assessing gastropod impacts on grassland composition under ambient conditions; (2) quantifying environmentally induced changes in gastropod feeding behaviour; (3) predicting how grassland composition would respond to global-change manipulations if influenced only by herbivore consumption preferences; and (4) comparing these predictions to observed responses of grassland community composition to simulated global changes. Gastropod herbivores consume nearly half of aboveground production in this system. Global changes induced species-specific changes in plant leaf characteristics, leading gastropods to alter the relative amounts of different plant types consumed. These changes in gastropod feeding preferences consistently explained global-change-induced responses of functional group abundance in an intact annual grassland exposed to simulated future environments. For four of the five global change scenarios, gastropod impacts explained > 50% of the quantitative changes, indicating that herbivore preferences can be a major driver of plant community responses to global changes.  相似文献   

19.
Aim To estimate the effects of full‐glacial atmospheric CO2 concentrations and climate upon leaf area index (LAI), using both global vegetation models and palaeoecological data. Prior simulations indicate lowered LAIs at the Last Glacial Maximum (LGM), but this is the first attempt to corroborate predictions against observations. Location Eastern North America and eastern Beringia. Methods Using a dense surface pollen data set and remotely sensed LAIs from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, we evaluate the ability of analogue‐based techniques to reconstruct modern LAIs from pollen data. We then apply analogue techniques to LGM pollen records, calculate the ratio of LGM to modern LAIs (RLAI) and compare reconstructed RLAIs to RLAIs simulated by BIOME4. Sensitivity experiments with BIOME4 distinguish the effects of CO2 and climate on glacial LAIs. Results Modern LAIs are skilfully predicted (r2= 0.83). Data and BIOME4 indicate that LAIs at the LGM were up to 12% lower than modern values in eastern North America and 60–94% lower in Beringia. In eastern North America, LGM climates partially counteracted CO2‐driven decreases in LAI, while in Beringia both contributed to lowered LAIs. Main conclusions In both regions climate is the primary driver of LGM LAIs. The decline in eastern North America LAIs is smaller than previously reported, so regional vegetation feedbacks to LGM climate may have been less significant than previously supposed. CO2 exerts both physiological and community effects upon LAI, by regulating resource availability for leaf production and by influencing the competitive balance among species and hence the composition and structure of plant communities. Pollen‐based reconstructions using analogue methods do not incorporate the physiological effect and so are upper estimates of full‐glacial LAIs. BIOME4 sensitivity experiments indicate that the community and physiological effects together caused 10% to 20% decrease in LAIs at the LGM, so simulated RLAIs that are 80–100% of reconstructed RLAIs are regarded as consistent with data.  相似文献   

20.
Plant water‐use efficiency (WUE, the carbon gained through photosynthesis per unit of water lost through transpiration) is a tracer of the plant physiological controls on the exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere. At the leaf level, rising CO2 concentrations tend to increase carbon uptake (in the absence of other limitations) and to reduce stomatal conductance, both effects leading to an increase in leaf WUE. At the ecosystem level, indirect effects (e.g. increased leaf area index, soil water savings) may amplify or dampen the direct effect of CO2. Thus, the extent to which changes in leaf WUE translate to changes at the ecosystem scale remains unclear. The differences in the magnitude of increase in leaf versus ecosystem WUE as reported by several studies are much larger than would be expected with current understanding of tree physiology and scaling, indicating unresolved issues. Moreover, current vegetation models produce inconsistent and often unrealistic magnitudes and patterns of variability in leaf and ecosystem WUE, calling for a better assessment of the underlying approaches. Here, we review the causes of variations in observed and modelled historical trends in WUE over the continuum of scales from leaf to ecosystem, including methodological issues, with the aim of elucidating the reasons for discrepancies observed within and across spatial scales. We emphasize that even though physiological responses to changing environmental drivers should be interpreted differently depending on the observational scale, there are large uncertainties in each data set which are often underestimated. Assumptions made by the vegetation models about the main processes influencing WUE strongly impact the modelled historical trends. We provide recommendations for improving long‐term observation‐based estimates of WUE that will better inform the representation of WUE in vegetation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号