首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Colorectal cancer (CRC) is a noticeable reason of cancer-associated deaths with a high incidence and mortality rate. Countless effort have been put into the improving clinical management of CRC patients including more effective tools and a wide variety of biomarkers for diagnostic, prognostic or predictive purposes. In recent years, dysregulated miRNAs have been emerged as highly sensitive and specific markers to manage CRC in an effective way. They can play key roles in carcinogenesis as potential oncogenes, tumor suppressors or regulators of cancer network. Therefore, miRNAs may serve as molecular tools that can be quantified and used in diagnostic and prognostic approaches. Growing evidence also suggests that forced expression of tumor suppressor miRNAs or inhibiting the oncogene ones, can be used as a novel treatment strategy. In this review, we focus on the clinical applications of miRNAs as promising biomarkers of early cancer detection, prognosis and treatment.  相似文献   

4.
5.
Prostate cancer (PCa) is one of the most common malignancies among men. Despite advancement in technology and medicine over past decades, late diagnosis remains a critical milestone in effective treatment. Therefore, it is necessary to identify novel and reliable biomarkers which are specifically sensitive and specific for prognosis and prediction of clinical outcomes. MicroRNAs (miRNAs) play important roles in posttranslational regulations of genes. Circulating and exosomal miRNAs can be applied as useful diagnostic markers for a different type of malignancies, including PCa. Herein, we summarized various roles of miRNAs (diagnostic, therapeutic, and prognostic) in PCa. Moreover, we highlighted exosomal miRNAs as a new candidate in diagnosis and monitoring response to therapy in patients with PCa.  相似文献   

6.
microRNAs (miRNAs) are a new class of non-protein-coding, endogenous, small RNAs. They are important regulatory molecules in animals and plants. miRNA regulates gene expression by translational repression, mRNA cleavage, and mRNA decay initiated by miRNA-guided rapid deadenylation. Recent studies show that some miRNAs regulate cell proliferation and apoptosis processes that are important in cancer formation. By using multiple molecular techniques, which include Northern blot analysis, real-time PCR, miRNA microarray, up- or down-expression of specific miRNAs, it was found that several miRNAs were directly involved in human cancers, including lung, breast, brain, liver, colon cancer, and leukemia. In addition, some miRNAs may function as oncogenes or tumor suppressors. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites, suggesting that miRNAs may play a more important role in the pathogenesis of a limited range of human cancers than previously thought. Overexpressed miRNAs in cancers, such as mir-17-92, may function as oncogenes and promote cancer development by negatively regulating tumor suppressor genes and/or genes that control cell differentiation or apoptosis. Underexpressed miRNAs in cancers, such as let-7, function as tumor suppressor genes and may inhibit cancers by regulating oncogenes and/or genes that control cell differentiation or apoptosis. miRNA expression profiles may become useful biomarkers for cancer diagnostics. In addition, miRNA therapy could be a powerful tool for cancer prevention and therapeutics.  相似文献   

7.
8.
9.
Leukemia is known as a progressive malignant disease, which destroys the blood-forming organs and results in adverse effects on the proliferation and development of leukocytes and their precursors in the blood and bone marrow. There are four main classes of leukemia including acute leukemia, chronic leukemia, myelogenous leukemia, and lymphocytic leukemia. Given that a variety of internal and external factors could be associated with the initiation and progression of different types of leukemia. One of the important factors is epigenetic regulators such as microRNAs (miRNAs) and long noncoding RNAs (ncRNA). MiRNAs are short ncRNAs which act as tumor suppressor (i.e., miR-15, miR-16, let-7, and miR-127) or oncogene (i.e., miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223) in leukemia. It has been shown that deregulation of these molecules are associated with the initiation and progression of leukemia. Hence, miRNAs could be used as potential therapeutic candidates in the treatment of patients with leukemia. Moreover, increasing evidence revealed that miRNAs could be used as diagnostic and prognostic biomarkers in monitoring patients in early stages of disease or after received chemotherapy regimen. It seems that identification and development of new miRNAs could pave to the way to the development new therapeutic platforms for patients with leukemia. Here, we summarized various miRNAs as tumor suppressor and oncogene which could be introduced as therapeutic targets in treatment of leukemia.  相似文献   

10.
MicroRNAs have a revolutionary impact on cancer research over recent years. They emerge as important players in tumorigenesis, leading to a paradigm shift in oncology. The widespread and comprehensive use of microRNA microarrays has enabled the identification of a number of microRNAs as potential biomarkers for cancer. It is encouraging to report that microRNAs have remarkable stability in both formalin-fixed tissue and blood. Many microRNAs have been identified to act as oncogenes, tumor suppressors, or even modulators of cancer stem cells and metastasis. Some studies not only reported the identified microRNA biomarkers, but also deciphered their target genes and the underlying mechanisms. The rapid discovery of many microRNA targets and their relevant pathways has contributed to the development of microRNA-based therapeutics, but the developing progress of antisense or siRNA drugs has been hampered by stability, specificity and delivery problems. This review summarizes the most significant and latest findings of original researches on microRNAs involvement in cancer, focusing on the potential of cancer-related microRNAs as biomarkers for diagnosis, prognosis and targets for therapy.  相似文献   

11.
12.
Orthologous phenotypes, or phenologs, are seemingly unrelated phenotypes generated by mutations in a conserved set of genes. Phenologs have been widely observed and accepted by those who study model organisms, and allow one to study a set of genes in a model organism to learn more about the function of those genes in other organisms, including humans. At the cellular and molecular level, these conserved genes likely function in a very similar mode, but are doing so in different tissues or cell types and can result in different phenotypic effects. For example, the RAS‐RAF‐MEK‐MAPK pathway in animals is a highly conserved signaling pathway that animals adopted for numerous biological processes, such as vulval induction in Caenorhabditis elegans and cell proliferation in mammalian cells; but this same gene set has been co‐opted to function in a variety of cellular contexts. In this review, I give a few examples of how suppressor screens in model organisms (with a emphasis on C. elegans) can identify new genes that function in a conserved pathway in many other organisms. I also demonstrate how the identification of such genes can lead to important insights into mammalian biology. From such screens, an occasional silent suppressor that does not cause a phenotype on its own is found; such suppressors thus make for good candidates as therapeutic targets.  相似文献   

13.
Through modifications in the fine membrane structure, cell-cell or cell-matrix interactions, and/or modulation of intracellular signaling pathways, sphingolipids can affect the tumorigenic potential of numerous cell types. Whereas ceramide and its metabolites have been described as regulators of cell growth and apoptosis, these lipids as well as other sphingolipid molecules can modulate the ability of malignant cells to grow and resist anticancer treatments, and their susceptibility to non-apoptotic cell deaths. This review summarizes our current knowledge on the properties of sphingolipids in the regulation of cancer cell death and tumor development. It also provides an update on the potential perspectives of manipulating sphingolipid metabolism and using sphingolipid analogues in anticancer therapy.  相似文献   

14.
The INK4 family is an important family of cyclin-dependent kinase inhibitors (CDKIs) and consists of CDKN2A, CDKN2B, CDKN2, and CDKN2D. Abnormal expression of CDKN2A has been reported in hepatocellular carcinoma (HCC) and is associated with the prognosis of patients and infiltration of immune cells. However, there is a lack of systematic research on the roles of the other INK4 family members in the diagnosis, prognosis, and immune regulation of HCC. Using online public databases and clinical samples, we comprehensively analyzed the INK4 family in HCC. All four INK4 proteins were overexpressed in HCC and correlated with advanced cancer stage and poor prognosis. INK4 expression accurately distinguished tumor from normal tissue, particularly CDKN2A and CDKN2C. The INK4 family participated in cell-cycle regulation and the DNA damage repair pathway, which inhibited genotoxic-induced apoptosis in tumorigenesis. INK4 proteins were positively correlated with the infiltration of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells) and immune checkpoints (CTLA-4, PD1, and PD-L1). CDKN2D had the highest correlation (correlation coefficient >0.3) with all the above-mentioned infiltrating immune cells and immune checkpoints, indicating that it may be useful as an immunotherapy target. The INK4 family was valuable for diagnosis and predicting the prognosis of HCC and participated in the occurrence, progression, and immune regulation of HCC, demonstrating its potential as a diagnostic and prognostic biomarker and therapeutic target in HCC.  相似文献   

15.
16.
Wen X  Lin ZQ  Liu B  Wei YQ 《Cell proliferation》2012,45(3):217-224
The caspase family is well characterized as playing a crucial role in modulation of programmed cell death (PCD), which is a genetically regulated, evolutionarily conserved process with numerous links to many human diseases, most notably cancer. In this review, we focus on summarizing the intricate relationships between some members of the caspase family and their key apoptotic mediators, involving tumour necrosis factor receptors, the Bcl-2 family, cytochrome c, Apaf-1 and IAPs in cancer initiation and progression. We elucidate new emerging types of cross-talk between several caspases and autophagy-related genes (Atgs) in cancer. Moreover, we focus on presenting several PCD-modulating agents that may target caspases-3, -8 and -9, and their substrates PARP-1 and Beclin-1, which may help us harness caspase-modulated PCD pathways for future drug discovery.  相似文献   

17.
Stat5 is constitutively activated in many human cancers affecting the expression of cell proliferation and cell survival controlling genes. These oncogenic functions of Stat5 have been elegantly reproduced in mouse models. Aberrant Stat5 activity induces also mitochondrial dysfunction and reactive oxygen species leading to DNA damage. Although DNA damage can stimulate tumorigenesis, it can also prevent it. Stat5 can inhibit tumor progression like in the liver and it is a tumor suppressor in fibroblasts. Stat5 proteins are able to regulate cell differentiation and senescence activating the tumor suppressors SOCS1, p53 and PML. Understanding the context dependent regulation of tumorigenesis through Stat5 function will be central to understand proliferation, survival, differentiation or senescence of cancer cells.  相似文献   

18.
Testicular germ cell tumors (TGCTs), the most common malignancy in males between 15 and 34 years of age and the most frequent cause of death from solid tumors in this age group. TGCTs can be subdivided into seminoma and non‐seminoma germ cell tumors (NSGCTs), including embryonal cell carcinoma, choriocarcinoma, yolk sac tumor, and teratoma. Seminomas and NSGCTs do not only present distinctive clinical features, but they also show significant differences as far as therapy and prognosis are concerned. Seminomas are highly sensitive to both radiation and chemotherapy, with a good prognosis, non‐seminomas are sensitive to platinum‐based combination chemotherapy and are less susceptible to radiation, with the exception of teratomas. The different therapeutic outcome might be explained by inherent properties of the cells from which testicular neoplasia originate. The unique treatment sensitivity of TGCTs is unexplained so far, but it is likely to be related to intrinsic molecular characteristics of the PGCs/gonocytes, from which these tumors originate. Many discovered bio‐markers including OCT3/4, SOX2, SOX17, HMGA1, HMGA2, PATZ1, GPR30, Aurora B, estrogen receptor β, and others have given further advantages to discriminate between histological subgroups. In addition, therapeutic approaches for the treatment of TGCTs have been proposed: humanized antibodies against receptors/surface molecules on cancer cells, inhibitors of serine–threonine, and tyrosine kinases, and others. The mini‐review will be an overview on the molecular alterations identified in TGCTs and on novel targeted antineoplastic strategies that might help to treat chemotherapy resistant TGCTs. J. Cell. Physiol. 228: 1641–1646, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
20.
Molecular and Cellular Biochemistry - Pancreatic cancer is considered as one of the most aggressive tumor types, representing over 45,750 mortality cases annually in the USA solely. The aggressive...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号