首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The aim of this study is to analyse the vascular flora and the local climate along the altitude gradient in the largest alpine belt of the central Apennines (Majella National Park), and to contribute to the evaluation of the possible effects of global climate changes on the biodiversity of the alpine ecosystem. For this purpose floristic-quantitative analyses and temperature records on three different summits have been carried out by using the methodological protocol of the UE-GLORIA project (2001 2003); the project aims toward a standardised monitoring of flora and temperature in the alpine environment of the main European chains. From the analysis of the changes in species richness along the altitude gradient (2405 m versus 2730 m a.s.l.), it emerged that 70% of species do not reach the highest summit and only 11% of the overall flora is shared by all of the summits examined; a drop in mean temperature has been observed at soil level, along the same gradient from 3.11 to 0.03 °C. Floristic-quantitative and climatic analyses have been carried out even along the horizontal gradient (principal exposures), highlighting a great species richness and vegetation cover in eastward aspects. We singled out some endangered rare species and we proved that the slopes facing east will be the first to be affected by the coming of subalpine species from below, whereas northward exposures will be the most conservative, showing greater inertia toward the invasive process caused by the climate warming.  相似文献   

2.
3.
4.
5.
6.
高寒草甸不同草地群落物种多样性与生产力关系研究   总被引:30,自引:3,他引:30  
生态系统的结构和功能、生物多样性与生产力的关系问题是近年来群落生态学中研究的中心问题,其中,生态系统生产力水平是其功能的重要表现形式,用4种不同草地类型探讨自然群落的物种多样性与生产力关系.结果表明,矮嵩草草甸、小嵩草草甸和金露梅灌丛群落中物种多样性与生产力的关系呈线性增加关系,藏嵩草沼泽化草甸群落中线性增加关系不显著,这表明群落生产力除受物种多样性的影响外,也受物种本身特征和环境资源的影响.不同的环境资源和环境异质性是形成群落结构特征、物种多样性分布格局差异的主要原因之一.  相似文献   

7.
In alpine habitats, positive interactions among plants tend to increase with elevation as a result of altitudinal increase in environmental harshness. However, in mountains located in arid zones, lower elevations are also stressful because of scarce availability of water, suggesting that positive interactions may not necessarily increase with elevation. Here we analysed the spatial association of plant species with the nurse cushion plant Laretia acaulis at two contrasting elevations, and monitored the survival of seedlings of two species experimentally planted within and outside cushions in the semiarid Andes of central Chile. Positive spatial associations with cushions were more frequent at lower elevations. Species growing at the two elevations changed the nature of their association with cushions from neutral or negative at higher elevations to positive at lower elevations. Survival of seedlings was higher within cushions, particularly at lower elevations. The increased facilitation by cushions at lower elevations seems to be related to provision of moisture. This result suggests that cushion plants play a critical role in structuring alpine plant communities at lower elevations, and that climatic changes in rainfall could be very relevant for persistence of plant communities.  相似文献   

8.
Plant species richness and range-size rarity in Africa south of the Sahara is concentrated in centres of plant diversity and endemism. Distribution patterns of plants mapped in the Distributiones Plantarum Africanum series and selected taxonomic monographs are analysed using the computer programme WORLDMAP. The plants are divided into four groups: herbaceous geophytes, mesophytic herbs, light-demanding shrubs and woody genera. Each group has peaks of species richness and range-size rarity at locations different to the other groups. Herbaceous geophytes and mesophytic herbs have their peaks of species richness and range-size rarity in the same location, the western Cape for geophytes and the Crystal Mountain for mesophytic herbs, whereas light-demanding shrubs and woody genera have peaks in different places. The results are discussed in relation to possible factors determining species richness and endemism and their likely conservation significance.  相似文献   

9.
This study examines vascular plant species richness along an altitudinal gradient in alpine Australia. Vascular plant composition and soil temperature records were obtained for five summits (from 1729 m to 2114 m a.s.l.) using sampling protocols from the Global Observation Research Initiative in Alpine Environments program. Species richness was examined against altitude, aspect and climatic variables at different spatial scales (10 × 10 cm quadrats, 1 m2 quadrats, clusters of 4 * 1 m2 quadrats, for the summit area above a line 5 m altitudinally below the summit (the −5 m isoline), for the extended summit down to the −10 m isoline). About 75 taxa (70 species, 5 graminoid genera) were recorded, 9 of which are endemic to the small alpine area of ∼100 km2. There were significant linear relationships between species richness and altitude and climatic variables for the top to −5 isolines on the summits. However, there was no consistent pattern for species richness at other spatial scales, altitude, aspect or climatic variables. The proportion of species for the whole summits with localised distributions (local endemics) increased with altitude. Predicted increasing temperatures and reduced snowcover is likely to result in an increase in species richness as shrubs, herbs and introduced weeds become more common at higher altitude. Because Australian alpine areas occur in narrow altitudinal bands with no nival zone, there are no higher altitudinal refuges available for alpine species. Therefore many of these species are likely to be at risk of extinction from climate change.  相似文献   

10.
The aim of this study is to analyse the vascular flora and the local climate along an altitudinal gradient in the Lefka Ori massif Crete and to evaluate the potential effects of climate change on the plant diversity of the sub-alpine and alpine zones. It provides a quantitative/qualitative analysis of vegetation-environment relationships for four summits along an altitude gradient on the Lefka Ori massif Crete (1664–2339 m). The GLORIA multi-summit approach was used to provide vegetation and floristic data together with temperature records for every summit. Species richness and species turnover was calculated together with floristic similarity between the summits. 70 species were recorded, 20 of which were endemic, belonging to 23 different families. Cretan endemics dominate at these high altitudes. Species richness and turnover decreased with altitude. The two highest summits showed greater floristic similarity. Only 20% of the total flora recorded reaches the highest summit while 10% is common among summits. Overall there was a 4.96°C decrease in temperature along the 675 m gradient. Given a scenario of temperature increase the ecotone between the sub-alpine and alpine zone would be likely to have the greatest species turnover. Southern exposures are likely to be invaded first by thermophilous species while northern exposures are likely to be more resistant to changes. Species distribution shifts will also depend on habitat availability. Many, already threatened, local endemic species will be affected first.  相似文献   

11.
Invasive alien plants (IAP) are a threat to biodiversity worldwide. Understanding and anticipating invasions allow for more efficient management. In this regard, predicting potential invasion risks by IAPs is essential to support conservation planning into areas of high conservation value (AHCV) such as sites exhibiting exceptional botanical richness, assemblage of rare, and threatened and/or endemic plant species. Here, we identified AHCV in Georgia, a country showing high plant richness, and assessed the susceptibility of these areas to colonization by IAPs under present and future climatic conditions. We used actual protected areas and areas of high plant endemism (identified using occurrences of 114 Georgian endemic plant species) as proxies for AHCV. Then, we assessed present and future potential distribution of 27 IAPs using species distribution models under four climate change scenarios and stacked single‐species potential distribution into a consensus map representing IAPs richness. We evaluated present and future invasion risks in AHCV using IAPs richness as a metric of susceptibility. We show that the actual protected areas cover only 9.4% of the areas of high plant endemism in Georgia. IAPs are presently located at lower elevations around the large urban centers and in western Georgia. We predict a shift of IAPs toward eastern Georgia and higher altitudes and an increased susceptibility of AHCV to IAPs under future climate change. Our study provides a good baseline for decision makers and stakeholders on where and how resources should be invested in the most efficient way to protect Georgia's high plant richness from IAPs.  相似文献   

12.
Aims Positive interactions are defined as non-trophic interactions where at least one of the interacting species is benefited in terms of fitness and the other remains unaffected. Nevertheless, the bidirectional feedbacks between species may be positive, neutral or negative. Thus, if facilitated species induce negative effects on their 'nurses', the assumed definition of positive interactions could be reconsidered.Methods We assessed if ecological interactions between cushions of Azorella madreporica and their facilitated species are positive. Specifically, we tested if cover of facilitated species has any costs for cushion plants from an ecophysiological perspective, and if these costs increase with the amount of cover of facilitated species. In addition, through pathway analysis and correlations, we assessed if cover and richness of facilitated species have a direct and/or indirect effect on the fitness of cushion plants.Important findings We found that facilitated plant species induced a significant cost for their nurses (cushion plants), and this cost increases with cover of the facilitated species. Additionally, the facilitated species exert a strong direct negative effect on the cushion's fitness and a moderate indirect negative cost evident through the nutrient status and physiological performance of cushion plants. We thus contribute evidence that positive interactions between high mountain cushion plants of central Chile and their 'facilitated' species may be an artifact more than a fact, especially when bidirectional effects are considered; contrasting with the majority of studies that document only one side of the interaction.  相似文献   

13.
Global patterns of plant diversity   总被引:1,自引:0,他引:1  
Summary Using 94 data sets from across the globe, we explored patterns of mean community species richness, landscape species richness, mean similarity among communities and mosaic diversity. Climate affected community species richness primarily through productivity while other climatic factors were secondary. Climatic equability affected species richness only in temperate regions where richness was greatest at high levels of temperature variability and low levels of precipitation variability. Landscape species richness correlated positively with community species richness. A global gradient in mean similarity existed but was uncorrelated with community species richness. Mean similarity was least and mosaic diversity was greatest between 25 and 30° latitude. The most diverse landscapes (low mean similarity) correlated with warm temperatures, high elevations, large areas and large seasonal temperature fluctuations. The most complex landscapes (high mosaic diversity) correlated with large areas, high productivity and warm winters. We compared diversity measures among continents and found only one significant difference: Australian landscapes have greater mosaic diversity than African landscapes. Based on our analyses we propose two hypotheses: (1) for plants, biotic interactions are more important in structuring landscapes in warmer climates and (2) longer isolated landscapes have more clearly differentiated ecological subunits.  相似文献   

14.
15.
16.
Global patterns of plant diversity and floristic knowledge   总被引:10,自引:0,他引:10  
Aims We present the first global map of vascular plant species richness by ecoregion and compare these results with the published literature on global priorities for plant conservation. In so doing, we assess the state of floristic knowledge across ecoregions as described in floras, checklists, and other published documents and pinpoint geographical gaps in our understanding of the global vascular plant flora. Finally, we explore the relationships between plant species richness by ecoregion and our knowledge of the flora, and between plant richness and the human footprint – a spatially explicit measure of the loss and degradation of natural habitats and ecosystems as a result of human activities. Location Global. Methods Richness estimates for the 867 terrestrial ecoregions of the world were derived from published richness data of c. 1800 geographical units. We applied one of four methods to assess richness, depending on data quality. These included collation and interpretation of published data, use of species–area curves to extrapolate richness, use of taxon‐based data, and estimates derived from other ecoregions within the same biome. Results The highest estimate of plant species richness is in the Borneo lowlands ecoregion (10,000 species) followed by nine ecoregions located in Central and South America with ≥ 8000 species; all are found within the Tropical and Subtropical Moist Broadleaf Forests biome. Among the 51 ecoregions with ≥ 5000 species, only five are located in temperate regions. For 43% of the 867 ecoregions, data quality was considered good or moderate. Among biomes, adequate data are especially lacking for flooded grasslands and flooded savannas. We found a significant correlation between species richness and data quality for only a few biomes, and, in all of these cases, our results indicated that species‐rich ecoregions are better studied than those poor in vascular plants. Similarly, only in a few biomes did we find significant correlations between species richness and the human footprint, all of which were positive. Main conclusions The work presented here sets the stage for comparisons of degree of concordance of plant species richness with plant endemism and vertebrate species richness: important analyses for a comprehensive global biodiversity strategy. We suggest: (1) that current global plant conservation strategies be reviewed to check if they cover the most outstanding examples of regions from each of the world's major biomes, even if these examples are species‐poor compared with other biomes; (2) that flooded grasslands and flooded savannas should become a global priority in collecting and compiling richness data for vascular plants; and (3) that future studies which rely upon species–area calculations do not use a uniform parameter value but instead use values derived separately for subregions.  相似文献   

17.
Alpine grasslands in the Southern Carpathian Mts, Romania, harbour an extraordinarily high diversity of plants and invertebrates, including Carpathic endemics. In the past decades, intensive sheep grazing has caused a dramatic decrease in biodiversity and even led to eroded soils at many places in the Carpathians. Because of limited food resources, sheep are increasingly forced to graze on steep slopes, which were formerly not grazed by livestock and are considered as local biodiversity hotspots. We examined species richness, abundance and number of endemic vascular plants and terrestrial gastropods on steep slopes that were either grazed by sheep or ungrazed by livestock in two areas of the Southern Carpathians. On calcareous soils in the Bucegi Mts, a total of 177 vascular plant and 19 gastropod species were recorded. Twelve plant species (6.8%) and three gastropod species (15.8%) were endemic to the Carpathians. Grazed sites had lower plant and gastropod species richness than ungrazed sites. Furthermore, grazed sites harboured fewer gastropod species endemic to the Carpathians than ungrazed sites. On acid soils in the Fagaras Mts, a total of 96 vascular plant and nine gastropod species were found. In this mountain area, however, grazed and ungrazed sites did not differ in species richness, abundance and number of endemic plant and gastropod species. Our findings confirm the high biodiversity of grasslands on steep slopes in the Southern Carpathian Mts and caution against increasing grazing pressure in these refuges for relic plants and gastropods as well as for other invertebrates.  相似文献   

18.
植物物种多样性在海拔梯度上的变化规律以及物种多样性与生产力的关系是生态学研究的热点, 至今还没有得出一般性规律。本文以青海省海南藏族自治州贵德县的拉脊山(36°21′ N, 101°27′ E, 海拔3,389-3,876 m)和果洛藏族自治州的玛沁县军牧场山体(34°22′ N, 100°30′ E, 海拔4,121-4,268 m)为研究对象, 对植物高度、盖度、地上生物量和物种多样性随海拔高度的变化进行调查和统计分析, 以探讨青藏高原高寒草甸的物种多样性和地上生物量在海拔梯度上的变化规律及两者的关系。结果表明: (1)两条山体样带上地上生物量与物种多样性随海拔的变化规律一致: 随着海拔的升高, 地上生物量线性降低; Shannon-Wiener指数、Simpson指数和物种丰富度都呈单峰曲线, 在中间海拔最大, 而Pielou指数随海拔的升高线性增加。结合目前针对青藏高原高寒草甸的研究数据, 发现物种丰富度随海拔高度的变化均呈单峰曲线, 说明随着海拔的升高物种多样性先升高后降低可能是青藏高原物种多样性分布的普遍规律。(2)地上生物量与物种多样性的关系在两条山体样带上表现一致: 地上生物量随Shannon- Wiener指数、Simpson指数和Pielou指数的升高而线性降低, 但与物种丰富度不相关。综合两条山体样带所有样方数据, 发现地上生物量与Shannon-Wiener指数、Simpson指数不相关, 而随物种丰富度的升高线性增加。结合目前在青藏高原的相关研究数据, 发现地上生物量与物种丰富度呈S型曲线(logistic model)。  相似文献   

19.
20.
Arroyo  M.T.K.  Cavieres  L.A.  Peñaloza  A.  Arroyo-Kalin  M.A. 《Plant Ecology》2003,169(1):121-129
Low growing, compact cushion plants are a common and often dominant life form in temperate and subpolar alpine habitats. The cushion life-form can modify wind patterns, temperature and water availability and thus cushion species could be expected to act as nurse-plants facilitating the establishment of other alpine plant species on their surfaces. It has been suggested that the nurse effect should be most pronounced under more stressful environmental conditions, as found with increasing elevation in the alpine. One of the approaches used to detect the nurses has been the study of spatial associations among species, in which extreme clumping within or beneath one species has been interpreted as evidence of nursing. We characterized microclimatic conditions (soil and air temperature) within and outside cushions of Azorella monantha at two elevations (700 m a.s.l., corresponding to an elevation just above treeline, and 900 m a.s.l., corresponding to the upper limit of the cushion belt zone) on Cerro Diente in the Patagonian alpine of southern South America (50° S) and recorded all plant species growing upon cushions of various sizes and for paired sampling areas of equivalent sizes outside cushions. At 5 cm depth, soil temperature was slightly higher under cushions than under bare ground, but only significantly so at 900 m. Air temperature at ground level was significantly higher in the cushion microhabitat at both 700 m and 900 m, with the difference being more exaggerated at the highest elevation. At 700 m, a total of 27 species were recorded growing within cushions as compared to 29 outside cushions. At 900 m the corresponding numbers were 34 and 18. At the highest elevation, significantly more species grow within cushions than for equal areas outside cushions. Here moreover, 17 (48.6%) species grew preferentially within cushions, with eight of the latter being limited to the cushion microhabitat at this elevation. However, at 700 m there was no significant difference in species richness in the two microhabitats, and only one species (3.1%) grew preferentially on cushions. Considering individual species, nine occurring at both elevations showed non-preferential recruitment on cushions at 700 m, but significantly higher frequencies on cushions at 900 m. Results suggest striking altitudinal variation in the association with Azorella monantha on Cerro Diente, ranging from a very strong at 900 m to near absence at 700 m. Milder air and soil temperatures, shelter from wind, and greater water availability within cushions as opposed to outside cushions are discussed as possible factors favoring strong plant recruitment on cushions at higher elevations in the harsh Patagonian alpine environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号