首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolutionary transitions from outcrossing to selfing can strongly affect the genetic diversity and structure of species at multiple spatial scales. We investigated the genetic consequences of mating‐system shifts in the North American, Pacific coast dune endemic plant Camissoniopsis cheiranthifolia (Onagraceae) by assaying variation at 13 nuclear (n) and six chloroplast (cp) microsatellite (SSR) loci for 38 populations across the species range. As predicted from the expected reduction in effective population size (Ne) caused by selfing, small‐flowered, predominantly selfing (SF) populations had much lower nSSR diversity (but not cpSSR) than large‐flowered, predominantly outcrossing (LF) populations. The reduction in nSSR diversity was greater than expected from the effects of selfing on Ne alone, but could not be accounted for by indirect effects of selfing on population density. Although selfing should reduce gene flow, SF populations were not more genetically differentiated than LF populations. We detected five clusters of nSSR genotypes and three groups of cpSSR haplotypes across the species range consisting of parapatric groups of populations that usually (but not always) differed in mating system, suggesting that selfing may often initiate ecogeographic isolation. However, lineage‐wide genetic variation was not lower for selfing clusters, failing to support the hypothesis that selection for reproductive assurance spurred the evolution of selfing in this species. Within three populations where LF and SF plants coexist, we detected genetic differentiation among diverged floral phenotypes suggesting that reproductive isolation (probably postzygotic) may help maintain the striking mating‐system differentiation observed across the range of this species.  相似文献   

2.
  • Self‐fertilisation that is delayed until after opportunities for outcrossing have ceased has been argued to provide both the reproductive assurance benefits of selfing and the genetic advantages of outcrossing. In the Campanulaceae, presentation of pollen on stylar hairs and progressive stigma curvature have been hypothesised to facilitate delayed selfing, but experimental tests are lacking. Stigma curvature is common in Campanula, a genus largely characterised by self‐incompatibility, and therefore is unlikely to have initially evolved to promote self‐fertilisation. In derived self‐compatible species, however, stigma curvature might serve the secondary function of delayed selfing.
  • We investigated delayed selfing in Triodanis perfoliata, a self‐compatible relative of Campanula. Using floral manipulation experiments and pollen tube observations, we quantified the extent and timing of self‐pollination. Further, we hypothesised that, if stigma curvature provides the benefit of delayed selfing in Triodanis, selection should have favoured retention of self‐pollen through the loss of a stylar hair retraction mechanism.
  • Results of a stigma removal experiment indicated that autonomous selfing produces partial seed set, but only some selfing was delayed. Pollen tube observations and a flower senescence assay also supported the finding of partial delayed selfing. Scanning electron microscopy revealed that pollen‐collecting hairs retract during anthesis, which may limit the extent of delayed selfing.
  • Delayed selfing appeared to be only partially effective in T. perfoliata. The stylar hair retraction in this species would seem to contradict selection for selfing. We suggest that caution and rigour are needed in interpreting floral traits as adaptive mechanisms for delayed selfing.
  相似文献   

3.
Capacity for autonomous self‐fertilization provides reproductive assurance, has evolved repeatedly in the plant kingdom, and typically involves several changes in flower morphology and development (the selfing syndrome). Yet, the relative importance of different traits and trait combinations for efficient selfing and reproductive success in pollinator‐poor environments is poorly known. In a series of experiments, we tested the importance of anther–stigma distance and the less studied trait anther orientation for efficiency of selfing in the perennial herb Arabis alpina. Variation in flower morphology among eight self‐compatible European populations was correlated with efficiency of self‐pollination and with pollen limitation in a common‐garden experiment. To examine whether anther–stigma distance and anther orientation are subject to directional and/or correlational selection, and whether this is because these traits affect pollination success, we planted a segregating F2 population at two native field sites. Selection strongly favored a combination of introrse anthers and reduced anther–stigma distance at a site where pollinator activity was low, and supplemental hand‐pollination demonstrated that this was largely because of their effect on securing self‐pollination. The results suggest that concurrent shifts in more than one trait can be crucial for the evolution of efficient self‐pollination and reproductive assurance in pollinator‐poor habitats.  相似文献   

4.
Haudry A  Zha HG  Stift M  Mable BK 《Molecular ecology》2012,21(5):1130-1142
A breakdown of self‐incompatibility (SI) followed by a shift to selfing is commonly observed in the evolution of flowering plants. Both are expected to reduce the levels of heterozygosity and genetic diversity. However, breakdown of SI should most strongly affect the region of the SI locus (S‐locus) because of the relaxation of balancing selection that operates on a functional S‐locus, and a potential selective sweep. In contrast, a transition to selfing should affect the whole genome. We set out to disentangle the effects of breakdown of SI and transition to selfing on the level and distribution of genetic diversity in North American populations of Arabidopsis lyrata. Specifically, we compared sequence diversity of loci linked and unlinked to the S‐locus for populations ranging from complete selfing to fully outcrossing. Regardless of linkage to the S‐locus, heterozygosity and genetic diversity increased with population outcrossing rate. High heterozygosity of self‐compatible individuals in outcrossing populations suggests that SI is not the only factor preventing the evolution of self‐fertilization in those populations. There was a strong loss of diversity in selfing populations, which was more pronounced at the S‐locus. In addition, selfing populations showed an accumulation of derived mutations at the S‐locus. Our results provide evidence that beyond the genome‐wide consequences of the population bottleneck associated with the shift to selfing, the S‐locus of A. lyrata shows a specific signal either reflecting the relaxation of balancing selection or positive selection.  相似文献   

5.
Parasite‐mediated selection is one of the main drivers of genetic variation in natural populations. The persistence of long‐term self‐fertilization, however, challenges the notion that low genetic variation and inbreeding compromise the host's ability to respond to pathogens. DNA methylation represents a potential mechanism for generating additional adaptive variation under low genetic diversity. We compared genetic diversity (microsatellites and AFLPs), variation in DNA methylation (MS‐AFLPs), and parasite loads in three populations of Kryptolebias hermaphroditus, a predomintanly self‐fertilizing fish, to analyze the potential adaptive value of DNA methylation in relation to genetic diversity and parasite loads. We found strong genetic population structuring, as well as differences in parasite loads and methylation levels among sampling sites and selfing lineages. Globally, the interaction between parasites and inbreeding with selfing lineages influenced DNA methylation, but parasites seemed more important in determining methylation levels at the local scale.  相似文献   

6.
Traditionally, annual colonising species are expected to have high rates of self‐fertilisation, although recent theoretical and empirical studies have shown that cross‐fertilisation can be selected for under heterogeneous pollination environments. Solanum rostratum is a self‐compatible annual herb that colonises disturbed habitats. Despite the lack of physiological mechanisms to prevent self‐fertilisation, pollen transfer between individuals is expected to be favoured because of its complex floral morphology. In previous studies of S. rostratum it has been shown that anther dimorphism within flowers results in precise pollen placement on the pollinator's body, and the presence of mirror‐image floral morphs within plants promotes outcrossing in experimental arrays. However, the mating system of natural populations of S. rostratum has never been assessed, and thus whether it is predominantly selfing or outcrossing remains unknown. We hypothesise that floral and inflorescence morphology of S. rostratum should facilitate cross‐fertilisation, making it a predominantly outcrossing despite its lack of a self‐incompatibility system. To test this hypothesis, we estimated outcrossing rates by genotyping 700 individuals at 13 microsatellite loci, sampled from four populations across a 690‐km transect in the species' native range. We found that populations had mean outcrossing rates of 0.70 ± 0.03, with multiple sires contributing to paternity of each progeny array (average effective number of sires = 8.97 ± 0.57). This indicates that natural populations S. rostratum have relatively high levels of outcrossing, probably facilitated by its floral and inflorescence morphology. We speculate that partial selfing in this species may be an unavoidable consequence of displaying multiple flowers at the same time (geitonogamy), as well as the result of self‐pollen transfer by illegitimate visitors.  相似文献   

7.
The margins of an expanding range are predicted to be challenging environments for adaptation. Marginal populations should often experience low effective population sizes (Ne) where genetic drift is high due to demographic expansion and/or census population size is low due to unfavourable environmental conditions. Nevertheless, invasive species demonstrate increasing evidence of rapid evolution and potential adaptation to novel environments encountered during colonization, calling into question whether significant reductions in Ne are realized during range expansions in nature. Here we report one of the first empirical tests of the joint effects of expansion dynamics and environment on effective population size variation during invasive range expansion. We estimate contemporary values of Ne using rates of linkage disequilibrium among genome‐wide markers within introduced populations of the highly invasive plant Centaurea solstitialis (yellow starthistle) in North America (California, USA), and within native Eurasian populations. As predicted, we find that Ne within the invaded range is positively correlated with both expansion history (time since founding) and habitat quality (abiotic climate). History and climate had independent additive effects with similar effect sizes, indicating an important role for both factors in this invasion. These results support theoretical expectations for the population genetics of range expansion, though whether these processes can ultimately arrest the spread of an invasive species remains an unanswered question.  相似文献   

8.
It is commonly observed that plant species' range margins are enriched for increased selfing rates and, in otherwise self‐incompatible species, for self‐compatibility (SC). This has often been attributed to a response to selection under mate and/or pollinator limitation. However, range expansion can also cause reduced inbreeding depression, and this could facilitate the evolution of selfing in the absence of mate or pollinator limitation. Here, we explore this idea using spatially explicit individual‐based simulations of a range expansion, in which inbreeding depression, variation in self‐incompatibility (SI), and mate availability evolve. Under a wide range of conditions, the simulated range expansion brought about the evolution of selfing after the loss of SI in range‐marginal populations. Under conditions of high recombination between the self‐incompatibility locus (S‐locus) and viability loci, SC remained marginal in the expanded metapopulation and could not invade the range core, which remained self‐incompatible. In contrast, under low recombination and migration rates, SC was frequently able to displace SI in the range core by maintaining its association with a genomic background with purged genetic load. We conclude that the evolution of inbreeding depression during a range expansion promotes the evolution of SC at range margins, especially under high rates of recombination.?  相似文献   

9.
Standing genetic variation is considered a major contributor to the adaptive potential of species. The low heritable genetic variation observed in self‐fertilizing populations has led to the hypothesis that species with this mating system would be less likely to adapt. However, a non‐negligible amount of cryptic genetic variation for polygenic traits, accumulated through negative linkage disequilibrium, could prove to be an important source of standing variation in self‐fertilizing species. To test this hypothesis, we simulated populations under stabilizing selection subjected to an environmental change. We demonstrate that, when the mutation rate is high (but realistic), selfing populations are better able to store genetic variance than outcrossing populations through genetic associations, notably due to the reduced effective recombination rate associated with predominant selfing. Following an environmental shift, this diversity can be partially remobilized, which increases the additive variance and adaptive potential of predominantly (but not completely) selfing populations. In such conditions, despite initially lower observed genetic variance, selfing populations adapt as readily as outcrossing ones within a few generations. For low mutation rates, purifying selection impedes the storage of diversity through genetic associations, in which case, as previously predicted, the lower genetic variance of selfing populations results in lower adaptability compared to their outcrossing counterparts. The population size and the mutation rate are the main parameters to consider, as they are the best predictors of the amount of stored diversity in selfing populations. Our results and their impact on our knowledge of adaptation under high selfing rates are discussed.  相似文献   

10.
Gene flow may influence the formation of species range limits, and yet little is known about the patterns of gene flow with respect to environmental gradients or proximity to range limits. With rapid environmental change, it is especially important to understand patterns of gene flow to inform conservation efforts. Here we investigate the species range of the selfing, annual plant, Mimulus laciniatus, in the California Sierra Nevada. We assessed genetic variation, gene flow, and population abundance across the entire elevation‐based climate range. Contrary to expectations, within‐population plant density increased towards both climate limits. Mean genetic diversity of edge populations was equivalent to central populations; however, all edge populations exhibited less genetic diversity than neighbouring interior populations. Genetic differentiation was fairly consistent and moderate among all populations, and no directional signals of contemporary gene flow were detected between central and peripheral elevations. Elevation‐driven gene flow (isolation by environment), but not isolation by distance, was found across the species range. These findings were the same towards high‐ and low‐elevation range limits and were inconsistent with two common centre‐edge hypotheses invoked for the formation of species range limits: (i) decreasing habitat quality and population size; (ii) swamping gene flow from large, central populations. This pattern demonstrates that climate, but not centre‐edge dynamics, is an important range‐wide factor structuring M. laciniatus populations. To our knowledge, this is the first empirical study to relate environmental patterns of gene flow to range limits hypotheses. Similar investigations across a wide variety of taxa and life histories are needed.  相似文献   

11.
The repeated evolutionary transition from outcrossing to self-pollination in flowering plants has been suggested to occur because selfing provides reproductive assurance. Reports from biogeographical and ecological surveys indicate that selfing taxa are often associated with stressful and ephemeral environments, situations in which plant abundance is low (e.g., Baker's law) and with novel plant communities, however experimental tests of ecological hypotheses are few. In this study, we examined the ecological context of selection on mating system traits (herkogamy and protandry) in a California annual, Clarkia xantiana, where natural selfing populations differ from outcrossing populations in that they are often of small size or low density and occur mainly outside the range of pollinator-sharing congeners. We constructed artificial populations of plants with broad genetic variation in floral traits and manipulated two ecological factors, plant population size, and the presence versus absence of pollinator-sharing congeners, in the center of the geographic range of outcrossing populations. We found evidence for context-dependent selection on herkogamy and protandry via female fitness in which reduced traits, which promote autonomous selfing, were favored in small populations isolated from congeners whereas selection was comparatively weak in large populations or when congeners were present. In small, isolated populations, the fertility of plants with low herkogamy or protandry was elevated by 66% and 58%, respectively, compared to those with high herkogamy or protandry. The presence of pollinator-sharing congeners augmented bee visitation rates to C. xantiana flowers by 47% for all bees and by 93% for pollen specialists. By facilitating pollinator visitation, congeners mitigated selection on mating system traits in small populations, where outcross mating success is often low (the Allee effect). We also found support for the hypothesis that pollinator availability directly influenced variation in the strength of selection on herkogamy among populations. The striking parallels between our experimental results and patterns of variation in ecological factors across the geographic range of outcrossing and selfing populations suggest that reproductive assurance may play a central role in directing mating system evolution in C. xantiana.  相似文献   

12.
Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self‐fertilizing species. We here focus on the self‐fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none‐to‐low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large‐scale flash invasion may affect the spread of fasciolosis.  相似文献   

13.
The evolution of self‐fertilization is one of the most commonly traversed transitions in flowering plants, with profound implications for population genetic structure and evolutionary potential. We investigated factors influencing this transition using Witheringia solanacea, a predominantly self‐incompatible (SI) species within which self‐compatible (SC) genotypes have been identified. We showed that self‐compatibility in this species segregates with variation at the S‐locus as inherited by plants in F1 and F2 generations. To examine reproductive assurance and the transmission advantage of selfing, we placed SC and SI genotypes in genetically replicated gardens and monitored male and female reproductive success, as well as selfing rates of SC plants. Self‐compatibility did not lead to increased fruit or seed set, even under conditions of pollinator scarcity, and the realized selfing rate of SC plants was less than 10%. SC plants had higher fruit abortion rates, consistent with previous evidence showing strong inbreeding depression at the embryonic stage. Although the selfing allele did not provide reproductive assurance under observed conditions, it also did not cause pollen discounting, so the transmission advantage of selfing should promote its spread. Given observed numbers of S‐alleles and selfing rates, self‐compatibility should spread even under conditions of exceedingly high initial inbreeding depression.  相似文献   

14.
Outcrossing is the prevalent mode of reproduction in plants and animals despite its substantial costs, while selfing and mixed mating occur at much lower frequency. Comparative research on plants has demonstrated the lability of self‐incompatibility, but there is little information about the transition on a within‐species level from self‐incompatibility to predominant selfing. We studied variation in mating system among 18 populations of Arabidopsis lyrata within a phylogenetic context to shed light on the evolution of selfing. Realized and potential mating systems were assessed by genetic analysis with microsatellite markers and hand‐self‐pollinations on 30 plants from each population. The fraction of self‐incompatible plants in a population was highly correlated with the outcrossing rate, showing that the spread of self‐compatibility is accompanied by or soon followed by an increase in the rate of selfing. The four predominantly selfing populations (outcrossing rates < 0.25) fell into more than one phylogenetic cluster, suggesting that the transition to selfing occurred more than once independently. Hence, A. lyrata offers an opportunity for the comparative analysis of outcrossing as a predominant mode of reproduction in plants and of the causes of the shift to selfing.  相似文献   

15.
Many angiosperms prevent inbreeding through a self‐incompatibility (SI) system, but the loss of SI has been frequent in their evolutionary history. The loss of SI may often lead to an increase in the selfing rate, with the purging of inbreeding depression and the ultimate evolution of a selfing syndrome, where plants have smaller flowers with reduced pollen and nectar production. In this study, we used approximate Bayesian computation (ABC) to estimate the timing of divergence between populations of the plant Linaria cavanillesii that differ in SI status and in which SI is associated with low inbreeding depression but not with a transition to full selfing or a selfing syndrome. Our analysis suggests that the mixed‐mating self‐compatible (SC) population may have begun to diverge from the SI populations around 2810 generation ago, a period perhaps too short for the evolution of a selfing syndrome. We conjecture that the SC population of L. cavanillesii is at an intermediate stage of transition between outcrossing and selfing.  相似文献   

16.
The majority of plant species and many animals are hermaphrodites, with individuals expressing both female and male function. Although hermaphrodites can potentially reproduce by self‐fertilization, they have a high prevalence of outcrossing. The genetic advantages of outcrossing are described by two hypotheses: avoidance of inbreeding depression because selfing leads to immediate expression of recessive deleterious mutations, and release from drift load because self‐fertilization leads to long‐term accumulation of deleterious mutations due to genetic drift and, eventually, to extinction. I tested both hypotheses by experimentally crossing Arabidopsis lyrata plants (self‐pollinated, cross‐pollinated within the population, or cross‐pollinated between populations) and measuring offspring performance over 3 years. There were 18 source populations, each of which was either predominantly outcrossing, mixed mating, or predominantly selfing. Contrary to predictions, outcrossing populations had low inbreeding depression, which equaled that of selfing populations, challenging the central role of inbreeding depression in mating system shifts. However, plants from selfing populations showed the greatest increase in fitness when crossed with plants from other populations, reflecting higher drift load. The results support the hypothesis that extinction by mutational meltdown is why selfing hermaphroditic taxa are rare, despite their frequent appearance over evolutionary time.  相似文献   

17.
The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species’ distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation (HE: 0.04–0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long‐distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates (FIS = 0.155–0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among‐population differentiation highlight the conservation value of large populations throughout the species’ range, particularly in light of climate change and direct human threats.  相似文献   

18.
Species' geographic ranges vary enormously, and even closest relatives may differ in range size by several orders of magnitude. With data from hundreds of species spanning 20 genera in 15 families, we show that plant species that autonomously reproduce via self‐pollination consistently have larger geographic ranges than their close relatives that generally require two parents for reproduction. Further analyses strongly implicate autonomous self‐fertilisation in causing this relationship, as it is not driven by traits such as polyploidy or annual life history whose evolution is sometimes correlated with selfing. Furthermore, we find that selfers occur at higher maximum latitudes and that disparity in range size between selfers and outcrossers increases with time since their evolutionary divergence. Together, these results show that autonomous reproduction—a critical biological trait that eliminates mate limitation and thus potentially increases the probability of establishment—increases range size.  相似文献   

19.
Understanding the genetic composition and mating systems of edge populations provides important insights into the environmental and demographic factors shaping species' distribution ranges. We analysed samples of the mangrove Avicennia marina from Vietnam, northern Philippines and Australia, with microsatellite markers. We compared genetic diversity and structure in edge (Southeast Asia, and Southern Australia) and core (North and Eastern Australia) populations, and also compared our results with previously published data from core and southern edge populations. Comparisons highlighted significantly reduced gene diversity and higher genetic structure in both margins compared to core populations, which can be attributed to very low effective population size, pollinator scarcity and high environmental pressure at distribution margins. The estimated level of inbreeding was significantly higher in northeastern populations compared to core and southern populations. This suggests that despite the high genetic load usually associated with inbreeding, inbreeding or even selfing may be advantageous in margin habitats due to the possible advantages of reproductive assurance, or local adaptation. The very high level of genetic structure and inbreeding show that populations of A. marina are functioning as independent evolutionary units more than as components of a metapopulation system connected by gene flow. The combinations of those characteristics make these peripheral populations likely to develop local adaptations and therefore to be of particular interest for conservation strategies as well as for adaptation to possible future environmental changes.  相似文献   

20.
Genetically controlled self‐incompatibility systems represent links between genetic diversity and plant demography with the potential to directly impact on population dynamics. We use an individual‐based spatial simulation to investigate the demographic and genetic consequences of different self‐incompatibility systems for plants that vary in reproductive capacity and lifespan. The results support the idea that, in the absence of inbreeding effects, populations of self‐incompatible species will often be smaller and less viable than self‐compatible species, particularly for shorter‐lived organisms or where potential fecundity is low. At high ovule production and low mortality, self‐incompatible and self‐compatible species are demographically similar, thus self‐incompatibility does not automatically lead to reduced mate availability or population viability. Overall, sporophytic codominant self‐incompatibility was more limiting than gametophytic or sporophytic dominant systems, which generally behaved in a similar fashion. Under a narrow range of conditions, the sporophytic dominant system maintained marginally greater mate availability owing to the production of S locus homozygotes. While self‐incompatibility reduces population size and persistence for a broad range of conditions, the actual number of S alleles, beyond that required for reproduction, is important for only a subset of life histories. For these situations, results suggest that addition of new S alleles may result in significant demographic rescue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号