首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tail autotomy as a defence against predators occurs in many species of lizard. Although tail autotomy may provide an immediate benefit in terms of survival it may nevertheless be costly due to other functions of the tail. For example, tail autotomy may affect the locomotory performance of lizards during escape. We investigated the influence of tail autotomy on the escape performance of the Cape Dwarf Gecko, Lygodactylus capensis, on a vertical and a horizontal surface. Autotomized geckos were significantly slower than intact geckos during vertical escape, whereas tail autotomy did not influence the horizontal escape speed. Backward falling of the autotomized geckos on the vertical platform may explain the reduced speed. In addition, tail autotomy did not significantly affect body curvature and stride length of the geckos. The observed decrease of escape speed on a vertical platform may influence the habitat use and behaviour of these geckos. Ecological consequences resulting from tail autotomy are discussed in light of these findings.  相似文献   

2.
Crickets can escape death by autotomizing a limb when attacked by predators. In contrast with this benefit, autotomized individuals pay an immediate cost of escape speed and mating ability. Therefore, an adaptive response compensating for the cost of autotomy might be advantageous in autotomized individuals. In this study, we examined whether autotomy induced behavioral plasticity compensating for future cost in the band-legged ground cricket Dianemobius nigrofasciatus. Behavioral traits of D. nigrofasciatus were compared between autotomized and intact individuals. Frequency of calling behavior was higher for autotomized males. This behavior might be advantageous because females prefer actively calling males. In contrast with calling behavior, the frequencies of hiding behavior did not vary between autotomized and intact crickets, irrespective of sex. It might be disadvantageous for both sexes to hide, because females could not find hiding males and hiding females could not find males. These results indicated autotomy-induced behavioral plasticity that might reduce the cost of autotomy.  相似文献   

3.
Crickets can autotomize their limbs when attacked by predators. This enables them to escape death, but imposes a short-term cost on their escape speed and a long-term cost on their future mating ability. Therefore, adaptive response compensated for the cost of autotomy might be advantageous for autotomized individuals. In the present study, we examined whether autotomy induced life history plasticities compensating for the future cost in the band-legged ground cricket Dianemobius nigrofasciatus . Life history traits of D. nigrofasciatus were compared between autotomized and intact individuals. The developmental time and head width of the individuals that were autotomized as fourth instar nymphs were significantly shorter and smaller, respectively, than those of intact individuals. However, the adult longevity, number of eggs laid and oviposition schedule did not vary between autotomized and intact individuals. In addition, there was no difference between individuals autotomized at the fourth instar and adult stages in these three traits. Early maturation in the autotomized individuals might be advantageous through reducing the risk of predation owing to the shorter period in nymphal stages. The cost of small body size in the autotomized females might not be so great because of no significant difference in fecundity between autotomized and intact individuals. However, the cost of small body size was unclear in the autotomized males because in general larger males were preferred by females. These results indicated autotomy-induced life history that might reduce the cost of autotomy.  相似文献   

4.
Blue‐winged grasshoppers Oedipoda caerulescens (Linnaeus, 1758) are commonly found in flat, open, unprotected areas. In the event of immediate danger, they leave their camouflaged position and jump away at the last moment. The present study conducted in a flight arena shows that, despite jumping at short notice from a crouching position, the grasshoppers achieve the correct timing for an optimal leap. If both compound eyes are blinded and the animals are stimulated by touch to execute an unprepared jump, the take‐off of the flightless nymphs is delayed, and adults are delayed in raising their wings; the animals tumble backward during the leap (in the case of adults, if they do not open their wings). This is a result of the unprepared take‐off position; because the entire length of the hind legs cannot be used for acceleration, the body is rotated backward. However, the escape path is not ultimately affected because, in the air, physical processes compensate for the unfavourable starting conditions. In addition, no disadvantage is evident upon landing. In each case, a hook landing was completed safely (i.e. the grasshopper landed and swung round to face the direction it had come from). The impact force is reduced and the grasshopper stabilizes itself by rotating from a forward to a backward position, immediately after the first contact with the ground. The hook landing also serves to confuse the potential attacker, and the disappearance of the bright blue hind wings of the adult makes it difficult for predators to shift quickly enough to a different kind of search to relocate their prey. In conclusion, the present study shows that the escape behaviour of blue‐winged grasshoppers is adapted to extremely short escape distances.  相似文献   

5.
Autotomy is a process in grasshoppers whereby one or both hindlimbs can be shed to escape a predator or can be abandoned if damaged. It occurs between the trochanter and the femur (second and third leg segments) and once lost, the legs never regenerate. Autotomy severs branches of the leg nerve (N5) but damages no muscles since none span the autotomy plane. We find, however, that undamaged muscles intrinsic to the thorax of grasshoppers, Barytettix psolus, atrophy to less than 15% of their normal mass after autotomy of a hindlimb. These muscles operate the coxa and trochanter (first and second leg segments) and are innervated by branches of nerves 3 and 4; nerve branches that are not damaged by autotomy. Atrophy is localized to the side and body segment where autotomy occurs. Atrophy is evident 7-10 days after loss of a limb, is complete by about 30 days, and follows a similar time course whether induced in young adult, or sexually mature grasshoppers. During autotomy, leg nerve 5 is served distal to the trochanter, the thoracic muscles lose their normal static and dynamic load, and these muscles are subsequently no longer used to support the weight of the insect during posture and locomotion. Experimental loading and unloading of the affected muscles, and cutting of nerves indicated that it is the severing of leg nerve 5 during autotomy that transneuronally induces muscle atrophy.  相似文献   

6.
Insects have various defense responses to natural enemies, including autotomy. Detailed knowledge of autotomy patterns and frequencies in the wild is required to make reliable inferences concerning the fitness benefits and costs of the consequences of autotomy. However, few quantitative surveys have been conducted on the frequency of autotomized insects in the wild. Here, I examined data on autotomy in adult Parapodisma tanbaensis and Parapodisma subastris grasshoppers, which are sympatric, closely related species, collected over two consecutive years at three field sites in Kyoto, Japan. To investigate what traits were related to the frequency of autotomized adults, I recorded the species, sex, body size, and hind leg status after sampling adults because, according to previous research, these four parameters can be used to make predictions about the frequency of autotomized adults in the wild. There was a significant interaction effect between grasshopper sex and the sampling season on the frequency of autotomized adults and a non-linear increase in the frequency of autotomized adults as the season advanced. However, there were no significant effects caused by species or body size. Thus, a sexual difference existed in the occurrence and disappearance of autotomized adults in the wild as the season advanced. The ecological and evolutionary factors and mechanisms causing this pattern are discussed.  相似文献   

7.
Sacrificing body parts is one of many behaviors that animals use to escape predation. This trait, termed autotomy, is classically associated with lizards. However, several other taxa also autotomize, and this trait has independently evolved multiple times throughout Animalia. Despite having multiple origins and being an iconic antipredatory trait, much remains unknown about the evolution of autotomy. Here, we combine morphological, behavioral, and genomic data to investigate the evolution of autotomy within leaf-footed bugs and allies (Insecta: Hemiptera: Coreidae + Alydidae). We found that the ancestor of leaf-footed bugs autotomized and did so slowly; rapid autotomy (<2 min) then arose multiple times. The ancestor likely used slow autotomy to reduce the cost of injury or to escape nonpredatory entrapment but could not use autotomy to escape predation. This result suggests that autotomy to escape predation is a co-opted benefit (i.e., exaptation), revealing one way that sacrificing a limb to escape predation may arise. In addition to identifying the origins of rapid autotomy, we also show that across species variation in the rates of autotomy can be explained by body size, distance from the equator, and enlargement of the autotomizable appendage.  相似文献   

8.
Leg autotomy can be a very effective strategy for escaping a predation attempt in many animals. In spiders, autotomy can be very common (5–40% of individuals can be missing legs) and has been shown to reduce locomotor speeds, which, in turn, can reduce the ability to find food, mates, and suitable habitat. Previous work on spiders has focused mostly on the influence of limb loss on horizontal movements. However, limb loss can have differential effects on locomotion on the nonhorizontal substrates often utilized by many species of spiders. We examined the effects of leg autotomy on maximal speed and kinematics while moving on horizontal, 45° inclines, and vertical (90°) inclines in the cellar spider Pholcus manueli, a widespread species that is a denizen of both natural and anthropogenic, three‐dimensional microhabitats, which frequently exhibits autotomy in nature. Maximal speeds and kinematic variables were measured in all spiders, which were run on all three experimental inclines twice. First, all spiders were run at all inclines prior to autotomization. Second, half of the spiders had one of the front legs removed, while the other half was left intact before all individuals were run a second time on all inclines. Speeds decreased with increasing incline and following autotomy at all inclines. Autotomized spiders exhibited a larger decrease in speed when moving horizontally compared to on inclines. Stride length decreased at 90° but not after autotomy. Stride cycle time and duty factor increased after autotomy, but not when moving uphill. Results show that both incline and leg autotomy reduce speed with differential effects on kinematics with increasing incline reducing stride length, but not stride cycle time or duty factor, and vice versa for leg autotomy. The lack of a significant influence on a kinematic variable could be evidence for partial compensation to mitigate speed reduction.  相似文献   

9.
Autotomy, voluntary shedding of body parts to permit escape, is a theoretically interesting defense because escape benefit is offset by numerous costs, including impaired future escape ability. Reduced sprint speed is a major escape cost in some lizards. We predicted that tail loss causes decreased speed in males and previtellogenic females, but not vitellogenic females already slowed by mass gain. In the striped plateau lizard, Sceloporus virgatus , adults of both sexes are subject to autotomy, and females undergo large increases in body condition (mass/length) during vitellogenesis. Time required for running 1 m was similar in intact autotomized males and previtellogenic females, but increased by nearly half after autotomy. Vitellogenic females were slower than other lizards when intact, but their speed was unaffected by autotomy. Following autotomy, speeds of all groups were similar. Thus, speed costs of autotomy vary with sex and reproductive condition: decreased running speed is not a cost of autotomy in vitellogenic females or presumably gravid females. Costs of autotomy are more complex than previously known. Speed and other costs might interact in unforseen ways, making it difficult to predict whether strategies to compensate for diminished escape ability differ with reproductive condition in females.  相似文献   

10.
Few studies have attempted to determine how physical injury affects predators. One of the ways that physical injury can be expressed is by autotomy or the voluntary loss of a body part. Here, we examined whether the loss of specific legs affects the foraging success of the wolf spider Rabidosa santrita (predator) on another species, Pardosa valens (prey). We also wanted to identify whether the loss of legs in both the predator and prey would impact the outcome of a predation event. Both predator and prey were collected from a creek bed at Portal, AZ, in 2012. Predators were randomly assigned groups where all prey items were intact or all prey had one randomly chosen leg IV removed. Within these groups, predators were organized into a control, leg I autotomy, or leg IV autotomy treatment. All predators had their pre‐ and post‐foraging running speed determined. Predators were introduced into chambers with five prey items and allowed to forage for 1 h. The leg position autotomized or the comparison of pre‐ and post‐foraging trials had no effect on predator running speed. Additionally, there was no significant effect of either predator or prey leg treatment on the total proportion of prey items captured by the end of the foraging trials. Survival analyses indicated that intact prey items tended to have a higher survival rate when predators were missing a leg IV than when predators were intact. When both the predator and prey were missing legs, no significant difference in prey survival rates was detected. We suggest that for predators that inhabit complex, heterogeneous habitats and are classified as ambush predators, the loss of a limb may affect prey capture success, especially when the prey is intact, but that increased sample size is necessary to determine whether this trend is significant.  相似文献   

11.
Animals fleeing a potential predator can escape horizontally or vertically, although vertical flight is more expensive than horizontal flight. The ability to escape in three dimensions by flying animals has been hypothesized to result in greater survival and eventually slower senescence than in animals only fleeing in two dimensions. In a comparative study of flight initiation distance in 69 species of birds when approached by a human, I found that the amount of variance explained by flight initiation distance was more than four times as large for the horizontal than the vertical component of perch height when taking flight. The slope of the relationship between horizontal distance and flight initiation distance (horizontal slope) increased with increasing body mass across species, whereas the slope of the relationship between vertical distance and flight initiation distance (vertical slope) decreased with increasing body mass. Therefore, there was a negative relationship between horizontal and vertical slope, although this negative relationship was significantly less steep than expected for a perfect trade‐off. The horizontal slope decreased with increasing density of the habitat from grassland over shrub to forest, whereas that was not the case for the vertical slope. Adult survival rate increased and rate of senescence (longevity adjusted for survival rate, body mass and sampling effort) decreased with increasing vertical, but not with horizontal slope, consistent with the prediction that vertical escape indeed provides a means of reducing the impact of predation.  相似文献   

12.
Autotomy and cannibalism increase the complexity of the life history, population structure, and population dynamics of a species. Species in which autotomy is triggered by cannibalism have rarely been studied. It has been hypothesized that in the intertidal gastropod Agaronia propatula, autotomized tissues are highly attractive to cannibals and so increase the victim’s chance to escape. We tested the hypothesis by presenting autotomized ‘tails’ to foraging animals. The attack rates on autotomized ‘tails’ were lower than those on artificial objects reported previously. Autonomously moving autotomized ‘tails’ were more frequently ignored than non-moving and artificially moved ‘tail’ pieces. Thus, autotomized tissue repelled rather than attracted potential cannibals. Autotomy in A. propatula does not help to defend against cannibalism by offering the cannibal an attractive food item for consumption. It seems possible, though, that autotomized conspecifics are less attractive to cannibals than intact ones due to a repelling action of autotomized tissues.  相似文献   

13.
When attacked, crickets may shed or ‘autotomize’ an entrapped limb in order to escape a would‐be predator. We examined the relationship between limb autotomy, running speed and susceptibility to future predation in house crickets (Acheta domestica). Hind limb autotomy resulted in a significant reduction in escape speed and ability to jump during the escape run, and greater predation by both lizards (striped skink Mabuya striata punctatissima) and mice (pouched mouse Saccostomus campestris). Although limb autotomy may enable a house cricket to escape a predatory encounter, autotomy of even one hind limb results in immediate costs to escape speed in crickets and makes the animal more vulnerable to subsequent predator encounters.  相似文献   

14.
The relationships between morphology, performance, behavior and ecology provide evidence for multiple and complex phenotypic adaptations. The anuran body plan, for example, is evolutionarily conserved and shows clear specializations to jumping performance back at least to the early Jurassic. However, there are instances of more recent adaptation to habit diversity in the post‐cranial skeleton, including relative limb length. The present study tested adaptive models of morphological evolution in anurans associated with the diversity of microhabitat use (semi‐aquatic arboreal, fossorial, torrent, and terrestrial) in species of anuran amphibians from Brazil and Australia. We use phylogenetic comparative methods to determine which evolutionary models, including Brownian motion (BM) and Ornstein‐Uhlenbeck (OU) are consistent with morphological variation observed across anuran species. Furthermore, this study investigated the relationship of maximum distance jumped as a function of components of morphological variables and microhabitat use. We found there are multiple optima of limb lengths associated to different microhabitats with a trend of increasing hindlimbs in torrent, arboreal, semi‐aquatic whereas fossorial and terrestrial species evolve toward optima with shorter hindlimbs. Moreover, arboreal, semi‐aquatic and torrent anurans have higher jumping performance and longer hindlimbs, when compared to terrestrial and fossorial species. We corroborate the hypothesis that evolutionary modifications of overall limb morphology have been important in the diversification of locomotor performance along the anuran phylogeny. Such evolutionary changes converged in different phylogenetic groups adapted to similar microhabitat use in two different zoogeographical regions.  相似文献   

15.
The purpose of this study was to determine the relationship between measures of unilateral and bilateral jumping performance and 10- and 25-m sprint performance. Fifteen division I women soccer players (height 165 ± 2.44 cm, mass 61.65 ± 7.7 kg, age 20.19 ± 0.91 years) volunteered to participate in this study. The subjects completed a 10- and 25-m sprint test. The following jump kinematic variables were measured using accelerometry: sprint time, step length, step frequency, jump height and distance, contact time, concentric contact time, and flight time (Inform Sport Training Systems, Victoria, BC, Canada). The following jumps were completed in random order: bilateral countermovement vertical jump, bilateral countermovement horizontal jump, bilateral 40-cm drop vertical jump, bilateral 40-cm drop horizontal jump, unilateral countermovement vertical jump (UCV), unilateral countermovement horizontal jump, unilateral 20-cm drop vertical jump (UDV), and unilateral 20-cm drop horizontal jump (UDH). The trial with the best jump height or distance, reactive strength (jump height or distance/total contact time), and flight time to concentric contact time ratio (FT/CCT) was recorded to analyze the relationship between jump kinematics and sprint performance. None of the bilateral jump kinematics significantly correlated with 10- and 25-m sprint time, step length, or step frequency. Right-leg jump height (r = -0.71, p = 0.006, SEE = 0.152 seconds), FT/CCT (r = -0.58, p = 0.04, SEE = 0.176 seconds), and combined right and left-leg jump height (r = -0.61) were significantly correlated with the 25-m sprint time during the UCV. Right-leg FT/CCT was also significantly related to 25-m step length (r = 0.68, p = 0.03, SEE = 0.06 m) during the UDV. The combined right and left leg jump distance to standing height ratio during the UDH significantly correlated (r = -0.58) with 10-m sprint time. In comparison to bilateral jumps, unilateral jumps produced a stronger relationship with sprint performance.  相似文献   

16.

Background

Many insects can regenerate limbs, but less is known about the regrowth process with regard to limb injury type. As part of our neurophysiology education experiments involving the removal of a cockroach leg, 1) the ability of Blaberus discoidalis cockroaches to regenerate a metathoracic leg was examined following autotomy at the femur/trochanter joint versus severance via a transverse coxa-cut, and 2) the neurophysiology of the detached legs with regard to leg removal type was studied by measuring spike firing rate and microstimulation movement thresholds.

Leg Regrowth Results

First appearance of leg regrowth was after 5 weeks in the autotomy group and 12 weeks in the coxa-cut group. Moreover, regenerated legs in the autotomy group were 72% of full size on first appearance, significantly larger (p<0.05) than coxa-cut legs (29% of full size at first appearance). Regenerated legs in both groups grew in size with each subsequent molt; the autotomy-removed legs grew to full size within 18 weeks, whereas coxa-cut legs took longer than 28 weeks to regrow. Removal of the metathoracic leg in both conditions did not have an effect on mortality compared to matched controls with unmolested legs.

Neurophysiology Results

Autotomy-removed legs had lower spontaneous firing rates, similar marked increased firing rates upon tactile manipulation of tibial barbs, and a 10% higher electrical microstimulation threshold for movement.

Summary

It is recommended that neurophysiology experiments on cockroach legs remove the limb at autotomy joints instead of coxa cuts, as the leg regenerates significantly faster when autotomized and does not detract from the neurophysiology educational content.  相似文献   

17.
Abstract. Ceratal autotomy by the aeolid nudibranch Phidinna crassicornis is common in the field and was induced in the laboratory by mechanical and predatory stimuli. The ceras detaches from the body wall along an autotomy plane located at its basal constriction. Cerata released copious amounts of mucus during autotomy and exhibited a prolonged writhing response that continued for several hours after detachment. Regeneration of cerata autotomized in the field and in the laboratory was documented. Four days after autotomy, regenerating cerata appeared as small protuberances. By day 24 the regenerates acquired their mature structural organisation and vivid colour. The cerata subsequently increased in length and diameter and were indistin‐guishable from surrounding cerata by 41 to 43 days after autotomy. Regeneration rates of cerata induced to autotomize in the laboratory and regeneration of cerata autotomized in the field were similar, averaging 0.08 and 0.067 mdday, respectively. The sequence of morphological events involved with regeneration following experimental and natural induction of autotomy was identical. The kelp crab Pugettia productn induced autotomy by holding cerata with its chelae. This crab also fed on autotomized cerata and consumed locomotory and ceratal mucus. Ceratal autotomy may be an important mechanism of escape from this predatory crustacean. Other potential predators including hermit crabs and tidepool sculpins did not elicit defensive behaviour in P. crussicornis. Nematocysts were present in the enidosacs and their role in defense was investigated. Fired nematocysts were observed in podia of the asteroid Crossaster papposus following ceratal contact but were not seen in the podia of Pycnopodia helianthoides in a similar trial. For P. crassicornis, the cnidosacs may function primarily as a storage device for safe sequestering of nematoeysts that could pose a threat to the digestive system. They did not play a major defensive role against the predators tested, but may be important in the field against other predators.  相似文献   

18.
Locomotion is involved in various fitness‐related tasks, such as foraging, acquiring mates, and escaping from predators. Despite the importance of locomotor performance in determining fitness, animals often encounter situations in nature during which their locomotor performance is severely compromised. For animals that actively discard appendages as an anti‐predator strategy, the loss of appendages can cause a severe reduction in locomotor performance. However, whether animals can compensate for the impact on locomotor performance after autotomy is still unclear. A previous study has shown that tailless green anole lizards suffered from reduced in‐air stability during jumping. In this study, we monitored jump kinematics in three groups of Anolis carolinensis for five consecutive weeks to test two hypotheses: first, whether tailless green anoles can recover from reduced in‐air stability before their tails can regenerate; and second, whether gaining locomotor experience facilitates locomotor recovery. Our results revealed extensive individual variation in the ability to compensate for reduced in‐air stability. Some individuals did improve in‐air stability during the study period, whereas others showed no sign of improvement. Moreover, the acquisition of locomotor experience did not facilitate the recovery process. Our findings suggested that tail autotomy in green anoles probably imposes a long‐term fitness disadvantage. The utility of other compensatory mechanisms, such as altering behaviour, might play a role in natural populations to minimize the impact of autotomy on individual fitness. Our findings also shed light on the independent evolutionary losses of the ability to autotomize within lizards. Comparative studies which test whether species that autotomize more frequently/easily can better compensate for the effect of autotomy would be a fruitful direction of future research. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107 , 583–592.  相似文献   

19.
L. David Smith 《Oecologia》1992,89(4):494-501
Summary This study is the first to demonstrate experimentally that autotomy (self-amputation of a body part) adversely affects competition for mates. Experiments were conducted using blue crabs Callinectes sapidus Rathbun to examine the consequences of limb loss and pairing precedence on mate acquisition by males. Two adult males of equivalent size were introduced sequentially into pools containing a sexually-receptive female and observed after 24 h and 48 h. One male in each pair was left intact, while the other experienced: (1) no autotomy, (2) autotomy of one cheliped, or (3) autotomy of both chelipeds, one walking leg, and one swimming leg. In the absence of a competitor (first 24 h), both intact and injured males established precopulatory embraces with females. Intact males were highly successful (84–95%) in defending females from intact or injured intruders in the second 24 h period. Both autotomy treatments, however, significantly reduced the ability of males to defend females from intact intruders. Females in experiments suffered greater frequency of limb loss than did males. In the field, paired blue crabs showed significantly higher incidence of limb loss than unpaired crabs. Limb loss frequency increases with body size, and field observations indicated that larger males may be more successful than smaller males in obtaining females. Both experimental manipulations and field studies provide strong evidence for mate competition in this ecologically and commercially important portunid species.  相似文献   

20.
Caudal autotomy is a dramatic antipredator adaptation where prey shed their tail in order to escape capture by a predator. The mechanism underlying the effectiveness of caudal autotomy as a pre‐capture defense has not been thoroughly investigated. We tested two nonexclusive hypotheses, that caudal autotomy works by providing the predator with a “consolation prize” that makes it break off the hunt to consume the shed tail, and the deflection hypothesis, where the autotomy event directs predator attacks to the autotomized tail enabling prey escape. Our experiment utilized domestic dogs Canis familiaris as model predator engaged to chase a snake‐like stimulus with a detachable tail. The tail was manipulated to vary in length (long versus short) and conspicuousness (green versus blue), with the prediction that dog attacks on the tail should increase with length under the consolation‐prize hypothesis and conspicuous color under the deflection hypothesis. The tail was attacked on 35% of trials, supporting the potential for pre‐capture autotomy to offer antipredator benefits. Dogs were attracted to the tail when it was conspicuously colored, but not when it was longer. This supports the idea that deflection of predator attacks through visual effects is the prime antipredator mechanism underlying the effectiveness of caudal autotomy as opposed to provision of a consolation prize meal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号