首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Animal ecology research could benefit from the measurement of individual morphological traits. In bovids, male horn size often correlates with annual reproductive success, is sensitive to resource abundance, and could be a predictor of survival. However, live captures are costly, involve some risk of injury or substantial disturbance to the animals, and are impossible in many situations. To remotely measure horn growth of free-ranging Alpine ibex (Capra ibex), I designed an aluminum frame that holds parallel laser pointers and a digital camera. I took digital pictures of ibex horns and calculated horn growth based on the fixed distance between the 2 laser points. This simple and accurate technique could benefit many ecological studies that require linear measurements, such as shoulder height, body length, leg length, or fin length. It could also help measure body features (e.g., fur or skin patterns, scars), increasing the reliability of individual photographic identification.  相似文献   

2.
Size-selective harvesting of wild ungulates can trigger a range of ecological and evolutionary consequences. It remains unclear how environmental conditions, including changes in habitat, climate, and local weather conditions, dilute or strengthen the effects of trophy hunting. We analyzed horn length measurements of 2,815 male ibex (Capra pyrenaica) that were harvested from 1995 to 2017 in Els Ports de Tortosa i Beseit National Hunting Reserve in northeastern Spain. We used linear mixed models to determine the magnitude of inter-individual horn growth variability and partial least square path models to evaluate long-term effects of environmental change, population size, and hunting strategy on horn growth. Age-specific horn length significantly decreased over the study period, and nearly a quarter (23%) of its annual variation was attributed to individual heterogeneity among males. The encroachment of pine (Pinus spp.) forests had a negative effect on annual horn growth, possibly through nutritional impoverishment. The harvesting of trophy and selective individuals (e.g., small-horned males) from the entire population increased horn growth, probably because it reduced the competition for resources and prevented breeding of these smaller males. Local weather conditions and population size did not influence horn growth. Our study demonstrates how habitat changes are altering the horn growth of male ibex. We suggest that habitat interventions, such the thinning of pine forests, can contribute to securing the sustainability of trophy hunting. Even in situations where size-selective harvesting is not causing a detectable phenotypic response, management actions leading to the expansion of preferred land cover types, such as grass-rich open areas, can have a positive effect on ungulate fitness. Forest encroachment on open meadows and heterogeneous grasslands is pervasive throughout Mediterranean ecosystems. Therefore, our management recommendations can be extended to the landscape level, which will have the potential to mitigate the side effects of habitat deterioration on the phenotypic traits of wild ibex. © 2020 The Wildlife Society.  相似文献   

3.
Large horns or antlers require a high energy allocation to produce and carry both physiological and social reproductive costs. Following the principle of energy allocation that implies trade-offs among fitness components, growing large weapons early in life should thus reduce future growth and survival. Evidence for such costs is ambiguous, however, partly because individual heterogeneity can counterbalance trade-offs. Individuals with larger horns or antlers may be of better quality and thus have a greater capacity to survive. We investigated trade-offs between male early horn growth and future horn growth, baseline mortality, onset of actuarial senescence, and rate of ageing in an Alpine ibex (Capra ibex ibex) population. Horn growth of males in early life was positively correlated to their horn length throughout their entire life. Cohort variation and individual heterogeneity both accounted for among-individual variation in horn length, suggesting both long-lasting effects of early life conditions and individual-specific horn growth trajectories. Early horn growth did not influence annual survival until 12 years of age, indicating that males do not invest in horn growth at survival costs over most of their lifetime. However, males with fast-growing horns early in life tended to have lower survival at very old ages. Individual heterogeneity, along with the particular life-history tactic of male ibex (weak participation to the rut until an old age after which they burn out in high mating investment), are likely to explain why the expected trade-off between horn growth and survival does not show up, at least until very old ages.  相似文献   

4.
In sexually dimorphic ungulates, sexual selection favoring rapid horn growth in males may be counterbalanced by a decrease in longevity if horns are costly to produce and maintain. Alternatively, if early horn growth varied with individual quality, it may be positively correlated with longevity. We studied Alpine ibex Capra ibex in the Gran Paradiso National Park, Italy, to test these alternatives by comparing early horn growth and longevity of 383 males that died from natural causes. After accounting for age at death, total horn length after age 5 was positively correlated with horn growth from two to four years. Individuals with the fastest horn growth as young adults also had the longest horns later in life. Annual horn growth increments between two and six years of age were independent of longevity for ibex whose age at death ranged from 8 to 16 years. Our results suggest that growing long horns does not constrain longevity. Of the variability in horn length, 22% could be explained by individual heterogeneity, suggesting persistent differences in phenotypic quality among males. Research on unhunted populations of sexually dimorphic ungulates documents how natural mortality varies according to horn or antler size, and can help reduce the impact of sport hunting on natural processes.  相似文献   

5.
Secondary sexual traits, such as horns in ungulates, may be good indicators of genetic quality because they are costly to develop. Genetic effects on such traits may be revealed by examining correlations between multilocus heterozygosity (MLH) and trait value. Correlations between MLH and fitness traits, termed heterozygosity-fitness correlations (HFC), may reflect inbreeding depression or associative overdominance of neutral microsatellite loci with loci directly affecting fitness traits. We investigated HFCs for horn growth, body mass and faecal counts of nematode eggs in wild Alpine ibex (Capra ibex). We also tested if individual inbreeding coefficients (f') estimated from microsatellite data were more strongly correlated with fitness traits than MLH. MLH was more strongly associated with trait variation than f'. We found HFC for horn growth but not for body mass or faecal counts of nematode eggs. The effect of MLH on horn growth was age-specific. The slope of the correlation between MLH and yearly horn growth changed from negative to positive as males aged, in accordance with the mutation accumulation theory of the evolution of senescence. Our results suggest that the horns of ibex males are an honest signal of genetic quality.  相似文献   

6.
According to life-history theory age-dependent investments into reproduction are thought to co-vary with survival and growth of animals. In polygynous species, in which size is an important determinant of reproductive success, male reproduction via alternative mating tactics at young age are consequently expected to be the less frequent in species with higher survival. We tested this hypothesis in male Alpine ibex (Capra ibex), a highly sexually dimorphic mountain ungulate whose males have been reported to exhibit extremely high adult survival rates. Using data from two offspring cohorts in a population in the Swiss Alps, the effects of age, dominance and mating tactic on the likelihood of paternity were inferred within a Bayesian framework. In accordance with our hypothesis, reproductive success in male Alpine ibex was heavily biased towards older, dominant males that monopolized access to receptive females by adopting the ‘tending’ tactic, while success among young, subordinate males via the sneaking tactic ‘coursing’ was in general low and rare. In addition, we detected a high reproductive skew in male Alpine ibex, suggesting a large opportunity for selection. Compared with other ungulates with higher mortality rates, reproduction among young male Alpine ibex was much lower and more sporadic. Consistent with that, further examinations on the species level indicated that in polygynous ungulates the significance of early reproduction appears to decrease with increasing survival. Overall, this study supports the theory that survival prospects of males modulate the investments into reproduction via alternative mating tactics early in life. In the case of male Alpine ibex, the results indicate that their life-history strategy targets for long life, slow and prolonged growth and late reproduction.  相似文献   

7.
Abstract The importance of non‐trophic animal damage (biting and uprooting without consumption) and mortality of canopy tree seedlings were investigated in a warm temperate forest, in northern New Zealand. Two hundred seedlings 10‐30 cm in height were monitored at 4‐6‐week intervals for 2 years. Non‐trophic animal damage accounted for more seedling mortality in the first year (37.5% of all mortalities) than any other cause. Of the seedlings damaged in non‐trophic animal interactions 73% were bitten off close to the ground and left uneaten and the remainder were uprooted. In the second year all non‐trophic animal damage and mortality ceased following the control of rabbits (Oryctolagus cuniculus), suggesting that rabbits were the major cause of this damage. Total annual mortality rates (6‐8%) were low. However, measured seedling growth rates indicated an average time for seedlings to grow from 10 to 30 cm of 37 years. Therefore, in the absence of rabbit control, mortality due to non‐trophic animal interactions (3% per year) can have an important cumulative effect. Non‐trophic animal damage found in the present study before rabbits were culled (5% per year) was similar to that reported for two tropical forests, but much less than that reported for some other tropical and temperate forests.  相似文献   

8.
Monitoring procedures for Alpine ibex Capra ibex are limited in habitats with reduced visibility and when physical capture and marking of the animals is not intended. Photographic sampling, involving using camera‐trap data and identifying ibex from natural markings, was adopted with capture‐recapture models to estimate the abundance of ibex in Austria. The software CAPTURE's model produced an average capture probability of 0.44 with an estimate of 34–51 ibex and a mean population size of 38 ibex. This first study showed the applicability of photographic capture‐recapture techniques to estimate the abundance of ibex based on their natural markings.  相似文献   

9.
Heterozygosity–fitness correlations (HFCs) are a useful tool to investigate the effects of inbreeding in wild populations, but are not informative in distinguishing between direct and indirect effects of heterozygosity on fitness-related traits. We tested HFCs in male Alpine ibex (Capra ibex) in a free-ranging population (which suffered a severe bottleneck at the end of the eighteenth century) and used confirmatory path analysis to disentangle the causal relationships between heterozygosity and fitness-related traits. We tested HFCs in 149 male individuals born between 1985 and 2009. We found that standardized multi-locus heterozygosity (MLH), calculated from 37 microsatellite loci, was related to body mass and horn growth, which are known to be important fitness-related traits, and to faecal egg counts (FECs) of nematode eggs, a proxy of parasite resistance. Then, using confirmatory path analysis, we were able to show that the effect of MLH on horn growth was not direct but mediated by body mass and FEC. HFCs do not necessarily imply direct genetic effects on fitness-related traits, which instead can be mediated by other traits in complex and unexpected ways.  相似文献   

10.
Molenda O  Reid A  Lortie CJ 《PloS one》2012,7(5):e37223
Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms--predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson's diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants.  相似文献   

11.
Predicting the effects of the expected changes in climate on the dynamics of populations require that critical periods for climate‐induced changes in population size are identified. Based on time series analyses of 26 Swiss ibex (Capra ibex) populations, we show that variation in winter climate affected the annual changes in population size of most of the populations after accounting for the effects of density dependence and demographic stochasticity. In addition, precipitation during early summer also influenced the population fluctuations. This suggests that the major influences of climate on ibex population dynamics operated either through loss of individuals during winter or early summer, or through an effect on fecundity. However, spatial covariation in these climate variables was not able to synchronize the population fluctuations of ibex over larger distances, probably due to large spatial heterogeneity in the effects of single climate variables on different populations. Such spatial variation in the influence of the same climate variable on the local population dynamics suggests that predictions of influences of climate change need to account for local differences in population dynamical responses to climatic conditions.  相似文献   

12.
Global warming impacts natural communities through effects on performance of individual species and through changes in the strength of interactions between them. While there is a body of evidence of the former, we lack experimental evidence on potential changes in interaction strengths. Knowledge about multispecies interactions is fundamental to understand the regulation of biodiversity and the impact of climate change on communities. This study investigated the effect of warming on a simplified community consisting of three species: rosy apple aphid Dysaphis plantaginea feeding on plantain, Plantago lanceolata, and a heterospecific neighbouring plant species, perennial ryegrass, Lolium perenne. The aphid does not feed on L. perenne. The experimental design consisted of monocultures and mixtures of L. perenne and P. lanceolata at three temperature levels. We did not find indication for indirect temperature effects on D. plantaginea through changes in leaf nitrogen or relative water content. However, experimental warming affected the life history traits of the aphid directly, in a non‐linear manner. Aphids performed best at moderate warming, where they grew faster and had a shorter generation time. In spite of the increased population growth of the aphids under warming, the herbivory rates were not changed and consequently the plant–herbivore interaction was not altered under warming. This suggests reduced consumption rates at higher temperature. Also plant competition affected the aphids but through an interaction with temperature. We provide proof‐of‐concept that net interactions between plants and herbivores should not change under warming despite direct effects of warming on herbivores when plant–plant interaction are considered. Our study stresses the importance of indirect non–trophic interactions as an additional layer of complexity to improve our understanding of how trophic interactions will alter under climate change.  相似文献   

13.
Considerable uncertainty surrounds the conditions under which birds can cause trophic cascades. In a three‐year experiment, we studied the direct and indirect effects of insectivorous birds on arthropod abundance, herbivory, and growth of striped maple Acer pensylvanicum saplings in a northern hardwood forest of central New Hampshire, USA. We manipulated bird predation by erecting exclosures around saplings and directly manipulated herbivory by removing herbivores. We also examined how climate modifies these interactions by replicating the experiment at three locations along an elevational gradient. Effects of bird predation were variable. Overall, mean arthropod biomass was 20% greater on saplings within bird exclosures than on controls (p<0.05). The mean biomass of leaf‐chewing herbivores, primarily Lepidoptera larvae, was 25% greater within exclosures but not statistically different from controls. To a lesser degree, mean herbivore damage to foliage within exclosures exceeded that of controls but differences were not significant. We also did not detect significant treatment effects on sapling shoot growth. The high understory vegetation density relative to bird abundance, and low rate of herbivory during the study (mean 5% leaf area removed, controls), may have limited the ability of birds to affect sapling growth. Climate effects operated at multiple scales, resulting in a complex interplay of interactions within the food web. Regional synchrony of climatic conditions resulted in annual fluctuations in herbivore abundance and tree growth that were shared across elevations. At the same time, local environmental variation resulted in site differences in the plant, herbivore, and bird communities. These patterns resulted in a mosaic of top–down strengths across time and space, suggesting an overall pattern of limited effects of birds on plant growth, possibly interspersed with hotspots of trophic cascades.  相似文献   

14.
Climate change is most rapid in the Arctic, posing both benefits and challenges for migratory herbivores. However, population‐dynamic responses to climate change are generally difficult to predict, due to concurrent changes in other trophic levels. Migratory species are also exposed to contrasting climate trends and density regimes over the annual cycle. Thus, determining how climate change impacts their population dynamics requires an understanding of how weather directly or indirectly (through trophic interactions and carryover effects) affects reproduction and survival across migratory stages, while accounting for density dependence. Here, we analyse the overall implications of climate change for a local non‐hunted population of high‐arctic Svalbard barnacle geese, Branta leucopsis, using 28 years of individual‐based data. By identifying the main drivers of reproductive stages (egg production, hatching and fledging) and age‐specific survival rates, we quantify their impact on population growth. Recent climate change in Svalbard enhanced egg production and hatching success through positive effects of advanced spring onset (snow melt) and warmer summers (i.e. earlier vegetation green‐up) respectively. Contrastingly, there was a strong temporal decline in fledging probability due to increased local abundance of the Arctic fox, the main predator. While weather during the non‐breeding season influenced geese through a positive effect of temperature (UK wintering grounds) on adult survival and a positive carryover effect of rainfall (spring stopover site in Norway) on egg production, these covariates showed no temporal trends. However, density‐dependent effects occurred throughout the annual cycle, and the steadily increasing total flyway population size caused negative trends in overwinter survival and carryover effects on egg production. The combination of density‐dependent processes and direct and indirect climate change effects across life history stages appeared to stabilize local population size. Our study emphasizes the need for holistic approaches when studying population‐dynamic responses to global change in migratory species.  相似文献   

15.
High biodiversity is known to increase many ecosystem functions, but studies investigating biodiversity effects have more rarely looked at multi‐trophic interactions. We studied a tri‐trophic system composed of Centaurea jacea (brown knapweed), its flower head‐infesting tephritid fruit flies and their hymenopteran parasitoids, in a grassland biodiversity experiment. We aimed to disentangle the importance of direct effects of plant diversity (through changes in apparency and resource availability) from indirect effects (mediated by host plant quality and performance). To do this, we compared insect communities in C. jacea transplants, whose growth was influenced by the surrounding plant communities (and where direct and indirect effects can occur), with potted C. jacea plants, which do not compete with the surrounding plant community (and where only direct effects are possible). Tephritid infestation rate and insect load, mainly of the dominant species Chaetorellia jaceae, decreased with increasing plant species and functional group richness. These effects were not seen in the potted plants and are therefore likely to be mediated by changes in host plant performance and quality. Parasitism rates, mainly of the abundant chalcid wasps Eurytoma compressa and Pteromalus albipennis, increased with plant species or functional group richness in both transplants and potted plants, suggesting that direct effects of plant diversity are most important. The differential effects in transplants and potted plants emphasize the importance of plant‐mediated direct and indirect effects for trophic interactions at the community level. The findings also show how plant–plant interactions critically affect results obtained using transplants. More generally, our results indicate that plant biodiversity affects the abundance of higher trophic levels through a variety of different mechanisms.  相似文献   

16.
Climate change is expected to have significant and complex impacts on ecological communities. In addition to direct effects of climate on species, there can also be indirect effects through an intermediary species, such as in host–plant interactions. Indirect effects are expected to be more pronounced in alpine environments because these ecosystems are sensitive to temperature changes and there are limited areas for migration of both species (i.e. closed systems), and because of simpler trophic interactions. We tested the hypothesis that climate change will reduce the range of an alpine butterfly (Parnassius smintheus) because of indirect effects through its host plant (Sedum sp.). To test for direct and indirect effects, we used the simulations of climate change to assess the distribution of P. smintheus with and without Sedum sp. We also compared the projected ranges of P. smintheus to four other butterfly species that are found in the alpine, but that are generalists feeding on many plant genera. We found that P. smintheus gained distributional area in climate‐only models, but these gains were significantly reduced with the inclusion of Sedum sp. and in dry‐climate scenarios which resulted in a reduction in net area. When compared to the more generalist butterfly species, P. smintheus exhibited the largest loss in suitable habitat. Our findings support the importance of including indirect effects in modelling species distributions in response to climate change. We highlight the potentially large and still neglected impacts climate change can have on the trophic structure of communities, which can lead to significant losses of biodiversity. In the future, communities will continue to favour species that are generalists as climate change induces asynchronies in the migration of species.  相似文献   

17.
Trophic plant–animal interactions (e.g. browsing by ungulates, insect attack) are an important and well‐studied source of mortality in many tree populations. Non‐trophic tree–animal interactions (e.g. deer antler rubbing) also frequently lead to tree death, and thus have significant effects on forest ecosystem functioning, but they are much less well studied than trophic interactions are. As deer populations have increased in recent decades in the Northern Hemisphere, their impact on tree populations via browsing and antler rubbing will increase. The aim of the study was to illustrate the potential ability of non‐trophic plant–animal interactions to regulate the dynamics of a natural forest. Specifically, we wanted to determine whether and how density and distance‐dependent processes affect sapling mortality caused by an antler rubbing by red deer Cervus elaphus. We used a spatially explicit approach to examine density and distance‐dependent mortality effects in almost two thousand Picea abies saplings over 20 years, based on a fully mapped permanent 14.4 ha plot in a natural subalpine old‐growth spruce forest. Antler rubbing by deer was the main identified cause of sapling mortality, and it showed a strong spatial pattern: positive density dependence of survival among spruce saplings. Deer selectively killed spruce saplings that were isolated from conspecifics. In consequence, non‐trophic plant–deer interactions were a major driver of the spatial pattern of P. abies sapling survival. The other mortality causes (e.g. breaking, overturning) did not show density‐dependent patterns or their effects were much weaker. In the medium and long term, the density‐dependent pattern of sapling mortality due to antler rubbing can alter the tree stand structure. Our results highlight the ecological relevance of non‐trophic plant–animal interactions for forest ecosystem functioning.  相似文献   

18.
During a two year preliminary study, the spatial organization of a group of male Alpine ibexCapra ibex ibex Linnaeus, 1758 was examined in the Gran Paradiso National Park, Western Italian Alps, Italy. From December 1995 to January 1998 we measured annual, seasonal home range and home range during the rut, plus altitudinal migration of 13 radio-collared adult Alpine ibex. The small annual home range size showed a traditional use of space, confirmed by the high overlapping values between home ranges of consecutive years: the ibex used the same places from year to year. This was also true during periods of rut. Home ranges closely overlapped in consecutive ruts, while their size changed from winter to winter. Snow cover limited the movements of the ibex; winter and spring home ranges were smaller than those in summer and autumn. Mean vertical movement patterns were similar in the two years, showing the highest values in summer and the lowest in spring. Space use was never proportional to availability for each altitudinal range.  相似文献   

19.
Seasonal variations in the horn development and testicular activity of the Spanish ibex (Capra pyrenaica hispanica) (n=6) and European mouflon (Ovis orientalis musimon) (n=5) were monitored to determine the role of increasing testosterone concentration on the arrest of horn growth during the rutting season. Marked seasonal variations in the rate of horn growth (P<0.01) and testicular activity (P<0.001) were seen in both species, although the magnitude and timing of these changes were different (P<0.01). Horn growth rate was inversely correlated to seasonal levels in testosterone plasma concentration in both species (ibex: R=-0.45, P<0.01; mouflon R=-0.51, P<0.01). In the mouflon, the increase in plasma testosterone concentration recorded in September (P<0.05 compared with the lowest concentration) coincided with a significant reduction in horn growth (P<0.05). In the ibex, the increase in plasma testosterone concentration in October (P<0.05 compared with the lowest concentration) was associated with a significant arrest of horn growth in November (P<0.05). These results appear to support the hypothesis that high peripheral plasma levels of testosterone are linked with the seasonal arrest of horn growth during the rutting period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号